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Abstract 
 
 

This dissertation contributes a computational ‘rod’ model that captures arbitrarily large 

dynamic bending and torsion of slender filaments including the highly nonlinear 

phenomenon of loop formation and intertwining. Two applications, underwater (marine) 

cables and DNA polymers, motivate this research. 

 

Underwater cables tend to form loops and tangles in low tension regions that can hinder 

cable laying and recovery operations, attenuate signal transmission in fiber-optic cables, 

and can even lead to the formation of knots and kinks that damage cables. The formation 

of loops and tangles in long cables is topologically equivalent to the loops and supercoils 

that form in DNA. It is well known that the structural mechanics (i.e. deformation and 

stress) of DNA play a crucial role in the molecule’s biological functions including gene 

expression. For instance, looping in DNA (often mediated by protein binding) is a crucial 

step in many gene regulatory mechanisms. A clear understanding of the structure-

function relationships of these bio-molecules would enhance our ability to detect and to 

possibly control their biological functions. Functional involvement of DNA and/or 

proteins in several diseases is key to their diagnosis and treatment. Therefore the 

fundamental knowledge of the structure-function relationship may one day pave the way 

to new discoveries in medical research including future drug therapies. 

 

This dissertation contributes a versatile rod model that can simulate the nonlinear 

dynamics of loop/tangle/supercoil formation and includes the multi-physical interactions 

for both large scale (cable) and small scale (DNA) systems. The dynamic rod model is 

validated by comparisons with published results from equilibrium rod theories which 

have also been benchmarked with laboratory-scale experiments. An extension that 

xiii 



accounts for ‘self-contact’ enables us to explore the dynamics of intertwining and thereby 

simulate cable tangling and DNA supercoiling. Finally, we focus on an example of 

protein-mediated looping of DNA that is also widely studied experimentally. We use the 

‘mechanical rod' model of DNA molecules to simulate its structural interactions with 

proteins/ enzymes during gene expression. Our results illustrate how the mechanical 

properties of DNA affect the chemical kinetics of DNA-protein interactions and thus 

regulate the gene expression. 
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Chapter 

 

Chapter 1 

1. Introduction 
 
This research contributes a computational ‘rod’ model that captures arbitrarily large 

dynamic bending and torsion of slender filaments including the highly nonlinear 

phenomenon of loop formation and intertwining. Two applications, underwater (marine) 

cables and DNA  polymers, motivate this research. A brief introduction to the structure of 

DNA and its biological functions is given in Appendix 1 and also in [1] as further 

background to this research. 

 

Underwater cables may form loops and tangles in regions where torsional deformations 

overcome the stiffening effects due to tension and bending rigidity. This loading scenario 

is often realized on the seabed as illustrated in Figure 1.1. In this context, loops are often 

termed ‘hockles’ and these can hinder cable laying and recovery operations, attenuate 

signal transmission in fiber-optic cables, and can even lead to the formation of knots and 

kinks that damage cables. 

Figure 1.1 Low tension cable forming loops and tangles on the sea floor. 

Hockle 
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The formation of loops and tangles in long cables is topologically equivalent to the loops 

and supercoils that form in DNA. DNA, which is a long chain bio-polymer, is structurally 

similar to a rod with a diameter of 1.8 nanometers and lengths ranging from micrometer 

(viral plasmids1, see Figure 1.2) to centimeter (human chromosomes2) scales. Despite its 

discrete structure at the atomic scale, its structure on long length scales can be effectively 

described by a continuum rod. The following quote from [1] serves to emphasize that 

DNA is indeed extremely long and slender. 

“The DNA from the longest individual human chromosome, if it were enlarged by a 
factor of 106, so that it became the width of ordinary kite string, would extend for 
about 100 km. Imagine sitting in a train traveling from Cambridge to London, or from 
Los Angeles to San Diego, and looking out of the window for the whole trip at a 
single DNA molecule and watching the genes go by!” 

- Calladine et al. [1] 
 

 

 
Figure 1.2 Electron micrographs of a DNA polymer in two different conformations (Courtesy: 
Lehninger et al. [2]). The interwound conformation (lower image) is an example of intertwining that 
is topologically equivalent to tangles in underwater cables. 
 

                                                 
1 A “plasmid” is a closed loop DNA. It is typically found in viruses and “prokaryotes”, the lower organisms 
(without a cell nucleus) like bacteria. 
2 A “chromosome” is a well-organized assembly of very long DNA wrapped around spool-shaped proteins 
called “histones”. They are typically found in “eukaryotes”, the higher organisms (having cell nucleus) like 
all animals. 
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Twist and curvature are the two important kinematic variables of long cables and strands 

of DNA that describe their topological structure. For instance, extreme twist and 

curvature enable DNA to pack (by a factor of up to 10,000) within the small confines of 

the cell nucleus or a viral capsid. In addition, twist and curvature can regulate replication 

and gene expression [1]. Many enzymes (proteins) can manipulate the twist and curvature 

of DNA to pack the molecule or to help expose the interior base pairs (chemical units that 

constitute the genetic code). Similarly, it is the twist and curvature of long cables that are 

responsible for the formation of hockles on the sea bed. 

 

Dynamic behavior in both applications is influenced by hydrodynamic effects due to the 

surrounding fluid. For instance, underwater cables are subjected to substantial drag (high 

Reynolds number3), added fluid mass, and wave and current loading by the surrounding 

fluid environment. Likewise, DNA is subjected to substantial drag (Stokes regime, i.e. 

Low Reynolds number4) in addition to thermal fluctuations, hydrophobic interactions, as 

well as  electrostatic screening effects. 

 

Therefore nonlinear structural mechanics of a slender rod-like element in these 

applications require and understanding of the multi-physical environment and poses 

numerous challenges to both theoretical and computational modeling. This dissertation 

addresses these challenges, contributes a continuum-mechanics-based rod model that 

efficiently captures many of the aforementioned multi-physical behaviors, and also lays 

the foundation for future research in incorporating  other physical behaviors in a common 

computational framework. The accuracy of the model has been carefully confirmed in the 

quasi-static limit using published results for equilibrium states and thus indirectly, by the 

published laboratory-scale experiments on nitinol rods that validate these equilibria [3]. 

This dissertation also presents new and intriguing conclusions regarding the mechanics of  

DNA looping and supercoiling and the looping and tangling of underwater cables. We 

shall now review both of these target applications in more detail as background to this 

dissertation. 

                                                 
3 Inertial effects dominate viscous effects. 
4 Viscous effects dominate inertial effects.. 
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1.1 Underwater (Marine) Cable Applications 
 

Cables are deployed in the ocean for diverse applications including long-range signal 

transmission (electrical or optical), power transmission, sensor systems (e.g, hydrophone 

arrays), mooring lines, tow lines, and umbilicals. Depending on scales, other structural 

elements including pipelines and risers used for under sea oil recovery are well-described 

by considering them to be tensioned cable-like structures. The dynamics of cable laying 

operations, wave/current loading and other environmental conditions often introduce 

substantial dynamic cable behavior. Under extreme conditions, the dynamic behavior can 

be highly nonlinear and can even lead to loop and tangle formation. Looping and tangling 

of underwater cables severely degrade their performance and survivability in the ocean. 

For example, the loops (sometimes also referred to as ‘hockles’) may cause localized 

damage by kink formation. Kinks may prevent signal transmission in fiber optic cables.  

Loops and tangles may also promote knot formation and hinder the cable laying and 

recovery operations. Engineers and operators do not yet fully understand the basic 

mechanics of loop formation and the design/operation strategies needed to minimize their 

occurrence. Therefore, a major objective of this research is to explore the mechanics of 

loop/tangle formation and to contribute a predictive computational model for underwater 

cables. Observations made next offer qualitative insights on the conditions that lead to 

loop and tangle formation and motivate the research plan pursued in this dissertation. 
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Figure 1.3 A twisted cable collapses under slack conditions and ultimately forms a loop or hockle as 
well as an intertwined ‘snarl’ (Courtesy: Goss et al. [4]). 
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Figure 1.4 S-tether mooring collapses into a loop (‘hockle’) under torsion (due to yawing) in a low-
tension zone. The symbol ρ represents density. 
 

First, Figure 1.3 illustrates a simple experiment [4] wherein an initially taut but twisted 

cable is relaxed (slack added) so that its tension reduces. The twisted cable collapses to 

form loops (or ‘hockles’) that further intertwine (or ‘snarl’). Subsequent re-tensioning of 

the cable may eliminate all loops. Moreover, adding greater twist in the cable requires 

greater tension to prevent its collapse into loops. Second, Figure 1.1 illustrates that the 

cables laid upon the sea floor develop low-tension regions (shown in black) where they 

preferentially form loops and tangles. Most often, cables are laid down on the seabed 

from a surface ship where they are originally wound on spools. The mere winding and 

unwinding on spools, however, may allow cable to,accumulate residual twist that renders 

them further susceptible to loop formation. Third, Figure 1.4 shows an example of S-

tether cable that is designed to provide compliance in oceanographic moorings5. 

Frequently, this compliance serves to protect delicate instruments from ocean waves and 

currents. The design also prevents slack from developing on the seabed and thus 

minimizes cable wear and abrasion. The characteristic S-shape is achieved using 

                                                 
5 Such compliance substantially reduces the tension developed under wave and current loading. It is 
typically needed in electro-optical-mechanical (EOM) cables that are very stiff in extension.  
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distributed weights and buoyant elements in specific regions of the cable so as to create 

buoyant regions. Such designs also reduce the overall cable tension (an advantage from 

the perspective of cable-strength and durability), but they also render the system 

susceptible to loop formation in the low-tension S-shaped regions as shown in Figure 1.4. 

Such loop formation could be initiated by yawing of the buoy that would add twist to the 

cable or could also be initiated by other kinds of wave/current loading scenarios. 

 

From the above observations, following trends are reasonbly intuitive. 

• Twist in the cable promotes loop formation while tension in the cable suppresses 

loop formation. 

• The large deformations inherent in loop/tangle formation are dominated by 

flexural and torsional effects. 

• Looping/tangling results in negligible changes in the overall (contour) length of 

the cable. 

 

To accurately simulate the flexural and torsional behavior, one must treat the cable as a 

rod-like element that has stiffness due to flexure and torsion. (Flexural and torsional 

effects are not captured in ‘string-like’ models that treat the cable as perfectly flexible in 

flexure and torsion; refer to Triantafyllou and Howell [5] and to Burgess [6]). Due to 

stiffness in flexure and torsion, loop formation in a rod is initiated by structural 

instabilities (or buckling) under compression and/ or torsion; refer, for example, to the 

buckling conditions developed by Greenhill (described in Timoshenko and Gere [7]) and 

by Zachman [8]. In order to probe and simulate the mechanics of loop formation in 

underwater cables, the following challenges are identified for computational modeling: 

• accounting for arbitrarily large 3-dimensional deformation (nonlinear mechanics), 

• including hydrodynamic drag (Morison drag and added mass effects [9]), 

• capturing dynamic self-contact, a pre-requisite to model intertwining. 

 

These challenges are addressed in detail in this dissertation.  
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1.2 Mechanics of DNA: Looping and Supercoiling 
 

Deoxyribonucleic acid (DNA) is a long chain biopolymer molecule that has been 

characterized [1] as “the most central substance in the workings of all life on Earth.” 

Located within the nucleus of our cells, DNA contains the coded (genetic) information 

needed to synthesize all proteins and thus sustain life. Replication and segregation of 

DNA are used to transfer this genetic information from one cellular generation to the 

next.  These major biological functions of DNA follow not just from its chemical make 

up but also from its physical ‘structure’. By ‘structure’, we refer to the often complex 

shape and state of stress of this long molecule and how they ultimately affect its 

biological functions. A clear understanding of the structure-function relationships of 

these bio-molecules would enhance our ability to detect and to possibly control their 

biological functions. Functional involvement of DNA and/or proteins in several diseases 

is a target point for their diagnosis and treatment. Therefore such fundamental knowledge 

of the structure-function relationship may pave the way to new horizons in medical 

research including future drug therapies, more effective ways of pathological diagnoses, 

development of new vaccines, etc. This is an ambitious and scientifically-rich area of 

research which is perhaps best introduced by posing three fundamental questions: 

 

• How does the structural mechanics of DNA influence gene expression? 

• How does the base (monomer) sequence of DNA influence its structural 

mechanics? 

• How do gene-regulating proteins manipulate structural changes in DNA? 

 

A basic step towards resolving these questions is to develop a physical model of DNA 

that can simulate its structural mechanics. To start, we need to first describe the basic 

chemistry and structure of DNA, the multiple length-scales involved, and the major 

biological functions that DNA performs. In doing so, we will also discuss why we believe 

it is promising to study the long-length scale mechanics of DNA by employing methods 

and models from the field of cable/rod dynamics. The following description of DNA 
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structure and function is also briefly revisited in Appendix 1 along with some additional 

intriguing information/details. 

 

 
Figure 1.5 DNA shown on three length scales. Smallest scale (left) shows double-helix structure 
(sugar-phosphate chains and base-pairs). Intermediate scale (middle) shows how several double-
helices form a continuous piece of double-stranded DNA. Largest scale (right) shows how the strand 
ultimately curves and twists in forming supercoils (one interwound or plectonemic, and one 
solenoidal). (Courtesy: Branden and Tooze [10] and Lehninger et al. [2]). 
 

Figure 1.5 illustrates a DNA molecule on three different length scales as reproduced from 

several sources [1-3]. The smallest length scale (far left) shows a segment of the familiar 

‘double-helix’ which has a diameter of approximately 2 nanometers (nm). One complete 

helical turn is depicted here and this extends over a length of approximately 3 nm. The 

double helices, which wind like the supports of a spiral staircase, are composed of two 

polynucleotide chains which in turn are made up of four different nucleotides. Each 

nucleotide is made from a five-carbon sugar to which one or more phosphate groups and 

a nitrogen containing base are attached.  The phosphate groups render the molecule 

negatively charged along its backbone. There are four types of bases that include adenine 

(abbreviated A), guanine (abbreviated G), cytosine (abbreviated C) and thymine 

(abbreviated T).   The four bases often bond in only two unique, complementary pairs, 

namely A with T and C with G. The sugar-phosphate groups of the nucleotides are 

covalently linked into long chains (highlighted in orange) that form the backbone of 

DNA. Pairing of the two polynucleotide strands is achieved by hydrogen bonding 

between the nucleotide bases (highlighted in blue) that fill the small voids between the 

single DNA strands. It is this linear sequence of base-pairs that constitute the genetic 
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code. Within the small voids between these chains lie the ‘base-pairs’ (highlighted in 

blue). This chemical structure and the rules for ‘base-paring’ follow from the seminal 

discoveries of Franklin and Gosling [11] and Watson and Crick [12, 13].  The base-pairs 

are hydrophobic and therefore must avoid contact with the surrounding aqueous 

environment within the cell. To this end, the double-helices effectively wrap around the 

base-pairs, thereby shielding them from the surrounding water molecules [1].  There are 

approximately 10.5 base-pairs in one helical turn for the common ‘B’ form of DNA 

which also forms a right-handed helix as depicted in Figure 1.5. 

 

On an intermediate spatial scale (middle of Figure 1.5), the double helix appears as a 

solid ‘strand’ of DNA that might extend over tens to hundreds of helical turns 

(approximately tens to hundreds of nanometers). This is the approximate length scale of a 

‘gene’ which is a portion of a DNA strand (i.e. a specific base-pair sequence) that 

controls a discrete hereditary characteristic.  The base-pair sequence within a gene 

constitutes a chemical code for the production of a specific protein elsewhere within the 

cell.  The major biological function of DNA is to store these chemical codes and to make 

them available for protein production through a process known as ‘transcription’. In 

addition, the same chemical codes are passed from one cell generation to the next through 

a process known as ‘replication’. Thus, transcription and replication are key biological 

processes essential for the functions of DNA. Transcription and replication are strongly 

influenced by the structure of the molecule on even longer length scales. 

 

The human genome contains about 3.2 billion nucleotides organized into 24 different 

chromosomes. The total length of our DNA is about 1 m, which is about five orders of 

magnitude larger than a typical cell.  These observations confirm that DNA is an 

exceedingly long (and flexible) molecule. The long-length scale structure of DNA is 

illustrated to the far right in Figure 1.5. Here the long DNA strand may contain thousands 

to millions of base-pairs and resemble a highly curved and twisted filament with lengths 

ranging from micron to millimeter scales. The long-length curving/twisting of this strand 

is called ‘supercoiling’ and two generic types of supercoils are illustrated to the far right 

of Figure 1.5. One type, referred to as an ‘interwound supercoil’ (or ‘plectoneme’), leads 
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to an interwoven structure where the strand wraps upon itself with many sites of apparent 

‘self-contact’ (referred to as ‘excluded volume effects’ in this context). By contrast, a 

‘solenoidal supercoil’ possesses no self-contact and resembles a coiled spring or 

telephone cord. DNA must supercoil for several key reasons. First, supercoiling provides 

an organized means to compact these very long molecules (by as much as 104) enabling 

them to fit within the small confines of the cell nucleus. An unorganized compaction 

would hopelessly tangle the strand and render it useless as a medium for storing the 

coded information. Though the solenoidal form achieves greater compaction (as needed 

for packaging it inside a cell nucleus) than does the plectonemic form, it is generally not 

observed unless stabilized by certain proteins (e.g. spool-shaped proteins called 

‘histones’). For isolated DNA in solution, the plectonemic form is stable and is mostly 

observed in the laboratory [2]. Second, supercoiling may play an important role in the 

biological processes of transcription and replication. For instance, protein-mediated 

looping of DNA on long-length scales is a crucial step in many gene regulatory 

mechanisms [14-18], a phenomenon that will be studied in some detail in this 

dissertation. 

 

 { }),( tsai

),( tsR  

 

 

It is o

Figure

the lo

Figure
Figure 1.6 Rod model of (ds) DNA on long-length scales. Helical axis of duplex defines
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n this largest length scale that DNA starts to resemble a cable or a ‘rod’; refer to 

 1.6. Consider for instance the striking similarities of DNA loops and supercoils to 

ops and tangles (hockles) that form in low tension cables like those illustrated in 

 1.1. The models and methods used to understand how loops and tangles form in 
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cables provide a natural means to explore the looping and supercoiling of DNA, provided 

one incorporates the specialized physical laws that are dominant at these length scales 

(refer to Appendix 3 and Howard [19]).  Moreover, the curved and twisted structures that 

appear on long-length scales suggest the important roles played by the bending and 

torsion of a DNA strand. Cable models that capture bending and torsion employ ‘rod’ 

theory. Indeed, the use of rod theory is reasonably well-established in the literature on 

DNA modeling as reviewed by Schlick [20] and Olson [21]. 

 

DNA in live environment is often untwisted by up to 5% of its nominal (stress-free) 

helical twist and is compressed within the small confines of cell (or viral capsid). This 

combination of low-tension/ compression and torsion renders long lengths of DNA 

susceptible to structural instabilities (see Appendix 2) that produce loops and supercoils. 

The resulting structural changes on long length scales can be captured by rod models. 

 

While rod models may be naturally suited for describing the mechanics of DNA on long-

length scales that extend over tens to millions of base pairs, they cannot describe the fine-

scale structure of DNA at the base-pair level.  Such fine-scale models of DNA can only 

be resolved through atom-by-atom descriptions of the DNA duplex (and the surrounding 

water molecules and any bound proteins/agents). However, the resulting molecular 

dynamics (MD) models rapidly grow to huge proportions and this limits their utility to 

very short (e.g., nanosecond) time scales and to very short (e.g., nanometer) length scales. 

Thus, full molecular dynamics models cannot be used to simulate the long-length scale 

looping and supercoiling of DNA; see, for example, [22-24]. Other modeling techniques 

do exist (e.g., Monte Carlo or Brownian/Langevin dynamics simulations of discrete 

beaded-chain models and other statistical mechanics models of polymers [25]) that 

provide alternatives to MD simulation, see, for example studies reviewed in [20, 21, 26]. 

Beaded-chain models (e.g. [27, 28]) have been particularly useful in capturing the diverse 

physical interactions of DNA on long-length scales, such as its thermal fluctuations 

caused by random bombardments of water molecules, hydrodynamic interactions and 

electrostatic interactions of its negatively charged sugar-phosphate backbone. These 

physical interactions of DNA with its surrounding are discussed in Appendix 3 and 
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differing opinions on their importance are also cited. Discrete models however differ in 

their material laws from continuum rod models as explained in detail by Klapper and 

Qian [26] and their applicability depend on the context. In general, all these models (MD, 

beaded-chain and continuum rod) play important roles in building our understanding of 

the DNA mechanics as they involve  multiple length/time scales and multi-physical 

effects. 

 

In order to simulate the structural mechanics of DNA as a continuum rod, some or all of 

the following challenges may need to be addressed: 

• arbitrarily large 3-dimensional deformation (nonlinear mechanics) 

• hydrodynamic drag (Stokes regime) and interactions (coupling)6 

• excluded volume effects (self-contact) 

• sequence-dependent material laws (constitutive laws) 

• thermal kinetics 

• electrostatics 

 

In the case of DNA, the modeling challenges are amplified by the fact that the material 

laws and parameters for other physical interactions are not well-characterized. Hence the 

computational model needs to be general enough to accommodate future knowledge of 

these functions (material laws) and parameters. We also further note that any inclusion of 

thermal kinetics and hydrodynamics must respect the ‘fluctuation-dissipation theorem’, 

refer to [19], and that the modeling of excluded volume effects is not isolated from the 

modeling of electrostatics. 

 

1.3 Research Objective 
 

The overall objective of this dissertation is to develop a versatile computational rod 

model that describes the nonlinear dynamics of highly contorted cables and DNA strands 

                                                 
6 With hydrodynamic interactions, a segment of DNA transmits a disturbance to another segment not only 
through the structural path but also through the fluid path. In contrast, hydrodynamic drag captures only the 
dissipation of the fluid and not any possible disturbances of the structure to the fluid. 
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including looping and intertwining. The major challenge is to identify and include only 

the dominant structural properties and physical interactions that have strong influence on 

the resulting dynamics while ignoring those responsible for only weak influences. The 

following lists summarize the candidate structural properties and physical interactions 

which are included (indicated with a ) or currently neglected (indicated with a ×) : 

 

Structural Properties: 

• Arbitrarily large deformations due to bending and torsion  

• Dynamics due to inertia and/ or dissipation  

• Self-contact (or excluded volume effects)  

• Ability to accommodate wide range of material laws  

• Non-homogeneity (discrete or continuous)  

 

Physical Interactions: 

• Hydrodynamic drag (at both high and low Reynolds numbers)  

• Hydrodynamic interactions (fluid path coupling) × 

• Thermal kinetics × 

• Electrostatics × 

 

Our goal is to address the most important features first and leave features of debatable 

importance for future consideration. The computational rod model in this dissertation 

incorporates all the features marked with  above and we also suggest  strategies for 

including the features marked with × above. In this context, we quickly note that 

hydrodynamic interactions and electrostatics are of disputed importance as discussed in 

Appendix 3. The formulation of thermal kinetics, however, is an ongoing research effort 

of our research group which is beyond the scope of this dissertation.  
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1.4 Scope of Dissertation and Previous Rod Theories 
 

Advancements in rod theories are comprehensively reviewed in [29]. The earliest theories 

focus on ‘equilibrium’ (static) mechanics and originate from the ‘linear’ (small 

deformation) theories of Timoshenko and Euler-Bernoulli (described in Timoshenko and 

Gere [7]). For instance, refer to the linear buckling analyses of rod under prescribed 

tension/compression and torsion by Greenhill for “pinned-pinned’ boundary conditions 

(described in Timoshenko and Gere [7]) and by Zachman [8] for ‘clamped-clamped’ 

boundary conditions. ‘Nonlinear’ (large deformation) equilibrium theories have evolved 

from ‘elastica’ models that describe large rotations of the rod cross-section. Elastica 

theory represents a special case of Kirchhoff/Clebsch rod theory (described in Antman 

[29] and Love [30]) that frequently employ a ‘linear elastic constitutive law’ for bending 

and torsion. 

 

Analyses using nonlinear equilibrium rod theory often appear in the context of studying 

cable hockling; refer to Zajac [31], Yabuta [32] and Coyne [33]. These studies employ 

equilibrium rod theory to evaluate the cable torque and tension required to initiate a 

“looping instability” and the converse “pop-out” instability which destabilizes the cable 

loop. Extensions that incorporate three-dimensional equilibrium forms, their local 

stability, and spatial complexity are provided by Perkins and co-workers [34-36]. A 

recent summary of the bifurcations responsible for looping and pop-out in twisted rods 

with clamped ends is presented in Heijden et al. [3] together with compelling 

experimental results on (macro-scale) metal-alloy (nitinol) rods. 

 

To describe supercoiling of DNA, numerous studies have employed rod theories also 

under equilibrium conditions [3, 37-50] starting with Benham [37, 38] who uses a 

‘hyperelastic’, isotropic rod. The use of an isotropic (circular) rod to represent the 

structure of the double helix is specifically addressed by Maddocks and co-workers [39, 

40] who conclude that bending anisotropy at the base-pair scale quickly averages to an 

effective isotropic rod on longer-length scales due to the high intrinsic twist (~10.5 base-
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pairs/per helical turn) of the double-helix.  DNA also has non-homogeneous material 

properties (including stiffness7 and stress-free shape) due its varying base-pair sequence 

along its length. Non-homogeneity (sequence-dependent geometry and stiffness) in 

‘linear elastic’ rod models is addressed by Manning et al [41]. The studies [3, 37-50] 

have contributed a fundamental understanding of the equilibrium states that describe 

supercoiled geometries (solenoidal and interwound), the stability of these states, and the 

physical parameters that control their ‘bifurcations’ [42, 45-50]. Much of this 

understanding derives from the fact that, in the absence of body-forces, the governing 

equilibrium equations are integrable which greatly aids subsequent bifurcation analyses. 

Modeling the mechanics of interwound supercoils requires formulating “self-contact” in 

rod theory and this challenge has only recently been addressed [3, 43, 44] in the context 

of closed loops (DNA “plasmids”) [43, 44] and open strands with clamped ends [3]. 

Schlick [20] and some of the above studies, [3, 35, 48] also noted the topological 

equivalence of ‘supercoils’ in DNA and ‘hockles’ in marine cables. 

 

The studies cited above all employ equilibrium calculations to predict supercoiled states 

of DNA or hockled states of cables.  It is however well-known that both planar and non-

planar equilibrium states may become unstable under specific bifurcation conditions; for 

instance, the loop formation instabilities noted in [3, 34] and the opposite “pop-out” 

instabilities noted in [3, 33].  These instabilities initiate large dynamic responses which 

may also produce nonlinear transitions to more energetically favorable equilibria. 

Fundamental dynamical phenomena of supercoils and hockles are left unaddressed, 

including the existence of multiple supercoiled states in DNA and the possible nonlinear 

transitions between these states [1]. The need for dynamic treatments using rod theory is 

recognized, but not pursued in the above studies by Coleman et al. [43] and by Heijden et 

al. [3]. 

 

Only recently, very few studies [51-55] have developed dynamic rod models sufficient 

for describing the dynamic evolution of loops. Their features are contrasted with some 

                                                 
7 For example, AT rich zones are believed to be softer than GC rich zones because the AT pair has only two 
hydrogen bonds while the GC pair has three hydrogen bonds. 
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important contributions of this dissertation in 
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Table 1.1. The only dynamic rod model in the context of DNA mechanics is one 

developed by Klapper [51] to study the slow (artificially damped) evolution of self-

contact and intertwining in closed loop biological filaments, e.g. DNA plasmids.  

Dynamical rod models are more prevalent for simulating underwater cables [52-55]. All 

these models capture highly dynamic responses of underwater cables with more realistic 

hydrodynamic forces, Morison drag and added mass effects [9] but without self-contact. 

The model developed by Gobat et al. [53, 54] also captures dynamic tension (extensional 

waves) by adding a linear constitutive law in extension for a Kirchhoff rod. This however 

is a minor feature when considering the mechanics responsible for  looping and 

supercoiling. 

 

In the dynamic formulation, the nonlinear equations of the model are not integrable in 

closed form and necessitate a numerical search of the solution at each time step. Along 

with this necessity come many numerical challenges. Numerical recipes for solving 

nonlinear differential equations suffer from fundamental trade-offs between speed, 

accuracy and numerical stability, as stated by the Dahlquist theorem [58]. The 

Generalized-α method developed by Chung and Hulbert [56] and extended to cable 

dynamics applications by Gobat and Grosenbaugh [53] has optimal numerical properties 

within the constraints of Dahlquist theorem. The method is becoming increasingly 

popular in both industry and academia. 
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Table 1.1 also contrasts numerical features of all the dynamic rod models which we 

elaborate upon in Chapters 3.  

 

All of the previous dynamic rod models described above [51-55] also assume the rod to 

be homogeneous and straight when stress-free (no intrinsic curvature or twist). We have 

already described that these assumptions fall short when considering the sequence-

dependent mechanics of DNA. In addition, the helical construction of the DNA duplex 

and of synthetic and wire rope cables (described in Costello [59]) gives rise to a specific 

kind of anisotropy due to chirality (termed as ‘hemitropy’ by Healey [60]). In contrast to 

isotropic rods, the behavior of a hemitropic or chiral rod differs from that of its mirror 

image [60]. 
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Table 1.1 Comparison of computational dynamic rod models 

 Klapper 

[51] 

Gobat et al. 

[53, 54] 

Sun et al. [52], 

Gatti et al. [55] 

This 
Dissertation 

year 1995 2000 1994, 2002 2003 

Modeling Features 

Self-Contact  × ×  

Non-
homogeneity 
and Stress-free 
Curvature 

× × ×  

Chirality × × ×  

Hydrodynamic 
forces 

Formulation 
for low 
Reynolds 
number to 
approximate 
quasi-static 
solutions. 

Buoyancy, 
standard 
Morison drag 
and added mass 

Buoyancy, 
standard 
Morison drag 
and added mass 

Two different 
formulations 
for low and 
high Reynolds 
number. 

Numerical Features 

Numerical 
Scheme 

RK8 method in 
time, centered 
difference 
scheme in 
space 

Generalized-α 
method [53, 56] 
in time, box 
method in 
space 

Newmark-like 
scheme 
(Generalized 
trapezoidal 
method) in 
time, RK8 
method in 
space 

Generalized-α 
method [53, 56] 
in both space 
and time. 

Rotation 
parameterization 

Unit vectors Euler 
Parameters 

Euler 
parameters 

Incremental 
rotation [57] 

Order of PDE  13th order 13th Order 12th Order 

 

 

                                                 
8 Runge-Kutta Method. 
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1.5 Summary of Research Contributions 
 

The contributions of this dissertation can be broadly divided among contributions 

towards a general computational rod model, and contributions towards understanding the 

mechanics of looping and intertwining of cable and of DNA through four ‘case studies’. 

We begin with three contributions that extend existing computational rod models.  

 

Computational Rod Model 

 

• General formulation of hydrodynamic forces and self-contact  

We formulate a computational dynamic rod model in Chapter 2 that incorporates all the 

capabilities of the previous dynamic models [51-55] and adds generalized body forces 

that can capture the effects of hydrodynamic drag (at both high and low Reynolds 

number), added mass, buoyancy and dynamic self-contact. The comparisons with and 

contributions over previous formulations are summarized in 
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Table 1.1.  

 

• Modeling non-homogenous and non-isotropic rods  

Our formulation accounts for 1) anisotropy in bending stiffness, 2) intrinsic twist and 

curvature, and 3) non-homogeneous stiffness and density. These effects will likely play a 

key role in several case studies of both cables (synthetic and wire ropes) and DNA 

(sequence-dependent properties). For instance, the chirality of cables and the DNA 

duplex leads to coupling of tension and torque as demonstrated by examples in Chapter 5. 

 

• Numerical enhancements 

We have improved overall computational performance in our algorithms by 

implementing three strategies: 1) Generalized-α method [53, 56] in both space and time, 

2) a novel formulation of equations of motion that allows us to circumvent the use of 

Euler parameters and thereby rendering the minimum order (12th order) model, and 3) the 

judicious choice of field variables in terms of velocities, angular velocities and 

curvature/twist components (instead of displacements and Euler angles). This is further 

elaborated in Chapter 3 where we describe the computational formulation. 

 

 

Case Studies for Cables and DNA 

 
Arguably the most interesting contributions of this dissertation follow from the 

application of the computational rod model to the looping and intertwining of cables and 

DNA. In doing so, we also carefully benchmark our results as described next.  

 

• Benchmarking 

As a first example, we elected to carefully benchmark our dynamical solutions with 

known equilibrium solutions for limiting cases of slow (quasi-static) loading. Doing so 

highlights the accuracy of our formulation.  We refer to Heijden et al. [3] who catalogues 

the equilibria and bifurcations of clamped-clamped rods which in turn have been 

validated by laboratory-scale experiments on nitinol rods. The dynamic rod model 
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summarized in Chapter 4 not only reproduces these equilibria under quasi-static loading 

but also captures large dynamic transitions between equilibrium paths. In addition, we 

discover new hysteresis effects that result from our dynamical treatment. 

 

• Tension-Torque Coupling 

As a second example, we study in Chapter 5 the influence of chirality by adding tension-

torque coupling to the rod constitutive law. This coupling is motivated by the helically-

wound construction of common wire and synthetic cables as well as the DNA duplex. 

The impact of this coupling is highlighted through new solutions to the benchmark 

problem first introduced in Chapter 4.  

 

• Dynamics of self-contact and intertwining 

As a third example, we model self-contact so as to capture the dynamic evolution of 

intertwining in response to torsional buckling. The intertwined shapes resemble hockles 

in underwater cables and the plectonemic supercoils of  DNA.  These results highlight the 

importance of torsion as a dominant mechanism responsible for hockles and plectonemes. 

This is covered in Chapter 6. 

 

• Protein-mediated DNA looping 

Looping in DNA is an important mechanism for gene regulation. Gene expression can be 

regulated by specific proteins that deform DNA into a loop. One of the most studied 

examples of this regulation is the Lac gene in the bacterium E.Coli that is mechano-

chemically controlled by ‘Lactose-Repressor’ protein. In chapter 7, we employ the rod 

model to simulate DNA looping mediated by 'Lactose-Repressor' for both the ‘wild-type’ 

(naturally occurring) DNA sequence and variety of other ‘designed sequences’ with large 

intrinsic bends. The computations provide a fundamental understanding of the energetics 

and topology the DNA loops. They also elucidate experimentally observable trends of 

looping rates and stability of the designed sequences and the overall influence of 

sequence-dependent instrinsic curvature in the looping process.  
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Finally this dissertation lays out the foundation for many future/ongoing research 

endeavors with.some described in Chapter 8. 

 

 

 

24 



References: 
 

1. Calladine, C.R., et al., Understanding DNA, the Molecule and How It Works. 3 
ed. 2004, Amsterdam: Elsevier Academic Press. 

2. Lehninger, A.L., D.L. Nelson, and M.M. Cox, Lehninger Principles of 
Biochenistry. 4 ed. 2005, New York: W. H. Freeman. 

3. van der Heijden, G.H.M., et al., Instability and self-contact phenomena in the 
writhing of clamped rods. International Journal Of Mechanical Sciences, 2003. 
45(1): p. 161-196. 

4. Goss, V.G.A., et al., Experiments on snap buckling, hysteresis and loop formation 
in twisted rods. Experimental Mechanics, 2005. 45(2): p. 101-111. 

5. Triantafyllou, M.S. and C.T. Howell, Dynamic-Response of Cables under 
Negative Tension - an Ill-Posed Problem. Journal of Sound and Vibration, 1994. 
173(4): p. 433-447. 

6. Burgess, J.J., Bending stiffness in a simulation of undersea cable deployment. 
International Journal of Offshore and Polar Engineering, 1993. 3(3): p. 197-204. 

7. Timoshenko, S.P. and J.M. Gere, Theory of Elastic Stability. 2 ed. 1961, New 
York: McGraw-Hill. 

8. Zachmann, D.W., Non-Linear Analysis Of A Twisted Axially Loaded Elastic Rod. 
Quarterly Of Applied Mathematics, 1979. 37(1): p. 67-72. 

9. Morison, J.R., et al., The Force Exerted By Surface Waves On Piles. Transactions 
Of The American Institute Of Mining And Metallurgical Engineers, 1950. 189: p. 
149-154. 

10. Branden, C. and J. Tooze, Introduction to Protein Structure. 2 ed. 1999, New 
York: Garland Publishing. 

11. Franklin, R.E. and R.G. Gosling, Molecular Configuration in Sodium 
Thymonucleate. Nature, 1953. 171(4356): p. 740-741. 

12. Watson, J.D. and F.H.C. Crick, Genetical Implications of the Structure of 
Deoxyribonucleic Acid. Nature, 1953. 171(4361): p. 964-967. 

13. Watson, J.D. and F.H.C. Crick, Molecular Structure of Nucleic Acids - a 
Structure for Deoxyribose Nucleic Acid. Nature, 1953. 171(4356): p. 737-738. 

14. Halford, S.E., A.J. Welsh, and M.D. Szczelkun, Enzyme-mediated DNA looping. 
Annual Review of Biophysics and Biomolecular Structure, 2004. 33: p. 1-24. 

15. Ptashne, M., A Genetic Switch. 2 ed. 1992, Cambridge, Mass: Cell Press : 
Blackwell Scientific Publications. 

16. Ptashne, M. and A. Gann, Genes and Signals. 1 ed. 2002, Cold Spring Harbor, 
N.Y.: Cold Spring Harbor Laboratory Press. 

17. Schleif, R., DNA Looping. Annual Review of Biochemistry, 1992. 61: p. 199-223. 
18. Semsey, S., K. Virnik, and S. Adhya, A gamut of loops: meandering DNA. Trends 

in Biochemical Sciences, 2005. 30(6): p. 334-341. 
19. Howard, J., Mechanics of Motor Proteins and the Cytoskeleton. 2001, 

Sunderland: Sinauer Associates. 
20. Schlick, T., Modeling Superhelical DNA - Recent Analytical And Dynamic 

Approaches. Current Opinion In Structural Biology, 1995. 5(2): p. 245-262. 

25 



21. Olson, W.K., Simulating DNA at low resolution. Current Opinion in Structural 
Biology, 1996. 6(2): p. 242-256. 

22. Kollman, P.A., et al., Calculating structures and free energies of complex 
molecules: Combining molecular mechanics and continuum models. Accounts of 
Chemical Research, 2000. 33(12): p. 889-897. 

23. Schlick, T., et al., Computational challenges in simulating large DNA over long 
times. Computing in Science & Engineering, 2000. 2(6): p. 38-51. 

24. Beveridge, D.L. and G. Ravishanker, Molecular-Dynamics Studies of DNA. 
Current Opinion in Structural Biology, 1994. 4(2): p. 246-255. 

25. Flory, P.J., Statistical mechanics of chain molecules. 1989, Munich ; New York : 
New York, NY :: Hanser Publishers ; Distributed in the USA by Oxford 
University Press. 

26. Klapper, I. and H. Qian, Remarks on discrete and continuous large-scale models 
of DNA dynamics. Biophysical Journal, 1998. 74(5): p. 2504-2514. 

27. Klenin, K., H. Merlitz, and J. Langowski, A Brownian dynamics program for the 
simulation of linear and circular DNA and other wormlike chain polyelectrolytes. 
Biophysical Journal, 1998. 74(2): p. 780-788. 

28. Hsieh, C.C., L. Li, and R.G. Larson, Modeling hydrodynamic interaction in 
Brownian dynamics: simulations of extensional flows of dilute solutions of DNA 
and polystyrene. Journal Of Non-Newtonian Fluid Mechanics, 2003. 113(2-3): p. 
147-191. 

29. Antman, S.S., Nonlinear Problems in Elasticity. 2 ed. 2004, New York: Springer-
Verlag. 

30. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity. 4 ed. 1944, 
New York: Dover Publications. 

31. Zajac, E.E., Stability of two planar loop elasticas. Trans. ASME Ser. E. J. Appl. 
Mech., 1962. 29: p. 136--142. 

32. Yabuta, T., Submarine Cable Kink Analysis. Bulletin of the Jsme-Japan Society of 
Mechanical Engineers, 1984. 27(231): p. 1821-1828. 

33. Coyne, J., Analysis Of The Formation And Elimination Of Loops In Twisted 
Cable. Ieee Journal Of Oceanic Engineering, 1990. 15(2): p. 72-83. 

34. Lu, C.L. and N.C. Perkins, Nonlinear Spatial Equilibria And Stability Of Cables 
Under Uniaxial Torque And Thrust. Journal Of Applied Mechanics-Transactions 
Of The Asme, 1994. 61(4): p. 879-886. 

35. Lu, C.L. and N.C. Perkins, Complex Spatial Equilibria Of U-Joint Supported 
Cables Under Torque, Thrust And Self-Weight. International Journal Of Non-
Linear Mechanics, 1995. 30(3): p. 271-285. 

36. Gottlieb, O. and N.C. Perkins, Local and global bifurcation analyses of a spatial 
cable elastica. Journal of Applied Mechanics-Transactions of the Asme, 1999. 
66(2): p. 352-360. 

37. Benham, C.J., The Role of the Stress Resultant in Determining Mechanical 
Equilibria of Superhelical DNA. Biopolymers, 1987. 26(1): p. 9-15. 

38. Benham, C.J., Onset of writing in circular elastic polymers. Physical Review A 
(General Physics), 1989. 39(5): p. 2582-2586. 

39. Rey, S. and J.H. Maddocks. Buckling of an Elastic Rod with High Intrinsic Twist. 
in 16th IMACS World Congress. 2000. 

26 



40. Kehrbaum, S. and J.H. Maddocks. Effective Properties of Elastic Rods with High 
Intrinsic Twist. in 16th IMACS World Congress. 2000. 

41. Manning, R.S., J.H. Maddocks, and J.D. Kahn, A continuum rod model of 
sequence-dependent DNA structure. Journal Of Chemical Physics, 1996. 105(13): 
p. 5626-5646. 

42. Tobias, I., D. Swigon, and B.D. Coleman, Elastic stability of DNA configurations. 
I. General theory. Physical Review E, 2000. 61(1): p. 747-758. 

43. Coleman, B.D., D. Swigon, and I. Tobias, Elastic stability of DNA configurations. 
II. Supercoiled plasmids with self-contact. Physical Review E, 2000. 61(1): p. 
759-770. 

44. Gonzalez, O., et al., Global curvature and self-contact of nonlinearly elastic 
curves and rods. Calculus of Variations and Partial Differential Equations, 2002. 
14(1): p. 29-68. 

45. Ramachandran, G. and T. Schlick, Buckling transitions in superhelical DNA: 
Dependence on the elastic constants and DNA size. Biopolymers, 1997. 41(1): p. 
5-25. 

46. Olson, W.K. and V.B. Zhurkin, Modeling DNA deformations. Current Opinion in 
Structural Biology, 2000. 10(3): p. 286-297. 

47. Fain, B., J. Rudnick, and S. Ostlund, Conformations of linear DNA. Physical 
Review E, 1997. 55(6): p. 7364-7368. 

48. Stump, D.M., W.B. Fraser, and K.E. Gates, The writhing of circular cross-section 
rods: undersea cables to DNA supercoils. Proceedings of the Royal Society of 
London Series a-Mathematical Physical and Engineering Sciences, 1998. 
454(1976): p. 2123-2156. 

49. Stump, D.M., P.J. Watson, and W.B. Fraser, Mathematical modelling of 
interwound DNA supercoils. Journal of Biomechanics, 2000. 33(4): p. 407-413. 

50. Thompson, J.M.T., G.H.M. van der Heijden, and S. Neukirch, Supercoiling of 
DNA plasmids: mechanics of the generalized ply. Proceedings of the Royal 
Society of London Series a-Mathematical Physical and Engineering Sciences, 
2002. 458(2020): p. 959-985. 

51. Klapper, I., Biological applications of the dynamics of twisted elastic rods. 
Journal Of Computational Physics, 1996. 125(2): p. 325-337. 

52. Sun, Y. and J.W. Leonard, Dynamics of ocean cables with local low-tension 
regions. Ocean Engineering, 1998. 25(6): p. 443-463. 

53. Gobat, J.I. and M.A. Grosenbaugh, Application of the generalized-alpha method 
to the time integration of the cable dynamics equations. Computer Methods In 
Applied Mechanics And Engineering, 2001. 190(37-38): p. 4817-4829. 

54. Gobat, J.I., M.A. Grosenbaugh, and M.S. Triantafyllou, Generalized-alpha time 
integration solutions for hanging chain dynamics. Journal Of Engineering 
Mechanics-Asce, 2002. 128(6): p. 677-687. 

55. Gatti-Bono, C. and N.C. Perkins, Dynamic analysis of loop formation in cables 
under compression. International Journal Of Offshore And Polar Engineering, 
2002. 12(3): p. 217-222. 

56. Chung, J. and G.M. Hulbert, A Time Integration Algorithm For Structural 
Dynamics With Improved Numerical Dissipation - The Generalized-Alpha 

27 



Method. Journal Of Applied Mechanics-Transactions Of The Asme, 1993. 60(2): 
p. 371-375. 

57. Bottasso, C.L. and M. Borri, Integrating finite rotations. Computer Methods In 
Applied Mechanics And Engineering, 1998. 164(3-4): p. 307-331. 

58. Dahlquist, G., A special stability problem for linear multistep methods. BIT, 
1963. 3: p. 27-43. 

59. Costello, G.A., Theory of Wire Rope. 3 ed. 1997, New York: Springer-Verlag. 
60. Healey, T.J., Material symmetry and chirality in nonlinearly elastic rods. 

Mathematics And Mechanics Of Solids, 2002. 7(4): p. 405-420. 
61. Fuller, F.B., Writhing Number Of A Space Curve. Proceedings Of The National 

Academy Of Sciences Of The United States Of America, 1971. 68(4): p. 815-&. 
62. White, J.H., Self-Linking And Gauss-Integral In Higher Dimensions. American 

Journal Of Mathematics, 1969. 91(3): p. 693-&. 
63. Finzi, L. and J. Gelles, Measurement Of Lactose Repressor-Mediated Loop 

Formation And Breakdown In Single Dna-Molecules. Science, 1995. 267(5196): 
p. 378-380. 

64. Mehta, R.A. and J.D. Kahn, Designed hyperstable lac repressor center dot DNA 
loop topologies suggest alternative loop geometries. Journal Of Molecular 
Biology, 1999. 294(1): p. 67-77. 

65. Smith, S.B., Y.J. Cui, and C. Bustamante, Overstretching B-DNA: The elastic 
response of individual double-stranded and single-stranded DNA molecules. 
Science, 1996. 271(5250): p. 795-799. 

66. Yin, H., et al., Transcription Against An Applied Force. Science, 1995. 
270(5242): p. 1653-1657. 

67. Doi, M. and S.F. Edwards, The theory of polymer dynamics. The International 
series of monographs on physics ; 73. 1988, Oxford [Oxfordshire] 

New York: Clarendon Press ; 
Oxford University Press. xiii, 391. 
68. Rouse, P.E., A Theory Of The Linear Viscoelastic Properties Of Dilute Solutions 

Of Coiling Polymers. Journal Of Chemical Physics, 1953. 21(7): p. 1272-1280. 
69. Zimm, B.H., Dynamics Of Polymer Molecules In Dilute Solution - Viscoelasticity, 

Flow Birefringence And Dielectric Loss. Journal Of Chemical Physics, 1956. 
24(2): p. 269-278. 

70. Shusterman, R., et al., Monomer dynamics in double- and single-stranded DNA 
polymers. Physical Review Letters, 2004. 92(4). 

71. Derjaguin, B. and L. Landau, Theory Of Stability Of Highly Charged Liophobic 
Sols And Adhesion Of Highly Charged Particles In Solutions Of Electrolytes. 
Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1945. 15(11): p. 663-682. 

72. Larson, R.G., The Structure and Rheology of Complex Fluids. 1999, New York: 
Oxford University Press. 

73. Bhuiyan, L.B. and C.W. Outhwaite, The Cylindrical Electric Double-Layer In 
The Modified Poisson-Boltzmann Theory. Philosophical Magazine B-Physics Of 
Condensed Matter Statistical Mechanics Electronic Optical And Magnetic 
Properties, 1994. 69(5): p. 1051-1058. 

74. Gavryushov, S. and P. Zielenkiewicz, Electrostatic potential of B-DNA: Effect of 
interionic correlations. Biophysical Journal, 1998. 75(6): p. 2732-2742. 

28 



75. Rybenkov, V.V., A.V. Vologodskii, and N.R. Cozzarelli, The effect of ionic 
conditions on the conformations of supercoiled DNA .1. Sedimentation analysis. 
Journal Of Molecular Biology, 1997. 267(2): p. 299-311. 

76. Rybenkov, V.V., A.V. Vologodskii, and N.R. Cozzarelli, The effect of ionic 
conditions on the conformations of supercoiled DNA .2. Equilibrium catenation. 
Journal Of Molecular Biology, 1997. 267(2): p. 312-323. 

77. Sottas, P.E., et al., Brownian dynamics simulation of DNA condensation. 
Biophysical Journal, 1999. 77(4): p. 1858-1870. 

 

29 



 

 

Chapter 2 

2. The Rod Model – Theoretical Formulation 
 

2.1 Definitions and Assumptions 
 

In the field of structural mechanics, a “rod” is a thin (1-dimensional) structural element 

that may undergo two-axis bending, torsion, and extension. We develop our model by 

employing the classical approximations of Kirchhoff/Clebsch (described in Love [1]). In 

particular, we assume that the cross-section of the rod remains planar and unshearable 

(i.e. rigid). The rigid body dynamics of each cross-section ultimately yield the dynamical 

theory of the rod upon proper application of the balance laws for linear and angular 

momentum9. The locus of mass centers for each cross-section constitutes the “rod 

centerline”. For DNA, we further assume that the rod centerline coincides with the helical 

axis of the duplex. A comprehensive review of rational rod theories is given in the works 

of Antman [2].  

 

Now consider the infinitesimal element of a Kirchhoff rod shown in Figure 2.1. The 

three-dimensional curve formed by the centerline is parameterized by the arc 

length coordinate  and time t . The body-fixed10 frame at each cross-section is 

employed to describe the orientation of the cross-section with respect to the inertial 

frame . The angular velocity 

),( tsR

s }{ ia

}{ ie ),( tsω  of the cross-section is defined as the rotation of 

the body-fixed frame  per unit time relative to the inertial frame  and satisfies }{ ia }{ ie

 

                                                 
9 By contrast, in ‘catenary’ or ‘string’ models, we need only consider the balance of linear momentum. 
10 Attached to the rod cross-section. 
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Figure 2.1 Free body diagram of an infinitesimal element of a Kirchhoff rod. 
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where the subscript specifies the reference frame relative to which the derivative has been 

taken. We also define a ‘curvature and twist vector’ ),( tsκ  as the rotation of the body-

fixed frame  per unit arc length relative to the inertial frame . In analogy to Eq. 

(2.1), the vector 

}{ ia }{ ie

),( tsκ  satisfies 
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In a stress-free state, the rod conforms to its natural geometry (with possible intrinsic 

curvature and twist) defined by )(0 sκ . The difference { })()( 0 ss κκ −  results in an 

(restoring) internal moment  at each cross-section of the rod. The relationship 

between the change in curvature/twist  

),( tsq

{ })()( 0 ss κκ −  and the restoring moment  is 

governed by material properties and is called the ‘constitutive law’ for bending and 

torsion. Our rod model employs a general form of this constitutive law  

),( tsq

31 



 

 ( ),...),(),(),( 0 sstsfntsq κκ −= . (2.3)

 

where the function11 is an input to the computational rod model. The rod is also 

assumed to be inextensible, but can sustain tension as a component of the internal force 

. 

fn

),( tsf

 

The deformation energy (or ‘strain energy’) of the rod depends on the functional form of 

the constitutive law  and therefore we shall later specialize this for particular case 

studies later. The kinetic energy of the rod depends upon the centerline velocity 

and the cross-section angular velocity

fn

),( tsv ),( tsω . Let denote the mass of the rod 

per unit arc length and  denote the tensor of principal mass moments of inertia per 

unit arc length. Then the kinetic energy per unit arc length is 

)(sm

)(sI

 

 
),()(),(

2
1),()(),(

2
1),( tsvsmtsvtssItstsK TT

e += ωω . (2.4)

 

We chose the vectors ,),( tsv ),( tsω , ),( tsκ  and define four field variables. The 

kinematical quantities

),( tsf

),( tsκ , ),( tsω and can be integrated to compute the rod 

configuration, which is uniquely defined by the position vector  and the cross-

section orientation given by . This computation will be discussed in the next 

Chapter along with the numerical formulation. 

),( tsv

),( tsR

)},({ tsai

 

Depending upon the application, the rod may also interact with numerous external field 

forces including those produced by gravity, a surrounding fluid medium, contact with 

other bodies or with the rod itself, electrostatic forces, etc. (see Chapter 6 for Self-contact 

and Appendices 3 and 4 for other physical interactions). The resultant of these external 

forces and moments per unit length is denoted by  and , respectively, ,...),( tsF ,...),( tsQ

                                                 
11 Most of rod applications consider ‘hyperelastic’ behavior (pure restoring effects) for which the 
function is positive definite. fn
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and these may in general be functionally-dependent on the kinematical quantities ),( tsκ , 

),( tsω and  as well as the displacement field variables. ),( tsv

 

We next derive four field equations to solve for the four vector unknowns },,,{ fv κω . In 

the field equations, we will use the partial derivative of all quantities ‘relative to’ the 

body-fixed frame . Recall that partial derivatives of any vector }{ ia υ  ‘relative to’ the 

body fixed frame are related to the partial derivatives ‘relative to’ the inertial frame 

through (refer to Greenwood [3]) 
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, (2.5)

 

where the subscript specifies the reference frame. For notational convenience, we drop 

the subscript for the body fixed frame from this point forward. 

 

2.2 Equations of Motion 
 

The balance of linear momentum of the infinitesimal element shown in Figure 2.1 

becomes 
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and the balance of angular momentum becomes 
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where  is the unit tangent12 vector along the centerline and the internal moment 

 shall be substituted by 

),(ˆ tst

),( tsq ( ))(),( 0 stsfn κκ −  according to the constitutive law (2.3). 

 

2.3 Constraints and Summary 
 

The above formulation is completed with the addition of two constraints. The first 

enforces inextensibility and unshearability constraints which takes the form 

 

 
tv

s
v ˆ×=×+
∂
∂ ωκ . (2.8)

 

The second follows from continuity requirements for ω  and κ in the form of the 

compatibility constraint 

 

 
ts ∂

∂
=×+

∂
∂ κωκω . (2.9)

 

Derivations of these constraints are provided in Appendix 5.  

 

The four vector equations (2.6-2.9) in the four vector unknowns },,,{ fv κω  result in a 

12th order system of nonlinear partial differential equations in space and time. They are 

compactly written as 
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12 The tangent vector t  points along the axis for torsion. Also recognize that for an unshearable rod, the 
tangent vector  remains constant relative to the cross-section-fixed frame , i.e. 

ˆ
t̂ }{ ia

0
ˆˆ

}{

=
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

t
t

t
t

ia

. 

34 



where },,,{),( fvtsY κω= . The matrices M , K  and  are defined in Appendix 6. The 

equations are not integrable in closed form and necessitate a numerical search of the 

solution at each time step. The numerical formulation is described in the next Chapter. 

F/
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Chapter 3 

3. The Rod Model – Computational Formulation 
 
In our dynamic formulation, the nonlinear equations of motion are not integrable in 

closed form and this necessitates a numerical search of the solution at each time step. Eq. 

(2.10) is a 12th order system of partial differential equations in space and time. They can 

be solved numerically for the field variables [ ]fvY κω=  under specified initial 

and boundary conditions (six at each boundary). The generalized-α method of Chung and 

Hulbert [1-3] is employed for integration in both space and time, leading to a 2nd order 

accurate implicit finite differencing algorithm. The method is unconditionally stable and 

has the advantage of controllable numerical dissipation. Starting with the initial value 

, the discretized equations are integrated over space at each successive time step.  

The boundary conditions are satisfied during spatial integration using classical shooting 

for boundary-value problems [4]. 

)0,(sY

 

The deformed shape of the rod is specified by  and  that give the position 

and orientation of each cross section of the rod at any time.  and  can be 

directly integrated from the kinematical field variables , 

),( tsR )},({ tsai

),( tsR )},({ tsai

),( tsv ),( tsω  and/ or ),( tsκ  at 

each successive time step. Standard formulations employ three Euler angles or four Euler 

parameters to describe the kinematics of cross-section rotation. Here, we employ 

‘incremental rotations’ [5]. 

 

3.1 The Generalized-α Method 
 

The accuracy and stability of a numerical method is typically evaluated for the canonical 

initial value problem: 
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 ),( tyfy =& , 00 )( yty =  (3.1)

 

where  is function of  and  is its derivative with respect to . In the 

generalized-α method, the differential equation (3.1) is approximated over the integration 

step  from  to  with the difference equation 

)(ty t )(ty& t

t∆ it 1+it

 

 })1{( 11 ++ +−∆+= iiii yytyy && γγ  (3.2)

 

where 

 

 11 )1()1( ++ −+=−+ iiii ffyy ββαα &&  (3.3)

  

and the superscripts  define the discretization grid point of . The three numerical 

parameters 

i t

α , β  and γ  can have different values (usually ]1,0[,, ∈γβα ) to cover a 

wide variety of algorithms including the box method, a family of Euler’s methods 

(including generalized trapezoidal method), HHT-α [6] and WBZ-α [7]. The generalized-

α method can be optimized for stability and accuracy as summarized below. 

 

The optimal order of accuracy for linear multiple-step methods (LMM) is two as 

governed by the stability restrictions according to Dahlquist’s theorem [8, 9] and 

computational speed. The second-order accuracy for the generalized-α method requires13: 

 

 
2
1

=+− γβα . (3.4)

 

The stability of any numerical algorithm can be analyzed for the linear, homogeneous and 

autonomous system14: 

                                                 
13 To determine this condition, write Eq. (3.2) and Eq. (3.3) for two successive steps, eliminate the terms, 
and expand the result in a Taylor series in 

y&
t∆ . 
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 0=+ yy ω&  (3.5)

 

where ω  is a constant in the right-half complex plane. One way of stabilizing an 

algorithm is to control the numerical dissipation through its “amplification matrix”  

that recursively computes the solution of Eq. (3.5): 
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For the generalized-α method, 
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The growth or decay of the numerical solution is governed by the eigenvalues 2,1λ  of . 

An algorithm is said to be “unconditionally stable” or “A-stable” or “absolutely stable” if 

A

1, 2,1 ≤∆∀ λω t . For generalized-α method, this condition is satisfied if 

 

 
γβα ≤≤

2
1,  (3.8)

 

It is further recommended in [1] to control the dissipation of high-frequency noise by 

letting 2,1maxλ  decrease monotonically as ∞→∆tω . Considering only real t∆ω , this 

requirement reduces the generalized-α method into a single parameter method as follows 

[2]. The eigenvalues start off being real at 0=∆tω (the eigenvalues are 
⎭
⎬
⎫

⎩
⎨
⎧

−
= 1,

1
0

2,1 α
αλ ), 

                                                                                                                                                 
14 The stability of an algorithm for Eq.(A6.5) is a necessary (but not sufficient) condition for its stability for 
Eq. (A6.1). 
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become complex conjugates beyond some t∆ω  and become real again for large t∆ω . In 

the limit ∞→∆tω , the eigenvalues become 

 

 

⎭
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⎩
⎨
⎧ −

−
=∞

γ
γ

β
βλ 1,

12,1  (3.9)

 

The best possibility of monotonic decrease in 2,1max λ  exists when the second 

bifurcation of eigenvalues (from complex conjugates to real) is prevented [2]. The second 

bifurcation is prevented by imposing  (which sets the bifurcation to occur at 

infinite 

∞∞∞ == λλλ 21

t∆ω ). From Eq. (3.9), 
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Substituting (3.10) in the condition of second-order accuracy (3.4), 

 

 
22
13

−
+
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∞

λ
λα  (3.11)

 

Thus the set of equations (3.10) and (3.11) parameterizes the generalized-α method on 

 that governs the high frequency dissipation. Usually  is chosen to be negative 

( ) so that 

∞λ ∞λ

]0,1[−∈∞λ ]1,0[,, ∈γβα . 

 

3.2 Space-Time Discretization 
 

Following the work of Gobat and Grosenbaugh [2], we discretize by finite differencing 

and make reference to the space-time discretization grid shown in Figure 3.1. We denote 

spatial derivatives by a superscript prime and temporal derivatives by a superscript dot. 
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Figure 3.1 Space-time disretization grid (Method of Lines) 

 

For a three-dimensional configuration, the dimension of Y  is 12. In order to solve the set 

of first-order nonlinear partial differential equations Eq. (2.10), we must also specify 

 

1.  as the initial conditions (initial configuration of the rod and its initial velocity 

and angular velocity), and 

( ,0)Y s

2. six components of  with six of  as the boundary conditions. In general, the 

boundary conditions may be implicit and nonlinear, e.g. 

(0, )Y t ( , )Y L t

( , , ) 0Y
tY t∂
∂Φ = , which would 

then require numerical solution together with the partial differential equations, Eq. 

(2.10). 

 

Starting with initial conditions, and for each successive time step, we integrate along s  

and use the shooting method to satisfy all boundary conditions at the two ends. Thus, to 

solve for  at the open node ( ,  in Figure 3.1, we use the known solution Y at the two 

shaded nodes  and ( 1  known from the prior time step, as well as the solution 

Y at the partially shaded-circle node (current time step, prior spatial step, 

Y )i j

( 1, )i j− , 1)i j− −

( , 1)i j − ) as 

described next. All (spatial and temporal) derivatives are formed using the Generalized-α  

method described below. 
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We begin with Y  and Y  known from the initial conditions (′ 0t = ), and then compute the 

initial value of Y  from the governing equations. Observe that & M  is always a singular 

matrix (no time derivative appears in the constraint equation Eq. (2.8)). K  is always non-

singular (but for a very flexible cable, it may become ill-conditioned). Though M  is 

singular, to evaluate Y , we simplify by choosing & 0f =&  to start with, as there is no 

dependence on f&  in the governing equations. Also, any initial condition must satisfy 

 

 
tvv

s
v ˆ×=×+×+
∂
∂ ωκκ &&&
&

, (3.12)

 

which is the time-derivative of the inextensibility and unshearability constraint Eq. (2.8). 

 

Finite differencing of the set of governing equations Eq. (2.10) in time is achieved using 

the Generalized-α method, whose advantages in this application are discussed in Gobat et 

al. [3], 

 

 1 1 1 1 1 0t t t t tM Y K Y Fα α β β β− − − − −′+ + =& , (3.13)

 

where we followed the notation 

 

 1
1() (1 )() ()x

i ix x−
−= − + . (3.14)

 

Here tα  is introduced as a “mass-averaging” numerical parameter while tβ  is a 

“stiffness-averaging” numerical parameter. The subscript t  indicate that the averaging is 

done with respect to time as explained in Eq. (3.14) for x  = either tα  or tβ .  For 

simplicity and succinctness, here we continue the derivation for the case of uniform and 

constant M  and K , and thus do not account for their averaging in the difference equation. 
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The solution is known at the previous time step ( 1i − ) (see shaded nodes in Figure 3.1) 

and we move these terms to the right-hand side of Eq. (3.13) in creating the known ‘non-

homogeneous’ term15 . Subsequent finite differencing in space yields, H

 

 11 1(1 ) (1 )( )ss s
t i t iiMY KY Fβα βα β −− −′− + − +& H= , (3.15)

 

where the right-hand side 

 

 - 1 11
1 1 1( )s ss

t i t i iH MY KY Fβ βαα β − −−
− − −′= + +&  (3.16)

 

is known, and where 

 

 1
1() (1 )() ()x

j jx x−
−= − + . (3.17)

 

For the temporal and spatial derivatives, we employ the Newmark-like formulations, 

 

 1
1

1i i t
i i

t t

Y YY Y
t

γ
γ γ

−
−

− −
= −

∆
& &

, (3.18)

 

 1
1

1j j s
j j

s s

Y Y
Y Y

s
γ

γ γ
−

−
− −′ ′= −
∆ . (3.19)

 

 

The Newmark constants tγ  and sγ  are numerical parameters that control the averaging of 

time and space derivatives. A Newmark-like method for time integration was used by 

Sun [10] for cable dynamics simulations. In the Generalized-α method, the numerical 

                                                 
15 The term ‘non-homogeneous’ shouldn’t be confused with ‘material non-homogeneity’.  This term is used 
here in the context of ‘linear homogeneous differential equations’. 
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parameters ({ , , }t t tα β γ  or { , , }s s sα β γ ) are selected to satisfy optimal  numerical accuracy and 

stability in space or time as described in Section 3.1 above. 

 
Upon substituting Eq. (3.18) and Eq. (3.19) into Eq.(3.15), and consolidating all 

nonhomogeneous terms into H , we arrive at the algebraic equations 

 

 
, 1 , , 1

ˆ ( ) ( )i j i j i jKY A Y B Y− −′ H+ = + , (3.20)

 

that are linear in  and nonlinear in Y. From here forward, we drop the subscript  for 

notational simplicity. Starting from a guessed solution , we form  from the 

Newmark algorithm Eq. (3.19) and then form 

Y ′ i

*Y *Y&

*Y ′  using the governing equations Eq. 

(2.10).  Here, the superscript * will indicate a quantity that depends on the guessed 

solution and that is also updated as the algorithm proceeds. Linearizing A  and B  about 

the guessed solution  leads to the approximation to Eq. (3.20) *Y

 

 * * * * *
1

ˆ ( )j y j y jK Y R A Y S B Y H−′ 1−+ + = + + , (3.21)

 

which further reduces to 

 

 * *
1y j y jA Y B Y H−= + *  (3.22)

 

after consolidating all nonhomogeneous terms in . *H

 

This linear nonhomogeneous algebraic equation is now employed to integrate over space. 

Starting from , we apply the shooting method as discussed in Gatti and Perkins [4]. 

In short, we assume that Y  at any 

0s =

s  belongs to an affine solution space. With the known 

boundary conditions at , we find a basis of the solution space at . Then, we 

determine how the solution space (the chosen basis) transforms through to other end 

according to Eq. (3.22). Finally, we fix the linear combination of the basis vectors to 

satisfy the terminal boundary conditions in arriving at an updated solution at all 

0s = 0s =

s  as our 
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next guess. We then update the coefficient matrices in Eq. (3.22) with the next guess and 

iterate this cycle until convergence is achieved. 

 

3.3 Kinematics of Cross-Section Rotation 
 
 
The solution algorithm reviewed above provides the solution ( , ) { , , , }Y s t v fω κ=  as time 

marches forward. We then compute the position  and orientation  of each 

cross section of the rod at any time by subsequent integration of the kinematical field 

variables , 

),( tsR )},({ tsai

),( tsv ),( tsω  and ),( tsκ . For , we integrate either ),( tsR
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For the kinematics of cross-section rotation, we will now illustrate how we integrate 

 from )},({ tsai
{ }

i
e

i a
t

a

i

×=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

ω . 

 

We begin by recognizing that  are represented by the rows of the transformation 

matrix  (refer to Appendix 5). This matrix  transforms any representation of 

any vector from the inertial frame  to the body fixed frame . We derived an 

equivalent from of 

)},({ tsai

),( tsL ),( tsL

}{ ie }{ ia

{ }
i

e

i a
t

a

i
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ω  in terms of  Appendix 5: ),( tsL
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⇔×=⎟
⎠
⎞

⎜
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⎛
∂
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. 
(3.23)

 

Where ω~  is the skew-symmetric form of ω  as defined in Appendix 7. 
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Standard formulations employ three Euler angles or four Euler parameters to construct 

the nine components of  and integrate Eq. (3.23) in terms of those parameters. 

Here, we employ ‘incremental rotations’ [5] to integrate Eq. (3.23). Accordingly, we 

compute the small change in  through the time step 

),( tsL

),( tsL t∆  using the small incremental 

rotation  ),,( ttts ∆−Φ

 

 ),(),,(),( ttsLtttstsL ∆−∆−Φ= . (3.24)

 

The incremental rotation can be accomplished through a single rotation (about one axis) 

as per Euler rotation theorem [11]. Let the vector ),( tsθ  represent the infinitesimal 

rotation vector for ),,( ttts ∆−Φ . Then16 

 

 
t
tsLimts

t ∆
=

→∆

),(),(
0

θω      and       , )~exp( θ−=Φ (3.25)

 

whereθ~  is the skew-symmetric form of θ  defined as defined in Appendix 7. The 

exponential of any skew-symmetric matrix  is expanded use the rotation formula17 x~

 

 ( ) ( )( )xuxux cos1~sin~)~exp( 2 −++Ι= , (3.26)

 

where x  is the magnitude of x ,  is the unit vector along u x  and  is the identity 

matrix. Note that this computation employs only a scalar power series and it therefore 

avoids the known numerical difficulties of matrix exponentiation [12]. 

Ι

 

                                                 
16 Eq. (3.24) and Eq. (3.25) describe the integration of Eq. (3.23). It can be derived using the Peano-Baker 
series which is often used to derive the ‘state transition matrix’ for a ‘linear time-varying (LTI) system’. 
Eq. (3.23) has exactly the form of an LTI system and ),,( ttts ∆−Φ  corresponds to its ‘state transition 
matrix’. 
17 Substitute  in Taylor expansion to verify this formula. 3u = −% u%
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In short, we use (3.25) to compute ),( tsθ  and ),( tsΦ  and then use (3.24) to update 

. From the transformation matrix , we then compute the orientation of each 

cross section of the rod. 

),( tsL ),( tsL

 

We can also use the computed curvature ),( tsκ  instead of angular velocity ),( tsω  to 

integrate  in space from ),( tsL L
s
L κ~−=
∂
∂  instead of in time from L

t
L ω~−=
∂
∂ . 

 

3.4 Summary of Numerical Enhancements 
 
 
We have improved overall computational performance in our algorithms by 

implementing three strategies: 1) Generalized-α method [1, 2] in both space and time, 2) 

a novel formulation of equations of motion that allows us to circumvent the use of Euler 

parameters and thereby rendering the minimum order (12th order) model, and 3) the 

judicious choice of field variables in terms of velocities, angular velocities and 

curvature/twist components (instead of displacements and Euler angles). 

 

47 



References: 
 

1. Chung, J. and G.M. Hulbert, A Time Integration Algorithm For Structural 
Dynamics With Improved Numerical Dissipation - The Generalized-Alpha 
Method. Journal Of Applied Mechanics-Transactions Of The Asme, 1993. 60(2): 
p. 371-375. 

2. Gobat, J.I. and M.A. Grosenbaugh, Application of the generalized-alpha method 
to the time integration of the cable dynamics equations. Computer Methods In 
Applied Mechanics And Engineering, 2001. 190(37-38): p. 4817-4829. 

3. Gobat, J.I., M.A. Grosenbaugh, and M.S. Triantafyllou, Generalized-alpha time 
integration solutions for hanging chain dynamics. Journal Of Engineering 
Mechanics-Asce, 2002. 128(6): p. 677-687. 

4. Gatti-Bono, C. and N.C. Perkins, Physical and numerical modelling of the 
dynamic behavior of a fly line. Journal Of Sound And Vibration, 2002. 255(3): p. 
555-577. 

5. Bottasso, C.L. and M. Borri, Integrating finite rotations. Computer Methods In 
Applied Mechanics And Engineering, 1998. 164(3-4): p. 307-331. 

6. Hilber, H.M., T.J.R. Hughes, and R.L. Taylor, Improved Numerical Dissipation 
For Time Integration Algorithms In Structural Dynamics. Earthquake 
Engineering & Structural Dynamics, 1977. 5(3): p. 283-292. 

7. Wood, W.L., M. Bossak, and O.C. Zienkiewicz, An Alpha-Modification Of 
Newmark Method. International Journal For Numerical Methods In Engineering, 
1980. 15(10): p. 1562-1566. 

8. Dahlquist, G., A special stability problem for linear multistep methods. BIT, 
1963. 3: p. 27-43. 

9. Griffith, R. and M. Nakhla. A new high-order absolutely-stable explicit numerical 
integration algorithm for the time-domain simulation of nonlinear circuits. in 
Proceedings of the 1997 IEEE/ACM international conference on Computer-aided 
design. 1997. San Jose, California, United States: IEEE Computer Society. 

10. Sun, Y. and J.W. Leonard, Dynamics of ocean cables with local low-tension 
regions. Ocean Engineering, 1998. 25(6): p. 443-463. 

11. Nikravesh, P.E., Computer-aided Analysis of Mechanical Systems. 1988, 
Englewood cliffs: Prentice-Hall. 

12. Moler, C. and C. Vanloan, 19 Dubious Ways To Compute Exponential Of A 
Matrix. Siam Review, 1978. 20(4): p. 801-836. 

 

48 



 

 

Chapter 4 

4. Benchmarking and Extensions of Prior Studies: Equilibria 
and Dynamic Transitions 

 
 

The objectives of this chapter are to 

1. validate computed results from the dynamic rod model with published results on 

nonlinear rod equilibria, 

2. highlight the advantages of the dynamic formulation over previous static 

(equilibrium) formulations, and 

3. demonstrate the existence of dynamic transitions between coexisting nonlinear 

equilibria.  

 

For the purpose of benchmarking, we refer to Heijden et al. [1] who catalogue the 

nonlinear equilibria and bifurcations of clamped-clamped rods under specified twist and 

compression as illustrated in Figure 4.1. A major strength of their work is that they have 

also validated their numerical computations of equilibrium rod theory with laboratory-

scale experiments on a metal alloy (nitinol) rod. 

 

We shall show that our dynamic formulation faithfully reproduces the equilibrium 

solutions of Heijden et al. [1] upon considering slow (i.e., quasi-static) loading. In doing 

so, we also discover large ‘dynamic transitions’ between co-existing equilibria which are, 

of course, impossible to capture by equilibrium rod theory alone. In our dynamic 

formulation, we initiate dynamic transitions by perturbing the rod with a small-amplitude 
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random flow field. Finally, as we simulate the same problem under faster loading, we 

observe hysteresis (dynamic lag18) in the neighborhood of equilibrium bifurcations. 

 

 
Figure 4.1 Benchmark problem: a twisted and clamped rod. The ends have prescribed twist and 
separation. 
 

4.1 Input Parameters 
 

4.1.1 Constitutive Law 
 

We consider a linear elastic constitutive law relating the internal moments to the 

curvature and twist 

 

 ))(),()((),( 0 stssBtsq κκ −=  (4.1)

 

where  is a (positive definite) stiffness tensor. The resulting strain energy density 

(per unit arc length) becomes 

)(sB

 

                                                 
18 Dynamic lag could be dominated by inertia (as in high Reynolds number applications like underwater 
cables) or by viscosity (as in low Reynolds number applications like DNA in-aqueo). 
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We employ a diagonalized representation of  in the body fixed frame , by 

choosing  to coincide with the ‘principal torsion-flexure axes’ of the cross-section 

(defined in Love [2]). In particular,  and  are in the plane of the cross-section and 

are aligned with the principal flexure axes while  is normal to the cross-section and 

coincides with the unit tangent t  (directed towards increasing arc length). Expressed in 

this reference frame, both the stiffness tensor  and the inertia tensor  are 

diagonal. For example,  reduces to 

)(sB }{ ia

}{ ia

1a 2a
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ˆ
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sC
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where  and  are bending stiffnesses about the principal flexure axes along  

and  respectively (possibly non-homogeneous and/or anisotropic), and  is the 

torsional stiffness (about principal torsional or ‘tangent’ axis’ ). 

)(1 sA )(2 sA 1a

2a )(sC

3a

 

For benchmarking with the study by Heijden et al. [1], the rod is now modeled as 

homogenous and isotropic ( AsAsA == )()( 21 ) with no intrinsic curvature ( 0)(0 =sκ ). 

The bending to torsional stiffness ratio19 is selected to be 4.1/ =CA . 

 

                                                 
19 The results depend on this ratio, but not independently on the bending and torsional stiffnesses. In other 
words, the dimensionless parameter  is an independent ‘∏ term’ when Buckingham’s ∏ theorem is 
applied to the rod model. 

CA /
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4.1.2 Distributed Loading 
 

In Heijden et al. [1], the rod is assumed to have no distributed forces or moments ( 0=F  

and ). However, in our dynamic formulation, we include drag as the means to 

incorporate dissipation and also as a means to introduce a random disturbance through a 

minute random superimposed flow. The bifurcations that govern stability in these 

examples are triggered numerically upon the addition of these random disturbances.  We 

add these disturbances by introducing a minute random far-field flow  that generates 

drag on the rod as per Morison’s formulation [3] described in Appendix 4. The normal 

(form) drag and tangential (skin friction) drag coefficients are specified in 

0=Q

fv
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Table 4.1 along with other geometric, material and simulation parameters. The random 

flow velocity  is introduced at each temporal and spatial step through a standard 

random number generator in the interval [-0.5,+0.5]×10-5 m/s. 

fv
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Table 4.1 Rod and Simulation Parameters 
Quantity Units (SI) Value 

Rod Diameter  D m 1.0×10-3 
Rod Length  cL m 1.0×100 

Bending Stiffness  A N-m2 
64
4.1 π ×10-3 

Torsional Stiffness  C N-m2 
64
π ×10-3 

Rod Mass per unit length  m Kg/m 
4
π ×10-3 

Fluid Added Mass per unit length  am Kg/m 0.0×100 
Bending Moments of Inertia per unit length  and 1I 2I

⎟
⎠
⎞

⎜
⎝
⎛= 2

16
1 mD  Kg-m 

64
π ×10-9 

Torsional Moment of Inertia per unit length  3I

⎟
⎠
⎞

⎜
⎝
⎛= 2

8
1 mD  Kg-m 

32
π ×10-9 

Fluid Density fρ  Kg/m3 1.0×100 

Normal Drag Coefficient  nC - 1.0×10-1 

Tangential Drag Coefficient  tC - 1.0×10-2 

Slow loading Rate d&  m/s 5.0×10-3 

Fast loading Rate d&  m/s 5.0×10-2 
Temporal Step t∆  s 1.0×10-1 

Spatial Step s∆  m 1.0×10-2 
 

4.1.3 Initial and Boundary Conditions 
 

In Heijden et al. [1], the rod is clamped at both ends and is subject to specified  twist and 

compression as illustrated in Figure 4.1. The rod of Figure 4.1 has a specified number of 

complete twists  when straight. This number of twists is also referred to as the ‘end 

rotation’ in Heijden et al. [1]. This equilibrium configuration is chosen as the initial 

condition for all subsequent simulations. Both ends are then clamped. One clamp is then 

R/
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moved towards the other through a distance  normalized by the rod arc length .  

The quantity d is referred to as the ‘end shortening’ in Heijden et al. [1], and it increases 

from  for the initially straight rod, through 

)(td cL

0=d 1=d  when the two ends meet, to the 

limit  when the two ends cross and the rod is pulled straight (with infinite 

curvature at the boundaries).  In the absence of self-contact, the clamped ends may pass 

by each other during this process. 

2→d

 

At slow (quasi-static) loading rates,  and our solutions converge to steady-state 

solutions. 

0→d&
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Table 4.1 lists the loading rate along with the other parameters that were used to obtain 

the following results. We compute the end tension (referred to as the ‘rig force’ in 

Heijden et al. [1]) using 

 

 ( )
A

Ltttf
tP c

2

2

4
),0(ˆ),0(

)(
π
⋅

=  (4.4)

 

which is normalized by the fundamental Euler buckling load 2

24

cL
Aπ . As the ends very 

slowly approach each other, the rod initially buckles in its fundamental buckling mode as 

expected. The end tension and torque required to initiate buckling (of a twisted clamped 

rod) was first derived by Zachmann [4] as the buckling condition 

 

 ( ) ( ) ( )
PT

PTPTPT
4

4sin2cos4cos
2

2
2

−

−
=−−

ππππ , (4.5)

 

Here, T  is the (normalized) end torque that is referred to as the ‘rig moment’ in Heijden 

et al. [1] 

 

 
                            

( )
A

Ltttq
tT c

π2
),0(ˆ),0(

)(
⋅

= . (4.6)

 

4.2 Equilibria Benchmarking (Slow Loading ) 0→d&
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4.2.1 Case 1: , Planar buckling 0=/R
 

 

Figure 4.2 Planar buckling at quasi-static rates ( 0=/R , ). The end tension (a)0→d& P  and the 
strain energy (b) U  are plotted as functions of the end shortening . The (red) curves labeled 1 and 
2 replicate solutions from Heijden et al. [1] for the first and second buckling modes, respectively. The 
dark gray (or blue) curve represents the (quasi-static) solution from the dynamic model. 

d

 

We begin with the simplest case of a straight rod with no initial twist ( 0=/R ) and 

evaluate its response to quasi-static compression as the end shortening increases at a very 

slow rate ( ). To initiate and to maintain buckling in one plane, we add a very small 

random fluid flow in the plane which loads the rod through hydrodynamic drag as 

detailed in Section 4.1.2 above. The computed end tension is plotted in Figure 4.2(a) as a 

function of the end shortening d  for the dynamic formulation presented herein (blue 

curve). This dynamic solution converges to the equilibrium solutions reported in Heijden 

et al. [1] (red curves) for this quasi-static loading rate ( ). The curves labeled 1 and 

2 designate equilibrium solutions for the first and second buckling modes, respectively. 

Starting at , the dynamic solution follows the equilibrium solution for the 

fundamental mode and at 

0→d&

0→d&

0=d

1=d  undergoes a large dynamic transition to the solution for 
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the second mode.  This transition results as the second mode becomes more energetically 

favorable (lower strain energy) for .  1>d

 

This fact is illustrated in Figure 4.2(b) where the strain energy is plotted as a function of 

end shortening. For these planar equilibria, the strain energy develops solely from 

bending (no torsion) as computed from the strain energy density Eq. (4.2): 

 

 
∫=

cL

e
c dstsS
A

L
tU

0
2 ),(

4
)(

π
. (4.7)

 

The strain energy for the equilibrium solutions (red curves) is computed from the work 

done at the boundary using the known end tension from Heijden et al. [1] and by noting 

 

 
d
UP
∂
∂

−= . (4.8)

 

The dynamic solution tracks the strain energy for the fundamental buckling mode for 

 and then for the second buckling mode for . 1<d 1>d
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Figure 4.3 Dynamic transition from first buckling mode (snapshot 1) to second buckling mode 
(snapshot 5) through a series of figure eight configurations.  The non-equilibrium shapes (snapshots 
2-4) correspond to the dynamic transition path in Figure 4.2(a). 
 

During this transition, the rod forms the sequence of figure eight configurations shown in 

Figure 4.3 as computed by the dynamic20 formulation herein. This figure eight transition 

was first reported by Domokos [5]. Note that the clamped ends start at the apex of the 

figure eight (snapshot 2) and ultimately transition to the intersection of the figure eight 

(snapshot 4). The same transition is reproduced upon decreasing without any hysteresis 

that becomes noticeable at faster loading rates as discussed in Section 4.3. 

d

 

 4.2.2 Case 2: , Spatial buckling 0=/R
 

We now re-evaluate the above example upon the addition of a small three-dimensional 

random disturbance that initiates an out-of-plane instability; refer to Section 4.1.2. In 

particular, the planar equilibria now become unstable beyond a critical end shortening 

and bifurcate into stable spatial (three-dimensional) equilibria (Heijden et al. [1]). 

 

                                                 
20 Note that the transition figure eight configurations are not equilibrium states, the represent a highly 
dynamic transition that cannot be captured using equilibrium theory alone. 
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Figure 4.4 Spatial buckling at quasi-static rates ( 0=/R , ). The end tension (a)0→d& P  and the 
strain energy (b) U  are plotted as functions of the end shortening . The (red) curves labeled 1 and 
O replicate equilibrium solutions from Heijden et al. [1] and the solid (dashed) curve represents 
stable (unstable) equilibria.   The out of plane bifurcation point is denoted by the triangle. The strain 
energy U  (blue) is the sum of torsional (green) and bending (red) strain energies. 

d

 

The end tension computed in Heijden et al. [1] is recovered for the quasi-static loading 

rates in this example as reported in Figure 4.4(a) (red curve).  The rod now buckles out of 

plane (follow blue curve) well before reaching a figure eight configuration. This 

bifurcation is denoted by the triangle in Figure 4.4 which locates where the fundamental 

in plane mode loses stability and a stable spatial buckling mode is born. In addition, the 

rod deforms into a circular loop with one complete twist at  as bending strain 

energy (red curve) is exchanged for torsional strain energy (green curve) in Figure 4.4(b).  

In fact, there is a marked decrease in bending energy accompanied by a large increase in 

torsional energy just beyond the bifurcation point which initiates the out of plane 

deformation.   

1=d

 

4.2.3 Case 3: 1=/R  Planar and spatial buckling 
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Figure 4.5 Effect of initial twist on the spatial and planar buckling at quasi-static rates ( 1=/R , 

). The end tension (a)  and the strain energy (b) U  are plotted as functions of the end 
shortening . The curves labeled 1 and O replicate equilibrium solutions from Heijden et al. [1] and 
the solid (dashed) curve represents stable (unstable) equilibria.   The bifurcation point is denoted by 
the triangle. The strain energy U  (blue) is the sum of torsional (green) and bending (red) strain 
energies. 

0→d& P
d

 

The calculations above are now repeated after first pre-twisting the rod by introducing 

one complete end rotation when the rod is straight, i.e. 1=/R . The end tension for both 

planar and spatial equilibria (Heijden et al. [1]) is recovered for the quasi-static loading 

rate used in this example; refer to Figure 4.5(a). Starting from 0=d , the rod first buckles 

as per Eq. (2.5) in its fundamental mode which resembles a helix with small helical 

diameter (Zachman [4]). The helical diameter increases with  and the spatial 

equilibrium ultimately becomes planar with an interior loop at the bifurcation point 

(denoted by the triangle). At this bifurcation, the out of plane solution branch denoted by 

O joins the fundamental in plane solution branch denoted by 1. As  is increased further, 

the now planar loop increases in diameter, and at 

d

d

1=d , the rod conforms to a circular 

loop (without twist). This loop becomes flattened for  and remains planar as it 

approaches the limit  at which point the rod is again straight with infinite 

1>d

2→d
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curvature at its extremities.   If the process is reversed (i.e.,  is now slowly decreased 

from 2), the planar loop becomes unstable at the bifurcation and exhibits a ‘pop out’ 

instability (as noted by Coyne [6]) when subjected to minute three-dimensional 

excitation. Figure 4.5(b) shows that the strain energy (and its decomposition into 

torsional and bending components) for the solutions of Figure 4.5(a). Starting with the 

straight and twisted rod (

d

0=d ), the strain energy develops purely from torsion. Upon 

buckling, the torsional strain energy is reduced while the bending strain energy is 

increased and a net increase in strain energy results as the spatial equilibria evolve 

( increases). At the bifurcation point, the strain energy of the spatial equilibrium 

achieves that of the planar equilibrium and beyond that point only the planar solution 

exists. 

d

 

It should also be noted in Figure 4.5(b) that the circular loop ( ) achieves the 

minimum strain energy beyond the bifurcation point. This coincides with the fact all 

circular loops with twist less than a critical value (

1=d

C
AR 3</ ) are stable (Heijden et al. 

[1]). This critical value was first reported by Zajac [7] in the context of cable dynamics 

and later on independently reported in the context of DNA plasmids (closed loop DNA) 

by Le Bret [8] and Benham [9]. Above this critical value, the circular loop buckles into a 

figure eight (with subsequent intertwining) as simulated dynamically by Klapper [10] in 

the context of biological filaments. 

4.3 Dynamics and Hysteresis (Fast Loading - Finite ) d&
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The results above confirm that the dynamic solutions converge to known equilibrium 

solutions at infinitesimal loading rates . The dynamic formulation reproduces the 

expected equilibrium bifurcations and dynamic transitions between equilibria are also 

captured.  We now turn attention to cases where the loading rate is finite which 

introduces new dynamic effects, most notably hysteresis.  In particular, as the loading 

rate increases, the dynamic transition from planar to spatial equilibrium forms is delayed 

due to inertial and/or viscous effects21.  

0→d&

 

 

Figure 4.6 Dynamic effects of non-equilibrium loading rates ( finite). The end tension d& P  plotted as 
function of end shortening  for cases of rod (a) without initial twist , and (b) with one 
complete initial twist . The curves labeled 1 and O replicate planar and spatial equilibrium 
solutions from Heijden et al. [1]. The equilibrium bifurcation point is denoted by the triangle and the 
delayed transition by the asterisk. 

d 0=/R
1=/R

 

Figure 4.6(a) and Figure 4.6(b) illustrate this phenomenon for cases of an initially 

untwisted rod ( ) and a rod with one complete initial twist (0=/R 1=/R ), respectively. 

The loading rate  is sufficiently large to observe hysteresis in these smd /105|| 2−×=&

                                                 
21 Inertial effects are predominant in high Reynolds number applications like underwater cables while 
viscous effects are predominant in low Reynolds number applications like DNA in-aqueo. 
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examples. The remaining parameters used in this example are again listed in 
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Table 4.1.  As above, we include minute random excitation produced by a random flow 

field as described in Section 4.1.2.  

 

For the initially untwisted rod, the dynamic solution closely tracks the planar equilibrium 

solutions as the end shortening initially increases ( ) starting from ; refer to 

black curve in Figure 4.6(a). However, near the equilibrium bifurcation point (triangle), 

the dynamic solutions experience a delayed jump (‘pop out’ instability) from the planar 

forms to the spatial forms as indicated by the asterisk. By contrast, when the loading rate 

is reversed ( ), the dynamic solutions pass through the equilibrium bifurcation as the 

spatial forms transition smoothly to the planar forms; refer to light gray (or red) curve.   

0>d& 0=d

0<d&

 

Figure 4.6(b) shows analogous results for the case of the pre-twisted rod previously 

evaluated in Figure 4.5.   As the loading rate increases ( ), the dynamic solution 

closely follows the spatial form and smoothly transitions to the planar form by passing 

through the equilibrium bifurcation (triangle); refer to black curve.  Upon reversing the 

loading rate ( ), the dynamic solution experiences a significant delayed jump (‘pop 

out’ instability) from the planar to the spatial forms as indicated by the asterisk; refer to 

light gray (or red) curve. Increasing the loading rate increases the delay while increasing 

the random excitation decreases the delay, as expected. 

0>d&

0<d&
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Chapter 5 

5. Tension-Torque Coupling 
 
The helical construction of the DNA duplex and of synthetic and wire rope cables 

(described in Costello [1]) gives rise to a specific kind of anisotropy called ‘chirality’ as 

suggested by Healey [2]. In contrast to isotropic rods, the behavior of a chiral rod differs 

from that of its mirror image [2]. To distinguish it from the anisotropy in bending, Healey 

[2] describes chiral anisotropy as ‘hemitropy’. In an isotropic rod, the torsional moment 

at any cross-section is proportional to twist in the rod. However, in a chiral (or 

‘hemitropic’) rod, tension also induces a torsional moment22 at any cross-section due to 

its helical construction. In terms of kinematic quantities, this is equivalent to ‘twist-

extension coupling’ and it is this observation that is central to the paper titled “Stretching 

must twist DNA” by Marko [3]. Through our computations, we have discovered that this 

coupling also has marked influence on loop topologies and equilibrium bifurcations. 

 

In this chapter, we add the tension-torque coupling to the linear elastic constitutive law 

Eq. (4.1) introduced in Chapter 4 to capture chiral effects. The impact of this coupling is 

highlighted through new solutions to the benchmark problem (clamped-clamped rod) 

illustrated in Chapter 4. 

 

5.1 Modified Constitutive Law 
 

From the linear elastic constitutive law Eq. (4.1) and Eq. (4.3) introduced in Chapter 4, 

the restoring moment along the tangent (i.e. the internal torque) is  

                                                 
22 For marine cable applications, this motivates the need to design so-called “torque-balanced” cables by 
using constructions that incorporate both left-handed and right-handed helical winds. 
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 tt Cq ˆˆ κ∆= , (5.1)

 

where  is change in twist and the subscript  denotes the component 

along the tangent t , i.e.  is the internal torque. Following Costello [1], we now replace 

Eq. (4.1) and Eq. (4.3)  with a homogenized linear constitutive law that is coupled in 

twist and extension 

( ) tt
ˆ

0ˆ ⋅−=∆ κκκ t̂

ˆ
tqˆ
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q
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ˆ43
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ˆ
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κ
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where  is tension. In the context of the wire rope considered in [1], tf ˆ ε  denotes the 

overall extensional strain of the rope (not the individual component wires) and the 

constants  are determined by the stiffness of the component wires and the helical 

construction. The simple model above captures the observed fact that the component 

wires tend to unwind as the rope is stretched. We now translate this kinematic (twist-

extension) coupling into the traction (tension-torque) coupling by eliminating 

iC

ε . From 

the first row equation of Eq. (5.2), 

 

 

1

ˆ2ˆ

C
Cf tt κ

ε
∆−

= . (5.3)

 

Substituting ε  from Eq. (5.3) into the second row equation of Eq. (5.2) 
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κ
, (5.4)

 

We rewrite Eq. (5.4) in compact form as 

  

 ( )ttt fCCq ˆ5ˆ6ˆ −∆= κ , (5.5)

 

where 

 

 
( )3241

3
5 CCCC

C
C

−
−= , 

( )
1

3241
6 C

CCCC
C

−
−= . 

(5.6)

 

 In contrast to the uncoupled constitutive law Eq. (5.1), the Eq. (5.5) now introduces the 

tension-torque coupling through the coupling factor . The coupling factor  

could in general be non-homogeneous. The sign of  distinguishes a right-handed ( < 

0) helical construction from a left-handed ( > 0) helical construction. 

)(5 sC )(5 sC

5C 5C

5C

 

The uncoupled constitutive law Eq. (5.1) contributes to the torsional strain energy density  

( )2ˆ2
1

tC κ∆  (per unit length). With the coupled constitutive law Eq. (5.5), this 

contribution to the strain energy density is now replaced by the quadratic form of Eq. 

(5.2), i.e. { }
⎭
⎬
⎫

⎩
⎨
⎧
∆⎥

⎦

⎤
⎢
⎣

⎡
∆

t
t CC

CC

ˆ43

21
ˆ2

1
κ
ε

κε , where ε  is substituted from Eq. (5.3). 
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5.2 Modified Buckling Condition (Linear) 
 

The benchmark equilibrium problem of the clamped-clamped rod described in Chapter 4 

employs an isotropic constitutive law (that assumes no coupling of torsion and tension in 

accordance with Eq. (5.1)). Inclusion of the coupling as per Eq. (5.5) strongly influences 

the primary (linear) buckling condition. In order to calculate this influence, we first non-

dimensionalize Eq. (5.5) and use it in a non-dimensional analysis of the benchmark 

problem. First, recall that AsAsA == )()( 21  (homogeneous and ‘hemitropic’ constitutive 

law). Comparing Eq. (5.1) with Eq. (5.5), we set . For our non-

dimensionalization, a force is normalized by the Euler buckling load 

CC =6

2

24

cL
Aπ , torque is 

normalized by 
cL
Aπ2 , curvature is normalized by 

cL
π2 , stiffness  is normalized by 

, and we denote the non-dimensional form of the coupling factor  by . So we re-

write Eq. (5.5) in its non-dimensional form as 

CC =6

A 5C ck
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To complete the non-dimensionalization, we now determine how  is related to  by 

comparing Eq. (5.5) with Eq. (5.7). Note that the 2nd term  in the parentheses of Eq. 

ck 5C

tfC ˆ5
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(5.5) has dimensions of curvature for which the normalization factor is 
cL
π2 . Therefore, 

comparing it with corresponding term in Eq. (5.7), 
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Now we turn our attention to the primary buckling condition (Eq. (4.5) in Chapter 4) of a 

clamped-clamped rod subject to compression and torque as derived by Zachmann [4]. 

The clamped rod under pure compression ( 0=/R ) will now immediately develop a 

reaction end torque P
A
CkT c−= .  Using this result in the buckling condition Eq. (4.5) 

yields the critical end tension (or compression) required to initiate buckling for a chiral 

rod 
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Figure 5.1 The critical end tension P  that initiates buckling as a function of the coupling factor . 

Values for the first three modes are computed per Eq. (5.9) with 
ck

0=/R  and  (same ratio 
used in the benchmark study by Heijden et al. [5]). 

4.1/ =CA

 

Figure 5.1 shows how this critical end tension depends upon the coupling factor  for 

the first three buckling modes.  Clearly, this coupling factor has a strong influence on this 

bifurcation condition and the sensitivity increases with mode number. 

ck

 

5.3 Influence on Loop Topology and Bifurcations (Nonlinear) 
 

Having shown the pronounced influence of the coupling on the (linear) buckling 

condition, we now explore its influence on post-buckling (nonlinear domain) by 

numerical analysis. The bifurcation diagrams for the end tension P  and end torque T  are 

shown in Figure 5.2 for various values of . Without the coupling, under pure 

(kinematic) compression the rod initially buckles into a planar form and no torsional 

ck
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moment develops.  By contrast, with the coupling, the rod buckles in a decidedly three-

dimensional from the on set of buckling due to the compression-induced torsional 

moment. 

 

 

Figure 5.2 (a) End tension  P  and (b) end torque T  plotted as the functions of end-shortening  for 

various values of coupling factor  (with 

d

ck 0=/R , ). The blue curve ( ) in (a) 
reproduces the benchmark result of Chapter 4. 

0→d& 0=ck

 

Even seemingly weak coupling has a marked influence on the shape and the stress of the 

rod after buckling. This sensitivity is of keen interest in DNA mechanics where long-

length scale looping can regulate gene expression [6-8]. The loop orientation, twist 

distribution, and curvature distribution along the loop affect the availability of DNA 

binding sites to transcriptional proteins. The overall loop strain energy contributes to the 

free energy of the DNA/protein complex and thus influences the probability of loop 

formation. Reaction forces and torques on proteins that hold the DNA into a loop may 

deform the protein. All these influences may eventually affect gene regulation as will be 

discussed at a greater length in Chapter 7. Motivated by these issues, we will now explore 
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how loop properties are influenced by the coupling factor  for the simplest case 

of . 

ck

0=/R

 

 

Figure 5.3 (a) Sensitivity of equilibrium loop orientations to tension-torque coupling .   End 

shortening   and initial twist 
ck

5.0=d 0=/R . (b) The angleφ , which measures the out of plane 
orientation of the loop, is plotted as a function of end shortening  for three values of the coupling 
factor . 

d
ck

 

Figure 5.3(a) shows snapshots of the loops formed both with and without tension-torque 

coupling for one value of end shortening 5.0=d  which corresponds to a state slightly 

before the bifurcation noted in Figure 5.2 (triangle). As the coupling factor is increased, 

the loop rotates significantly out of plane. To quantify this out of plane rotation, we 

introduce the angle φ  between the centerline tangent  at the tip of the loop and the 

axis formed by the two ends (coincident with ).  We define the tip of the loop as 

the point farthest from the axis formed by the two ends as measured by the distance  

3
ˆ at =

),0(3 ta

( )),0(),(),0(3 tRtsRta −× . At equilibrium, the loop will exhibit symmetry such that the 

tip is at the mid-span.  In general, we compute the out of plane rotation at the tip using  

 

 ( )),(),0(cos 33
1 tsata tip⋅= −φ . (5.10)
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Figure 5.3(b) shows the variation of φ  as a function of end shortening  for three values 

of the coupling factor . For the cases 

d

ck ,0≠ck  the out of plane rotation is initiated 

immediately and increases rapidly with increasing end shortening, thus underscoring the 

sensitivity to tension-torque coupling. 
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gure 5.4 Distribution of (non-dimensional) torsional moment  , tension  , twist tq ˆ tf ˆ t̂κ  and 

incipal curvature 3a×κ  with arc length . End shortening s 5.0=d   and twist . 0=/R

gure 5.4 shows the spatial variation of the (normalized) torsional moment , tension 

, twist 

tq ˆ

t̂ t̂κ , and principal curvature 3a×κ  for rods with and without tension-torque 

upling. In this example, the end shortening 5.0=d  for the two cases 0=ck  and 

. The computed results for the torsional moment  confirm that this quantity 

mains constant (a first integral) under equilibrium conditions and this constant is also 

1.0=c tq ˆ
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non-zero when tension-torque coupling exists. The fact that the torsional moment  has 

to be a first integral in equilibrium is proven in the next paragraph. This small degree of 

tension-torque coupling has only a minor influence on the computed tension  and the 

principal curvature 

tq ˆ

tf ˆ

3a×κ , yet a pronounced influence on the computed twist t̂κ . The 

large influence on twist is responsible for the large sensitivity of loop geometry on 

tension-torque coupling as observed above. Moreover, the non-uniform tension results in 

non-uniform twist (or untwist in DNA) through the coupling effect. Non-uniform 

untwisting in DNA may ultimately influence the exposure of base pairs to transcriptional 

proteins at specific sites. 

 

The torsional moment  has to be uniform (a first integral) in equilibrium for an 

isotropic or hemitropic rod (

tq ˆ

)()( 22 sAsA = ) with no intrinsic principal curvature 

( 030 =× aκ ) and no distributed torsional moment ( ). This can be readily shown 

from the balance law for  angular momentum Eq. (2.7) that in equilibrium yields 

0ˆ =⋅ tQ
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where the subscripts 1, 2 and 3 denote the vector components along ,  and  

respectively (

1a 2a 3a

tqq ˆ3 =∴ ). Substituting the constitutive law for the bending moments from 

Eq. (4.1) and Eq. (4.2), we obtain 
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Hence, we the torsional moment  (= ) is a first integral for an isotropic or hemitropic 

rod for which . So the uniform torsional moment  in Figure 5.4 also 

corroborates the fact that our loading was ‘slow enough’ to enable a quasi-static solution. 

In an isotropic rod, uniform  also implies uniform twist (or untwist) in accordance to 

Eq. (5.1). However, in a hemitropic rod, the twist may become non-uniform due to non-

uniform tension through the coupling effect in accordance with Eq. (5.5).  

tq ˆ 3q

1 2( ) ( )A s A s= tq ˆ

tq ˆ

 

5.4 Summary of Effects of Tension-Torque Coupling 
 

The analytical and numerical results presented in this chapter demonstrate that 

tension-torque coupling can have pronounced influences on the bifurcations of rod 

equilibria and on the mechanics of loop formation. The major influences noted in 

these results are that tension-torque coupling may: 

 

1. substantially alter loop topology, 

2. introduce non-uniform twist (or untwist), 

3. change the stress in the rod and reaction forces and moments at the boundaries, 

4. alter the equilibrium bifurcation characteristics, and 

5. soften the rod due to off-diagonal coupling terms in the stiffness matrix. 
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Chapter 6 

6. Dynamics of Self-Contact and Intertwining 
 
Modeling self-contact in rods is a pre-requisite for the simulation of cable intertwining, 

hockling and knot formation; yet it has been a significant research challenges in rod 

theory. In this Chapter, we introduce a computational self-contact model and illustrate its 

ability to capture the dynamic evolution of intertwining in response to torsional buckling. 

The intertwined shapes resemble hockles in underwater cables and plectonemes (one type 

of supercoils) in DNA. Numerical solutions are presented for an example system of a rod 

subjected to increasing twist at one end. The solutions show the dynamic evolution of the 

rod from an initially straight element, through a buckled element in the approximate form 

of a helix, through the dynamic collapse of this helix into a loop, and subsequent 

intertwining of the loop with multiple sites of self-contact. 

 

6.1 Numerical Model of Dynamic Self-Contact 
 

 
Figure 6.1 Two segment of a rod approaching contact. 
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A numerical formulation of self-contact must begin with first determining the likely sites 

where self-contact exists or will soon occur. We developed an efficient computational 

strategy to search for these “self-contact” sites. The contact forces are assumed normal to 

the rod surfaces23 and allow for sliding contact. Figure 6.1 shows two segments of the 

discretized rod that are approaching contact. The upper segment contains one spatial grid 

point marked as 1, while the lower segment contains three grid points marked as 2, 3 and 

4. At each grid point, the a1-a2 plane is orthogonal to the tangent24 a3. We introduce an 

aperture angle θ that creates a pair of conical surfaces centered at the grid point as 

illustrated at point 2 in Fig. 13. Note that this aperture reduces to the a1-a2 plane as θ → 

0°, and it expands to the entire space as θ →180°. We use this aperture to control the 

number of points that may potentially interact through self-contact  Specifically, we wish 

to exclude adding non-physical ‘contact’ forces between nearby nodes on the same 

segment since the ‘interactions’ of these neighboring points are already captured in the 

rod constitutive law. 

 

During simulation, the distance d between each pair of grid points is measured. A 

repulsive (contact) force is introduced between a pair if and only if two conditions are 

met: 1) the distance d is within a specified tolerance, and 2) the two grid points lie within 

each other’s conical aperture. The interaction force can in general be a function25 of d 

and (the approach speed) and is included in the balance of linear momentum Eq. (2.6) 

through the distributed force term . Example interaction laws that can be employed 

include (attractive-repulsive) Lennard-Jones type (refer to, for example Schlick et al. [1]), 

(screened repulsion) Debye-Huckle type (refer to, for example Schlick et al. [2]), general 

inverse-power laws (refer to, for example Klapper [3]), and idealized contact laws for 

two solids (refer to, for examples Coleman et al. [4] and Heijden et al. [5]). 

d&

F

 

                                                 
23 At the length scale of DNA, it’s irrelevant to define a distinct contact surface, but we can circumscribe a 
fictitious cylindrical surface around the molecule to model its self-interaction. 
24 In this illustration and in the results of this Chapter, we assume that . But this assumption does 
not limit the generality of the self-contact formulation presented herein. 

ta ˆ
3 =

25 This function can also be defined suitably to account for the attractive-repulsive potential of van der 
Waals or, more generally, the MPB electrostatic screening (See Appendix 3). 
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6.2 Torsional Buckling Leading To Intertwining 
 
The model is used to explore several possible dynamic motions that are generated by 

slowly twisting one end of an elastic rod. The parameters that define the example are 

listed in Table 6.1 and Table 6.2 and a schematic of this example is illustrated in Figure 

6.2. We again employ the linear elastic constitutive law described by Eq. (4.1) and Eq. 

(4.3) in Chapter 4. We assume no intrinsic curvature ( 0)(0 =sκ ) and no chirality 

( 0 ). The selected rod is isotropic ()( =skc 2,121 )()( EJsAsA == ) but non-homogeneous 

(non-uniform). Specifically the central portion of the rod (middle 25%) is necked down to 

a smaller diameter (reduced by 10% over the remainder of the rod); refer to Figure 6.2 

(not to scale). This small 10% variation in the diameter produces significant (≈ 35%) 

variation in torsional stiffness ( 3)( GJsC = ) and bending stiffness 

( ). The (distributed) self-contact force is repulsive and is of the 

form: 

2,121 )()( EJsAsA ==
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This form captures both contact stiffness and contact damping. For the example 

simulation presented below, we have chosen k1 = 10-7m4/s2, k2 = 3, k3 = 10-6 and k4 = 1. 
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Figure 6.2 A low tension cable or rod under increasing twist created by rotating the right end. Left 
end is free to slide, or have prescribed sliding velocity or reaction (tension) in the simulation. 
 

Table 6.1 Rod properties and simulation parameters. 
Quantity Units (SI) Value 

Young’s Modulus, E Pa 1.25×107 
Shear Modulus, G Pa 5.00×106 

Diameter, D m See Figure 6.2 
Length, L m 1.00×100 

Rod Density, ρc Kg/m3 1.50×103 
Fluid Density, ρw Kg/m3 1.00×103 
Temporal Step, ∆t s 1.00×10-1 
Spatial Step, ∆s m 1.00×10-3 
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Table 6.2 Cross-section properties 

Quantity Formula Units (SI) 

Cross-section Area 
4

2DAc
π

=  m2 

Area Moments of Inertia (bending)
16

2

2,1
DA

J c=  m4 

Area Moment of Inertia (torsion) 
8

2

3
DA

J c=  m4 

Mass Moment of Inertia/ length JI cρ=  Kg-m 
 

 
The integration begins with the rod initially horizontal and stress-free. It is in a fluid 

(with no flow) that provides added mass and drag (as modeled by a Morison formulation 

[6]). There is no gravity (and hence no buoyancy). However, a minute distributed force in 

the downward (e1) direction is added to initiate buckling. 

 

The right end (referred to as the “Start point”, s = 0 in Figure 6.2) of the rod is subjected 

to an increasingly larger rotation about the a3 (tangent) axis. This end cannot move and it 

is otherwise constrained in rotation (no rotation about the principal axes a1 and a2, i.e. ω1 

= ω2 = 0). The left end (referred to as the “End point”,  s = L) of the rod is fully restrained 

in rotation (about all three axes) and cannot translate in the transverse (a1-a2) plane. This 

end, however, may translate along the a3 axis.  

 

By increasing the rotation at the right end, the internal torque eventually increases to the 

point to generate torsional buckling (refer to Zachmann’s buckling condition [7]) and 

subsequent nonlinear dynamic response. In this simulation, the rotation of the right end is 

generated by prescribing the angular velocity component ω3 at the right end as shown in 

Figure 6.3 (not to scale). The left end is allowed to translate freely during the first 30 

seconds and is then held fixed to control what would otherwise be a very rapid collapse. 
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Figure 6.3 Prescribed angular velocity at the right end. 

 
As the right end is first twisted by a modest amount, the rod remains straight. There is an 

abrupt change however when the twist reaches a critical value (at approximately 16 

seconds) when the Zachmann buckling condition [7] is achieved and the straight (trivial) 

configuration becomes unstable. The model employed here captures this initial instability 

as well as the subsequent nonlinear motion that leads to loop formation and ultimately 

intertwining. Figure 6.4 shows snap-shots of the rod at four different time-steps during 

the buckling. The geometry just after initial buckling is approximately helical as can be 

observed in the snap-shot at 20 seconds. Notice that the rod appears to make a single 

helical turn as expected from the fundamental buckling mode of the (simpler) linearized 

theory [7]. 
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Figure 6.4 Snap-shots at various time steps during buckling. 

 

As the left end is allowed to slide towards the right end, the helical rod undergoes a 

secondary buckling in which it rapidly collapses in forming a (nearly) planar loop with 

self-contact. This collapse occurs at approximately 29 seconds in this example. The 

dynamic collapse is predicted from investigations of the stability of the equilibrium forms 

of a rod under similar loading conditions; refer to Lu and Perkins [8] and studies cited 

therein. 

 

The snap-shot at 25 seconds shows the three-dimensional shape of the rod just before 

dynamic collapse. The center of the rod has rotated approximately 90° about the vertical 

(e1) axis so that the tangent at this (mid-span) point is now orthogonal to the loading (e2) 

axis. This was a noted bifurcation condition in Lu and Perkins [8] at which the three-

dimensional equilibrium form loses stability. The dynamic collapse thereafter is depicted 

in the snap-shot at 29 seconds. This nearly planar loop, however, is still unstable and 

rapidly continues to rotate leading to intertwining with two sites of contact. A snapshot of 

intertwined rod at 32 seconds is shown. 
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Figure 6.5 Variation in torsional and bending strain energies during the buckling process. 

 

The entire dynamic collapse depicted in Figure 6.4 involves a conversion of torsional 

strain energy to bending strain energy as shown in Figure 6.5.  The process begins with 

an increase in torsional strain energy prior to the collapse from the prescribed rotation at 

the right end. The maximum torsional strain energy occurs at approximately 18 seconds 

and follows shortly after the initial buckling (approx. 16 seconds) when bending strain 

energy first develops. This is followed by a rapid (dynamic) conversion of torsional strain 

energy to bending strain energy until around 25 seconds when it approaches the second 

bifurcation depicted in Figure 6.4 at 29 seconds where the loop collapses and self-contact 

first develops. During this secondary bifurcation, the rod loses both torsional and bending 

strain energies until the first self-contact and the intertwining begins. 

  

During intertwining, the torsion in the rod is reduced rapidly with a modest increase in 

curvature. This results in a rapid loss of torsional strain energy and total potential energy 
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(S.E.) with a modest increase in bending strain energy. The loss in total potential energy 

is accompanied by an increase in kinetic energy suggesting faster dynamics during this 

stage. This example simulation ultimately terminated at 32 seconds due to high velocities.  

 

6.3 Topological Changes 
 
It is interesting to observe that the topological changes for the rod above are also 

exhibited by DNA during supercoiling. As discussed in Calladine et al. [9], the above 

conversion of torsional strain energy to bending strain energy is often described 

kinematically conversion of twist to writhe for DNA (see Appendix 1). We explain this 

conversion in the above example, starting with definitions for twist and writhe. 

  

One definition for Writhe (Wr) is defined as the number of cross-overs of a space curve 

that one can see averaged over all possible views of the strand (refer to Calladine et al. 

[9]). For our initially straight configuration (Figure 6.2), this quantity is zero, with the 

first self-contact at 29 seconds (Figure 6.4), it is one, and with the subsequent intertwined 

configuration at 32 seconds, it is two. (Note that if we see a cross-over in three 

orthogonal views, we will see a cross-over in all possible views). The writhe (Wr) is 

purely a function of the space curve defining the rod centerline and it is positive or 

negative based on whether the crossing is right-handed or left-handed as illustrated in 

Figure A1.3 and Figure A1.4 in Appendix A1. 

 
Twist (Tw) is a second kinematical quantity computed from: 

 

 
∫=
L

dsTw
0

32
1 κ
π

 (7)

 

The sum Tw + Wr equals to the number of rotations of the right boundary in our example 

and this sum is called the Linking number Lk26; refer to Fuller [10] and White [11]) for 

                                                 
26 This, in general, is not true for boundary conditions that allow rotation about principal axes (ω1,2 ≠ 0). 
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proof of conservation of the Linking number (Lk) and refer to Calladine et al. [9] for 

example discussions of Tw, Wr and Lk for DNA. 
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Figure 6.6 Conversion of twist (Tw) to writhe (Wr) during loop formation and intertwining . The 

linking number Lk = Tw + Wr. 
 

In our example, the initial twisting phase rapidly introduces Lk from 0 to approximately 

4, all in the form of twist, prior to the initial buckling as shown in Figure 6.6. The linking 

number is then increased slowly thereafter. During initial buckling, Wr increases from 0 

to 1 when self-contact occurs at 29 seconds and Tw reduces by the same amount so that 

the sum Wr + Tw = Lk is unchanged. After the first self-contact, the loop continues to 

rotate as it intertwines. In doing so, every half rotation of the loop establishes an 

additional contact site thereby increasing Wr by 1.0 and reducing Tw by 1.0. At 32 

seconds, Wr is slightly larger than 2.0. Thus, we observe two crossovers in any three 

orthogonal views of the snap-shot at 32 seconds. There is an equivalent loss in Tw as 

shown in Figure 6.6. 
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It should be noted that bending strain energy is not a measure of writhe (or the number of 

cross-overs), and unlike linking number, the total potential energy of the rod is not a 

conserved quantity. Therefore, the kinematic analysis in terms of twist and writhe not 

only validates the numerical results, but also provides a simple understanding of the 

topological changes of the rod under torsion. 

 
Figure 6.7 Variation of twist and writhe without modeling self-contact (refer to Goyal et al. [12]). The 
discontinuous reduction in the linking number and correspondingly in the writhe occurs when the 
rod passes through itself. 
 

It should be also noted that when the self-contact is ignored, the rod may numerically ‘cut 

through itself’ losing Wr and Lk by 2 which is of course, non-physical.  This is illustrated 

in Figure 6.7 from yet another example simulation of torsional buckling in a similar set 

up as above. For the simulation data and other results for this example, refer to Goyal et 

al. [12]. 
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Chapter 7 

7. Protein-Mediated DNA Looping 
 
Protein-mediated looping of DNA is a key gene regulatory mechanism (for example, 

refer to Semsey et al. [1] and Schleif [2]). Loops occur when a protein binds to two 

operators on the same DNA molecule. The probability of looping is controlled, in part, by 

the base-pair sequence of inter-operator DNA which influences its structural properties. 

One structural property is the ‘intrinsic’ or ‘stress-free’ curvature. In this Chapter, we 

explore the influence of sequence-dependent intrinsic curvature by exercising our 

computational rod model for the inter-operator DNA as applied to looping of the LacR-

DNA complex.  Starting with known sequences for the inter-operator DNA, we first 

compute the intrinsic curvature of the helical axis as input to the rod model.  The crystal 

structure of the LacR (with bound operators) then defines the requisite boundary 

conditions needed for our dynamic rod model that predicts the energetics and topology of 

the intervening DNA loop.  Our simulations reveal that highly curved sequences tend to 

lower the energetic cost of loop formation, widen the energy distribution among stable 

and meta-stable looped states, and substantially alter loop topology. The inclusion of 

sequence-dependent intrinsic curvature also leads to non-uniform twist and necessitates 

consideration of eight distinct binding topologies from the known crystal structure of the 

LacR-DNA complex. 

 

7.1 Introduction to LacR-DNA Modeling 
 

DNA is often viewed as a static structure, whose primary role is to store the genetic code 

of the cell.  In addition to this static picture, the structural flexibility and sequence-

dependent mechanical properties of DNA enable the dynamic formation of complex 

protein-DNA assemblies responsible for gene regulation, DNA replication, and DNA 
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repair.  It is therefore important to consider the interplay between sequence, mechanical 

properties, and dynamics of DNA to fully understand its biological functions.  

 

One way in which the structure and mechanical properties of DNA can influence bio-

molecular activity is by forming protein-mediated DNA loops; see, for example Semsey 

et al. [1] and Schleif [2]).  In such instances, a protein or protein complex binds 

simultaneously to (at least) two non-contiguous operator sites on a DNA molecule, 

thereby forcing the intervening DNA into a loop.  Depending on the specific proteins and 

sequences involved, a DNA loop can affect transcription by either repressing or 

promoting the binding and activity of RNA polymerase [2, 3]. 

 

In this Chapter, we employ our computational rod model of the inter-operator DNA as a 

means to explore sequence-dependent effects on looping. In particular, our objective is to 

understand how the looping energy and topology are influenced by the sequence-

dependent intrinsic curvature (or stress-free curvature) of the substrate DNA.  We also 

recognize the importance of sequence-dependent stiffness in this context as discussed in 

[7-15]. However, our objective is to explore the role of sequence-dependent intrinsic 

curvature which, while frequently addressed in experimental studies [16-18], has received 

relatively little attention from the modeling community. An overview of our goal, as well 

as our computational method, is illustrated in Figure 7.1. We adopt the lactose repressor 

protein DNA complex (LacR) found in the bacterium E. coli as our example. As 

illustrated in Figure 7.1, we begin by specifying the sequence of the substrate DNA from 

which we compute its zero-temperature, stress-free conformation (via consensus tri-

nucleotide model [4, 5]) and, subsequently, the intrinsic curvature of the helical axis as 

input to the rod model. We then employ the known crystal structure of the LacR protein 

bound to the operators (4.80Å resolution as reported by Lewis et al. [6]) to compute the 

position and orientation of the rod (boundary conditions) at the operator sites. The 

dynamic computational rod model is then used to predict the topology and energetics of 

the resulting inter-operator loop. 
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Figure 7.1 Modeling the effects of sequence-dependent, intrinsic curvature in looping of LacR-DNA. 
(a) Begin with specifying operator and inter-operator sequences (green denotes operators, capital 
case denotes the primary coding strand). (b) Construct zero-temperature, stress-free conformation 
using Consensus Tri-nucleotide model [4, 5] and compute intrinsic shape for rod model (twist and 
curvature of helical axis and inclination of the base-pair planes with respect to the helical axis).  (c) 
Employ known crystal structure of the LacR protein bound to the operators [6] and intrinsic shape 
to compute boundary conditions for rod model of looped DNA. (d) Input boundary conditions, 
intrinsic shape and DNA material law to our rod model to compute inter-operator loop. 
 

 

To explore how the energy and topology of DNA loops are sensitive to the sequence-

dependent intrinsic curvature, we consider both wild-type and curved variants of the 

inter-operator DNA for the LacR-DNA complex.  The convenience of this example is 

that Kahn and co-workers have already studied LacR looping with a set of designed 
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constructs whose highly curved inter-operator sequences contain A-tracts with known 

and distinct helical phases with respect to the operators [16-18]. Their studies, using gel-

electrophoretic and FRET experiments, provide experimental evidence that A-tract bends 

increase LacR loop stability and alter loop topology.  By employing their inter-operator 

sequences as inputs to our computational model, we can probe these and other findings.  

Although our present focus is on LacR-mediated looping, the methods described herein 

can be generally applied to other examples [1, 2] of looping behavior such as arising in 

GalR [19, 20], Ara [21], SfI [22, 23] and ntrC [24] in addition to other (non-looping) 

behavior such as plectoneme formation in supercoiled DNA as discussed in part in 

Chapter 6. 

 

Our computational approach builds upon a long history of coarse-grain models for DNA 

dynamics that include Brownian dynamics simulations, Monte Carlo methods, and other 

statistical models [8, 25-27]  that are also reviewed in [28, 29].  The Kirchhoff rod 

approach leads to detailed descriptions of loop topology and internal (elastic) energy with 

modest computational effort. Our inclusion of sequence-dependent intrinsic curvature 

also builds upon the prior work of  Schulten and co-workers [30-35] who employ a 

homogeneous elastic rod model to analyze the mechanics of LacR looping. The 

sequence-dependent intrinsic curvature included herein, renders the rod model non-

homogenous and leads to substantial differences (both qualitative and quantitative) in the 

predictions of loop topology and internal energy.  

 

The computational model used in this study requires three major inputs; namely, 1) the 

sequence of substrate DNA, 2) the crystal structure of LacR-operator complex, and 3) the 

material law for DNA; refer to Figure 7.1. By material law, we refer to the elastic 

properties (that includes stiffness and intrinsic curvature) of DNA which themselves can 

be sequence-dependent [7-15].  We presently ignore sequence-dependence of stiffness to 

quantify the exclusive contribution of sequence-dependence of intrinsic curvature on 

looping behavior. To this end, we employ averaged  stiffness constants using published 

values of bending and torsional persistence lengths [36-38]. The computational model, 

however, provides the framework for incorporating both sequence-dependent linear 
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elastic material laws as well as nonlinear (and inelastic) laws [13, 14, 39, 40] should they 

someday become well-characterized. We also treat the LacR as rigid and thereby ignore 

the effects of protein flexibility that has been analyzed in [35, 41, 42].  With the above 

assumptions duly noted, the computational model reveals the following major influences 

of sequence-dependent intrinsic curvature on looping in the LacR-DNA complex. First, 

the highly curved sequences of [18] tend to lower the energetic cost of the (lowest 

energy) stable loops, widen the energy distribution among stable and meta-stable loops, 

and substantially alter loop topology. Second, the inclusion of sequence-dependent 

intrinsic curvature leads to non-uniform twist (or twist deficit) as recognized in [43] and 

also necessitates consideration of eight distinct binding topologies from the known 

crystal structure of the LacR complex.  

 

We emphasize again that intrinsic curvature is only one manifestation of sequence-

dependent behavior and properly accounting for other physical behaviors in a model of 

the LacR-DNA complex will also influence the computed loop topology and energy. For 

example, including protein flexibility, twist-extension coupling in DNA, and sequence-

dependent stiffness parameters would all lower the loop strain energy relative to that 

computed herein. We discuss the current limitations of our model and several extensions 

in detail after presenting our results.  

 

7.2 Methods 
 

 In the Kirchhoff rod model, ds-DNA is approximated as a flexible rod having elastic 

properties as determined from single molecule experiments [44-47], MD simulations [9] 

and other biophysical techniques. We begin by reviewing the salient features of our 

computational rod model described in Chapter 2 for use in this study. We then detail how 

we incorporate sequence-dependent (non-homogeneous) intrinsic curvature in our 

formulation starting from knowledge of the inter-operator sequence. 

 

Non-homogeneous Rod Model for DNA  
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Figure 7.2 Rod model of (ds) DNA on long-length scales. Helical axis of duplex defines the rod 
centerline which forms a three-dimensional space curve located by . ),( tsR
 

Figure 7.2 illustrates a segment of ds-DNA with its helical axis defining the centerline of 

an equivalent rod. The shape of ds-DNA is parameterized by the three-dimensional 

centerline curve  and the cross-section fixed frame ),( tsR { }),( tsai . This equivalent rod 

model can be used to study the energetics and topology of DNA looping by formulating 

its mechanical properties (described below) based on experimental data and/or MD 

simulations. 

 

Under stress-free conditions, the helical axis is not straight but conforms to a 

curved/twisted space curve. This intrinsic curvature of ds-DNA is captured by )(0 sκ  and 

it depends on the base-pair sequence. The change in curvature/twist, )(),( 0 sts κκ − , 

produced by any subsequent deformation of the helical axis (e.g., by protein binding), 

generates an internal moment  and internal force . This response is 

governed by the long-length scale material law, which can be estimated from experiments 

or MD simulations. The inter-atomic interactions conspire to yield the long-length scale 

material law which is often assumed to be linearly elastic (see, for example, [5, 10, 11, 

28-35, 48-50]). An exception is the nonlinear law proposed in [13, 14, 40] for highly 

kinked strands, which has also been questioned in subsequent studies [39].  Here, we 

shall adopt a linear elastic law as described in Eq. (4.1). We assume homogeneous 

),( tsq ),( tsf
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bending and torsional stiffness BsB =)(  to screen out the effects of sequence-dependent 

stiffness and only capture the effects of sequence-dependent curvature )(0 sκ . We also 

ignore bending anisotropy which averages out over a helical turn into and effective 

isotropic bending stiffness for long length scale effects as suggested by Maddocks and 

co-workers [51, 52]. We also turn off the chiral coupling ( ) discussed in 

Chapter 5 which may otherwise mask some the effects of sequence-dependent intrinsic 

curvature 

0)( =skc

)(0 sκ  alone. (One those effects is non-uniform distribution of twist/ untwist 

)(ˆ stκ∆ ). Thus the assumed constitutive law takes the following form 

 

 ( ))(),(),( 0 stsBtsq κκ −= , (7.1)
 

where the stiffness tensor B  includes both bending and torsion stiffness, refer to Eq. 

(4.1) and Eq. (4.3) in Chapter 4 Commonly used values of the bending and torsional 

stiffness can be found from experimental measurements of the persistence lengths for 

bending/torsion [36-38]. The above law renders the rod model non-homogenous, that is, 

sequence-dependent by capturing the effects of intrinsic curvature/twist )(0 sκ . The 

associated elastic strain energy density follows from 

 

 ( ) ( ))(),()(),(
2
1),( 00 stsBststsS T

e κκκκ −−= , (7.2)

 

where the superscript T denotes matrix transposition. This result can be readily used to 

understand how the elastic energy is distributed along the looped inter-operator DNA and 

its decomposition into components due to bending and twisting. 

 

The deformation of the rod is governed by a set of differential equations (refer to Eq. 

(2.6) – Eq. (2.9) in Chapter 2) that are integrated using specified boundary conditions. 

For example, the boundary conditions for the inter-operator DNA loop define the relative 

position and orientation of the LacR operators known from the crystal structure [6] as 

detailed later. We describe the kinematics of this deformation by the linear velocity v(s,t) 

and the angular velocity ),( tsω of the rod cross-section. 
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Note that the formulation used is dynamical in that we track the rod deformation in time 

from an assumed initial state (initial condition). Doing so allows the solution to relax to 

equilibrium ( 0== ωv ) under the influence of hydrodynamic dissipation and, in the 

process, confirms the stability of the computed equilibrium. Employing a dynamic 

formulation is advantageous because the solution dynamically relaxes to a stable (looped) 

equilibrium. The predictions of looped or supercoiled states directly from equilibrium rod 

theory (e.g. [10, 30, 31, 34, 49, 50]) require a subsequent analysis of loop stability. 

Furthermore, equilibrium theories cannot capture possible dynamic transitions between 

equilibrium states as highlighted in Chapter 4. Finally, note that while we employ a 

specific (linearly elastic) material law for ds-DNA, the formulation above is general in 

that Eq. (7.1) may be replaced with any other proposed material laws including those that 

capture sequence-dependent stiffness [8, 9, 12, 15] and nonlinear material behavior [40].  

 

In this study, the dynamical formulation is used as a numerical means to converge to the 

final equilibrium (looped) states, and it is not used to study or represent the dynamic 

pathway for looping in the presence of thermal fluctuations. We accomplish this by 

integrating from the initial stress-free shape of the inter-operator DNA and then slowly 

transforming the operators from their stress-free conformation to their (final) position and 

orientation when bound to the LacR. The final loop topology and elastic energy are then 

computed. In other words, the boundary conditions for the rod are slowly varying and 

prescribed functions of time that begin with those of the stress-free state and end with 

those of the (final) looped state. We detail in Appendix 8 how we define the boundary 

conditions for the (final) looped state for the DNA-LacR complex. The inter-operator 

DNA modeled here as a rod includes three base-pairs from each operator site (see 

Appendix 8) as also assumed in [30-35]. 
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Figure 7.3 Four of eight possible binding topologies.  The operator locations L1 and L2 on the 
substrate DNA may bind to the protein binding domains BD1 and BD2.  The operators at L1 and L2 
are identical and palindromic. A three-digit binary notation is used to distinguish all eight possible 
binding topologies and all “forward” (F) binding topologies are illustrated here. 
 

In aligning the boundary base-pairs with the known crystal structure [6], we can consider 

eight possible binding topologies that distinguish how the operators bind to the binding 

domains. Note from Figure 7.1 that the operators are identical and palindromic. Because 

the operators at locations L1 and L2 are palindromes, we first consider four distinct ways 

to attach them to the two binding domains BD1 and BD2 as illustrated in Figure 7.3, 

where we also arbitrarily assumed that L1 always binds to BD1 (and L2 with BD2) 

(These four binding topologies were suggested to us by Prof. W. K. Olson, Department of 

Chemistry and Chemical Biology, Rutgers University). By then allowing L1 to bind to 

BD2 and L2 to BD1, we arrive at a total of eight possible binding topologies. Since the 

crystal structure of the LacR protein given by PDB ID: 1LBG [6, 53], 
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<http://www.pdb.org> appears to be asymmetric (by our calculations of data in [6, 53]) 

and so is the inter-operator DNA, the eight topologies are unique. For special cases 

(including palindromic inter-operator sequences and/or symmetry in the orientation of the 

boundary domains) one may arrive at fewer than eight (unique) binding topologies.  

 

To distinguish the four binding topologies, two conventions have been proposed in the 

literature [19, 33]. Here, we elect to extend the original notation of Geanacopoulos et al. 

[19] to a three-digit binary notation to distinguish all eight binding topologies. According 

to [19], the first digit describes the relative orientation of the 5’-3’ direction of the coding 

strand at the two boundary domains. If the dot product of these two directions is positive, 

the two directions are closer to being parallel than to being anti-parallel and the first digit 

is assigned the letter ‘P’. If the dot product is negative, the two directions are closer to 

being anti-parallel than to being parallel and the first digit is ‘A’. Next define the position 

vector  extending from L1 (the operator location at the 5’ end of the coding strand) to 

L2 (the operator location at 3’ end of the coding strand) as illustrated in Figure 7.3.  The 

second digit is chosen to be 1 if the 5’-3’ direction of the coding strand at L1 points 

towards the interior of the V-shaped protein, otherwise it is chosen to be 2. In other 

words, the second digit is 1 if the dot product of 

21−rr

21−rr  and the 5’-3’ direction at L1 is 

positive, or 2 if negative. Villa et al. [33] used ‘O’ and ‘I’ in their two digit binary 

notation resulting in ‘II’ = ‘A1’, ‘OO’ = ‘A2’, ‘IO’ = ‘P1’ and ‘OI’ = ‘P2’. For the third 

digit, we define BD1 as the protein head group bound to the strands labeled H and G in 

the LacR crystal structure given by PDB ID: 1LBG [6, 53]. The boundary domain BD2 is 

then the other head group. The third digit distinguishes whether BD1 binds to L1 and 

BD2 binds to L2, as denoted by “F” for “Forward”, or the opposite case denoted by “R” 

for “Reverse”. All possible “Forward” binding topologies are illustrated and notated in 

Figure 7.3. If the inter-operator DNA is modeled as a homogeneous rod, the forward and 

reverse topologies are indistinguishable. Table 7.1 summarizes how the symmetry in 

protein and/ or DNA might reduce the number of distinct binding topologies needed to be 

considered. 
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Table 7.1 Effects of DNA/ protein symmetry on distinctness of binding topologies 

Protein Inter-Operator DNA 
Distinct Binding 

Topologies 

Asymmetric Non –Homogeneous & Non-Palindromic 8 

Asymmetric Homogeneous or Palindromic 4 

Symmetric Non –Homogeneous & Non-Palindromic 4 

Symmetric Homogeneous or Palindromic 3 

 

 

The above arguments determine the relative position and orientation of the two operators 

to within a single π2  rotation of one operator about any axis. In other words, the two 

operators achieve the same relative orientation after one is rotated about any axis by any 

whole number of turns. The additional turns produce an infinity of boundary conditions 

[54], corresponding to different topoisomers. Highly over-wound and under-wound 

topoisomers are expected to have high energetic cost in the LacR-DNA complex.  Thus, 

as in prior predictions of looping for the LacR [30, 32-35], we exclude all cases of  

linking numbers sufficiently large to generate ‘self-contact’ of the inter-operator DNA. 

That said, computations with self-contact and even the formation of plectonemes are 

possible using this computational rod model upon the addition of a suitable contact law as 

demonstrated in Chapter 6. 

 

Including Sequence-Dependent, Intrinsic Curvature  

 

We now turn our attention to defining the intrinsic curvature/twist of the inter-operator 

DNA from knowledge of its sequence following the three steps below.  
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1. A web tool <http://hydra.icgeb.trieste.it/~kristian/dna/> [4, 5] is used to construct the 

stress-free all-atom representation (PDB file) of the entire sequence of each DNA given 

in Appendix 8 at zero temperature based on the consensus tri-nucleotide model [4]. This 

web tool outputs a protein data-bank file giving the co-ordinates of each atom.  

 

2. A smooth (at least  continuous) curve is interpolated through the chain of 

atoms to approximate the helical axis averaging over base-pair origins [55] as detailed in 

Appendix 9.  

3C )(0 sR

 

3. We define the cross-section fixed unit vectors ,  and  such that 

they align with the normal , binormal  and tangent  unit vectors, 

respectively of  [56]. The intrinsic curvature and twist of the helical axis are 

determined by the “principal curvature” 

),(1 tsa ),(2 tsa ),(3 tsa

)(ˆ sn )(ˆ sb )(ˆ st

)(0 sR

)(spκ  and “geometric torsion” )(sτ  of  

[56]. The components of the vector 

)(0 sR

)(0 sκ  with respect to the triad  

are{

)},({ tsai

})()(0 ssP τκ  and they are employed in Eq. (7.1) to capture the effects of 

sequence-dependent intrinsic curvature/twist on looping. 

  

The steps above can also be reversed and doing so allows one to re-construct an 

approximate, all-atom representation of the deformed inter-operator DNA, from the 

computed helical axis of the rod model.  To this end, we assume that the base-pair atoms 

can only undergo a rigid body motion and therefore their positions remain fixed with 

respect to the triad attached to the helical axis. Thus, the locations of the base-

pair atoms can be computed by tracking the position and orientation of the 

triad which are known directly from the output of the computational rod model. 

We emphasize that this procedure leads only to an estimate of the final conformation and 

further refinements might also be possible via subsequent relaxation through MD 

simulation.  

)},({ tsai

)},({ tsai
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7.3 Results  
 
The methods above are used to explore the topology and energetics of LacR-DNA loops 

with different inter-operator sequences.  We include results from three numerical studies 

that in combination reveal the overall effects of sequence-dependent intrinsic curvature 

and corroborate three major conclusions from experimental studies [18, 57]; specifically, 

 

• the sequence-dependent intrinsic curvature can reduce the energetic cost of looping 

[18], 

• the sequence-dependent intrinsic curvature influences loop topology and the 

distribution of topoisomers [18], 

• looping energy depends strongly on operator orientation compared to operator 

separation [57].   

 

To this end, we first re-examine the computed loops for the wild-type sequence (see 

Appendix 8) and contrast our results with those in [34] where sequence-dependent 

intrinsic curvature was not incorporated in the computed results. We then explore looping 

in four other sequences (see Appendix 8) with designed A-tract bends [18]. Finally, we 

evaluate how the loop elastic energy depends on operator separation (length of the inter-

operator sequence) as well as operator orientation.  

 

Looping in Wild-type Sequence 

 

Figure 7.4(a) depicts candidate stress-free, zero temperature conformations of the 77 bp 

inter-operator DNA (defined in Appendix A) for the wild-type sequence. The straight B-

DNA (red) with 3.46Å height and 34.6° twist per base-pair step correspond to the 

homogeneous rod model used in [30, 32-35]. The consensus tri-nucleotide model [4] 

(blue/green) accounts for sequence-dependent shape modeled in our non-homogeneous 

rod.  The helical axis of the B-DNA is straight which renders the principal curvature and 

geometric torsion identically zero, i.e., 0)( ≡sPκ  and 0)( ≡sτ . By contrast, 0)( ≠sPκ  

and 0)( ≠sτ  for the consensus tri-nucleotide model [4] which yields a distinct three-
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dimensional curve for the helical axis. Figure 7.4(b) illustrates the resulting principal 

curvature and geometric torsion computed from the consensus tri-nucleotide model (as 

functions of non-dimensional contour length ) which are then input to the 

computational rod model for studying looping.  

s

 

 

 
Figure 7.4 (a) Comparison of two different models of stress-free, zero-temperature, wild-type, inter-
operator DNA: Red – straight B-DNA and Blue/ Green – consensus tri-nucleotide model [4]. The left 
boundary base-pair for the two models are aligned. (b) Principal curvature and geometric torsion of 
the helical axis for the consensus tri-nucleotide model [4] as a function of (non-dimensional) contour 
length s. 
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Figure 7.5 (a) & (b) Computed LacR loops for wild-type, inter-operator DNA for LacR. Loops 
accounting for intrinsic shape (binding topology P1R is shown in blue and binding topology P1F is 
shown in green) differ from those that ignore intrinsic shape (homogeneous B-DNA, binding topology 
P1 shown in red).  Two solutions for the loop exist for each binding topology (ignoring self contact) - 
one is under-twisted (a) while the other is over-twisted (b).  (c) & (d) Principal curvature and over-
twist density of all loops above shown as functions of (non-dimensional) contour length coordinate s.  
The principal curvature for the (stress-free) consensus model (black) is reproduced for comparison. 
(e) Table summarizes the total over-twist (above the natural helical twist) ∆Tw, writhe Wr, linking 
number Lk, and loop elastic energy E for all the binding topologies. The writhe Wr is computed 
using “Method 1a” described by Klenin and Langowski [58]. We form a closed loop for calculating 
writhe by adding a straight segment 21−rr that connects the two ends of the DNA bound to the protein 
in Figure 7.3. The stress-free B-DNA is characterized by a uniform twist of 34.6°/bp, zero principal 
curvature, and rise of 3.46 Å/bp. The bending and torsional persistence lengths are assumed to be 
50nm and 75nm [36-38] respectively yielding a bending to torsional stiffness ratio of 2/3. The term 
‘Interference’ is used whenever a visual check reveals DNA-protein steric interference. 
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For the two models we first examine the loops with P1 binding topologies (refer to Figure 

7.3 for definition of P1 binding topology). Figure 7.5(a,b) illustrate the loops for both 

models – homogenous B-DNA (red) and non-homogenous consensus tri-nucleotide 

model (blue – P1F and green – P1R). Note that for homogeneous B-DNA, the binding 

topologies P1F and P1R yield identical loops and hence we designate them simply by P1. 

Computations reveal two loops (without self contact) of the inter-operator DNA for each 

binding topology, one under-twisted (Figure 7.5(a)) and the other over-twisted (Figure 

7.5(b)). The principal curvature 3a×κ  and over-twist density ( )τκ −3  for each loop are 

reported in Figure 7.5(c,d) together with the intrinsic (principal) curvature of the stress-

free, zero temperature state (black) for reference. For the case of vanishing intrinsic 

curvature (homogeneous B-DNA), the above formulation should replicate the results of 

[34].  Indeed, the computations shown in Figure 7.5(c,d) for homogeneous B-DNA (red) 

faithfully reproduce the principal curvature and over-twist density reported in [34] to 

within 0.2 deg/ bp. A summary of the total over-twist ∆Tw, writhe Wr, link Lk, and loop 

elastic energy E for all binding topologies is provided in Figure 7.5(e). The lowest elastic 

energy (again without steric interference) is highlighted in blue font and the second 

lowest is in red font. 

 

Looping in Four Sequences with Designed A-tract Bends 

 

We now utilize the same methods with the consensus tri-nucleotide model to explore the 

role of intrinsic shape in the four highly curved sequences with phased A-tract bends 

introduced in [18]. The four sequences, denoted by control, 11C12, 7C16, and 9C14, are 

defined in Appendix A and their predicted stress-free, zero-temperature conformations 

are illustrated in Figure 7.6. The control sequence is nearly straight while the other three 

have similar A-tract bends with helical phase differences of approximately 70°. 
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Figure 7.6 Two views of the stress-free, zero-temperature conformations of four designed inter-
operator DNA sequences [18] as computed using the consensus tri-nucleotide model [4]. The first 
base-pair of each sequence is assigned the same position and orientation. The operator regions are 
shown in green, the red and blue segments are same in all the four constructs, but the silver segments 
are different in each of them. In the control sequence the silver segment is nearly straight, while in 
the others it has A-tract bends between two straight linkers of different lengths (refer Appendix 8). 
The control sequence is nearly straight as best observed in view (a). For the three variants, the inter-
operator sequences contain a series of A-tract bends between two nearly straight linker regions of 
differing lengths. The different length linker regions lead to bends that are phased by approximately 
70° about the helical axis of the control as best observed in view (b). 
 

For each sequence, we used the computational rod model to compute the inter-operator 

loops formed by LacR binding and for all possible (eight) binding topologies; refer to 

Figure 7.3. As in the wild-type case, multiple (mechanically) stable loops are possible for 

each binding topology.  Figure 7.7 illustrates the loop that achieves the minimum elastic 

energy for each sequence. In the table below we report the number of bp for the inter-

operator sequence (as defined in Appendix 8), loop elastic energy, total over-twist, writhe 

and link for these minimum energy loops (illustrated) as well as those having the second 

lowest elastic energy (not illustrated). The loops with the second lowest elastic energies 

might correspond to the “most probable meta-stable states” of the Boltzmann distribution. 

If their free energies are close to those of the “stable states” (lowest energy states), the 

meta-stable states may co-exist with the stable states in a thermal environment with a 

high likelihood of inter-conversion. In fact, if one were to account for the other 

components of the free energy, a state having the 2nd lowest elastic energy may well yield 
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the global free energy minimum27. Note also that while some loops have very comparable 

elastic energies, their binding topologies and geometrical properties (e.g. whether over-

twisted or under-twisted) can be altogether different. 

 

 

 
Figure 7.7 (a)-(d) Lowest energy solutions for four designed sequences and the associated binding 
topology. (e) Table summarizing binding topology, loop elastic energy, over-twist, writhe and link for 
loops with the minimum and second smallest elastic energies. The largest of all the minimum energies 
is denoted in red font and the lowest in blue font. (e) 
 

 

                                                 
27 For example, the entropic contribution to free energy is expected to be of the order of kT for a 
persistence length of DNA (~150 basepairs). If the 2nd lowest elastic energy loop is hardly a kT higher than 
the lowest elastic energy loop, we may need to account for entropy to determine the lowest free energy. 
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Influence of Inter-operator Length and Phase  

 

The sequences of [18] considered above differ both in the location/phase of the A-tract 

bend as well as the number of base-pairs of the inter-operator DNA which range from 

131 bp (7C16) to 144 bp (Control). The elastic energy of the resulting loops is certainly 

influenced by both factors. Therefore, the gel shift assays on the looping of the four 

sequences in [18] were influenced by both effects, not just the helical phasing of A-tracts 

with respect to the operators. In the following results, we isolate these influences on 

elastic loop energy. 

  

Adding (or subtracting) a single base-pair is expected to change the loop energy by 

changing (a) the length of inter-operator DNA (e.g,. by 3.46 Å/base-pair), and (b) the 

relative orientation of the operators by one unit of base-pair twist (e.g., by 34.6°/base-

pair).  The first effect is negligible for the four designed sequences considered above 

since the relatively small differences in contour length (less than 0.7%/base-pair) 

generate negligibly small changes in the stiffness of the inter-operator DNA. By contrast, 

changes in the relative orientation of the operators may yield as much as a 50% change in 

elastic energy as shown in the results below. 

 

Figure 7.8 illustrates the computed loop elastic energy for the Control sequence (modeled 

as straight B-DNA for the results presented in this figure) with the P1 binding topology. 

The solid curves represent the energy computed by simply rotating one operator about its 

tangent vector  in increments of the nominal base-pair twist (34.6°) while holding the 

number of base-pairs constant (142).  The two curves distinguish two computed loops; 

one under-twisted (blue) and one over-twisted (red). The circles represent the energy 

computed by adding base-pairs and thereby simultaneously increasing the length of the 

inter-operator DNA as well as changing the relative orientation of the operators. The two 

sets of circles distinguish two computed loops; one under-twisted (blue) and one over-

twisted (red).  

t̂
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Figure 7.8 The influence of operator orientation and inter-operator length on loop elastic energy for 
straight B-DNA (Control) with P1F/P1R binding topology. Solid curves illustrate the periodic 
variation in elastic energy obtained by rotating one operator about the helical axis in increments of 
the base-pair twist (in this model 34.6°/base-pair) while keeping the inter-operator length constant 
(142 bp); refer to scale on top for relative angular orientation of operators. The circles illustrate the 
same variation obtained by adding base-pairs and thereby both rotating one operator as well as 
increasing the inter-operator length (in this model 3.46 Å/base-pair); refer to scale on bottom for bp 
number. Over-twisted solutions denoted by red, under-twisted solutions by blue. 
 

 

7.4 Discussion and Conclusions 
 
We open this discussion by describing the overall effects of sequence-dependent intrinsic 

curvature on the mechanics of looping. We then discuss how our computational results 

support three major conclusions drawn from experimental studies of the LacR-DNA 

complex [18, 57] including: 1) that sequence-dependent intrinsic curvature reduces the 

energetic cost of looping, 2) that sequence-dependent intrinsic curvature influences loop 

topology and the distribution of topoisomers, and 3) that looping energy is influenced by 

operator orientation and separation. Finally, we note several limitations and extensions of 

our computational model. 
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Overall Effects of Sequence-dependent Intrinsic Curvature  

 

First, sequence-dependent intrinsic curvature necessitates the consideration of eight 

distinct binding topologies, four of which are illustrated in Figure 7.3. As a result of 

intrinsic curvature and protein asymmetry, reversing the order of the binding domains 

yields loops with distinct topologies; for example, compare the loops for P1F (green) 

versus P1R (blue) in Figure 7.5(a).  Second, sequence-dependent intrinsic curvature may 

greatly alter the topology of the loop relative to that predicted for homogeneous B-DNA. 

For the wild-type sequence, which has modest intrinsic curvature, one might not expect 

significant changes in writhe between loops that include or ignore this intrinsic curvature. 

This, however, is not always the case as seen for example in Figure 7.5(e) where the 

writhe of the A2F under-twisted loop (Wr = -0.34) (tri-nucleotide) has significantly 

greater magnitude than that of the A2 under-twisted loop (Wr = -0.08) (homogeneous B-

DNA) that ignores intrinsic curvature. For the designed sequences, we do expect to see 

large changes in writhe due their significant intrinsic curvature. For example, the writhe 

of the P1R loops for the sequence 9C14 (Wr=0.15) in Figure 7.7(e) is less than one-half 

that of the control sequence (Wr = 0.37). The associated impact that these topological 

changes have on the energetics of looping can be substantial as discussed in detail below. 

Third, sequence-dependent intrinsic curvature qualitatively alters the distribution of twist 

along the inter-operator DNA.  While the over- or under-twist remains uniform for the 

(homogeneous) model for the straight B-DNA, it becomes non-uniform for (non-

homogeneous) models [43] that include intrinsic curvature, refer to Figure 7.5(c,d).  This 

general observation may open further questions about possible sequence-dependent 

localization of over- and under-twist and its impact in biological processes, such as 

facilitating or impeding promoter melting. 
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Sequence-dependent Intrinsic Curvature Reduces Energetic Cost of Looping 

 

 
Figure 7.9 The transition from stress-free shape to looped conformation.  The stress-free shapes are 
given in blue. The final loop geometries are shaded as a function of strain energy density (kT/bp). (a) 
11C12 (b) control. 
 

Our computations show that the addition of A-tract bends into the three designed 

sequences substantially reduces the loop elastic energy in comparison to that of control 

sequence; refer Figure 7.7(e). For example, an energy reduction of nearly 40% occurs 

between the minimum energy loop of the curved sequence 11C12 compared to that of the 

unbent control.  Thus, we support the conclusion based on gel shift assays in [18], “Free 

energy cost can be decreased by incorporating designed DNA bends into looped 

complexes.” Intuitively, one would expect that the sequence-dependent intrinsic 

curvature may conform (to some degree) to the final loop shape and particularly given the 

freedom afforded by eight binding topologies and the number of topoisomers occurring 

for each. Thus, as stated in [18], “the DNA whose initial structure most closely matches 

the optimum structure preferred by the LacI protein will form the most stable looped 

complex.”. We can demonstrate this clearly by comparing the sequence 11C12 and the 

control sequence which exhibit the largest energy difference (11.93 kT versus 7.38 kT) as 

shown in Figure 7.9.  Illustrated are the stress-free and (lowest energy) looped 

conformations for the sequence 11C12, Figure 7.9(a), and the control sequence, Figure 

7.9(b), with the color scale indicating the strain energy density of the looped 

conformations.  For the sequence 11C12, notice that modest twisting near the middle of 

the strand allows it to quickly conform to the looped configuration and with minimal 

strain energy (that is also dominated by twisting).  By contrast, the nearly unbent control 
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requires substantial bending (largely planar) to arrive at the looped conformation and 

with significantly greater (bending) strain energy density in the middle portion. 

 

The conclusion that sequence-dependent intrinsic curvature reduces loop energy is also 

supported by the computations for the wild-type sequence, though to a lesser degree. 

Observe from Figure 7.5(e) the 3% reduction in elastic energy of the minimum energy 

loop (highlighted in blue) that accounts for sequence-dependent intrinsic curvature from 

that of the minimum energy loop that ignores the intrinsic curvature (homogeneous 

B_DNA). The rather modest energy reduction in this example is expected given the very 

modest curvature of the stress-free shape compared to the straight B-DNA; refer to 

Figure 7.4(a) 

 

Sequence-dependent Intrinsic Curvature Influences Loop Topology and 

Distribution of Topoisomers 

The minimum energy loops computed for the wild-type sequence (Figure 7.5) and the 

designed sequences (Figure 7.7) reveal a wide range of binding and loop topologies. For 

example, note that the minimum energy loops for three sequences in Figure 7.7 

(including the control sequence and the bent sequences 7C16, 9C14) are all over-twisted, 

while the minimum energy loops for one designed sequence 11C12 and the wild-type 

sequence are both under-twisted. These observations support findings from the gel shift 

assay experiments of [18] which state, “Designed DNA bends can also control the shape 

of a DNA loop formed by Lac repressor”. Second, there are large variations in the 

preferred (minimum energy) binding topologies among the four designed and the wild-

type sequences. This observation suggests that energetically-favorable binding topologies 

are in part determined by inter-operator sequence.  

 

The sequence and associated intrinsic curvature may also strongly influence the 

distribution of topoisomers as suggested by the computed elastic energies reported in 

Figure 7.5 and Figure 7.7. For example, certain sequences exhibit only modest 

differences in elastic energy between the minimum and 2nd lowest energy loops. Only a 

2% energy difference separates these states for the wild-type sequence when accounting 
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for the sequence-dependent intrinsic curvature; refer to Figure 7.5(e). Likewise, the 

analogous energy differences for the control and 9C14 sequences in Figure 7.7 are 5%. 

Thus, per the Boltzmann distribution, one may anticipate nearly equal concentrations of 

these topoisomers in experiments.  By contrast, the 30% energy difference for the 

sequence 7C12 and 40% for 11C12 suggest substantially different topoisomer 

concentrations. Likewise a large (40%) energy difference separates the under-twisted 

(lower energy) from the over-twisted (higher energy) topoisomers of the wild-type 

sequence with P1 binding topology when the sequence-dependent intrinsic curvature is 

captured by the model; refer to Figure 7.5(e). However, when this sequence-dependent 

intrinsic curvature is ignored, the energy difference is substantially reduced (to 13%) 

suggesting a significantly different distribution of these topoisomers. Even for the other 

binding topologies, consideration of sequence-dependent intrinsic curvature, as observed 

in Figure 7.5(e), seems to substantially widen the gap between the energies of the two 

topoisomers in general. 

 

Looping Energy: Roles of Operator Orientation and Separation  

 

There is a considerable and expected overall reduction in the elastic energies of all of the 

lowest energy loops for the designed sequences relative to those of the wild-type.  The 

four designed inter-operator sequences range from 144 bp (control) to 131 bp (7C16), and 

these longer inter-operator sequences relative to the wild-type (77 bp) lead to a far more 

flexible inter-operator DNA. For instance, elementary beam theory [59] predicts that the 

bending elastic energy E developed when bending an initially straight elastic beam of 

length L into a complete circle of radius π2/L  scales as . Thus, ignoring all other 

complications (e.g., coupled bending/torsion leading to three-dimensional deformation, 

non-uniform curvature, intrinsic curvature, etc.), a sequence of 77 bp requiring 34 kT to 

form a circular loop would then only require 17 kT to form (a larger diameter) loop if it 

were 154 bp long instead.  This approximate 50% reduction in elastic energy is not unlike 

the large elastic energy reductions observed for the far more refined computations 

reported in Figure 7.5 and Figure 7.7.  

LE /1~
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As previously noted, adding (or subtracting) a single base-pair may alter the elastic 

energy through changing the length of inter-operator DNA by one unit of base-pair rise, 

and/or (b) the changing the relative orientation of the operators by one unit of base-pair 

twist.  For the relatively long sequences of [18], the small differences in inter-operator 

lengths lead to negligible changes in elastic energy compared to the associated changes in 

the relative orientation of the two operators [57].  

 

To understand this conclusion, refer again to Figure 7.8 which shows the elastic energy 

for the Control sequence (modeled as homogeneous B-DNA with the P1 binding 

topology).  The energy computed by simply rotating one operator in increments of the 

base-pair twist (solid curves), closely approximate the energy (circles) computed when 

also allowing the inter-operator DNA to increase by increments of the base-pair rise. This 

close agreement between these two calculations provides strong support for the claim that 

changes in operator orientation brought about by adding/subtracting base-pairs have a 

far greater influence on loop energy than the associated changes in length of the inter-

operator DNA.  This conclusion also supports the experimental finding in [57] as 

discussed in [18], “The in vivo probability of loop formation depends strongly on the 

torsional phasing of the operators but relatively weakly on their separation”. 

 

Note also the obvious periodic variation in elastic energy illustrated in Figure 7.8. This 

computed result using rod theory supports the experimental observations that looping 

probability is a periodic function of the inter-operator distance [20, 21, 60]. The period of 

10.5 bp corresponds to a complete helical turn of DNA and, the results of Figure 7.8 

demonstrate that specific helical orientations of the operators may significantly reduce 

the energetic cost of loop formation by up to 50%. 

 

Model Limitations and Extensions 

 

The energy computations herein are solely restricted to the elastic (or ‘strain’) energy of 

the loop. To assess thermal stability, one needs to determine the free energy difference 

between looped and unlooped states. Major contributions to the free energy include: (1) 
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loop elastic energy, (2) protein deformation energy, (3) entropy, (4) DNA-protein surface 

binding energy, and (5) electrostatic potential between the negatively charged phosphates 

in the DNA backbone. Of these, we believe that entropy and the surface binding energy 

would remain relatively constant for variations within a class of sequences (i.e., for 

topoisomers of the wild-type or for topoisomers of the designed sequences considered 

herein). By contrast, contributions from the loop and protein deformation energies may 

vary significantly and, as a result of associated conformation changes, so might the 

electrostatic repulsion. For instance, the binding co-operativity of the two operator sites 

depends on their electrostatic repulsion [61] which decays exponentially with operator 

separation per the Debye-Hückel approximation (or other approximations discussed in 

Appendix 3). Some of these additional influences could, in fact, be approximated in the 

context of a computational rod model for DNA. 

 

For example, the formulation herein tacitly assumes a rigid protein as determined from 

the crystal structure. However, the effects of protein flexibility on the loop could be 

captured by replacing the fixed (Dirichlet) boundary-conditions with elastic (mixed 

Neumann-Dirichlet) boundary conditions that model the equivalent flexibility at the 

DNA-protein interface. Molecular dynamics (MD) simulations have suggested that 

flexibility of the LacR derives primarily from the head regions [35] while the possibility 

of flexibility in the V-region has also been suggested in prior studies [41, 42]. Similarly, 

the entire Lac-R might also be approximated by a small number of rigid bodies with 

concentrated flexibility (stiffness) at the V-region and at the protein heads. Coupling this 

‘low-dimensional’ protein model with elastic rod model of DNA would allow one to 

capture the elastic deformation of the entire protein/DNA complex in an approximate 

manner. This might provide initial conditions for MD simulations of the complex or 

possibly obviate the need for full MD simulations altogether [35].  

 

It is recognized that any long-length scale material law for DNA will surely influence the 

loop topology and elastic energy computed from rod theory and that further advances in 

determining accurate material laws are likely to follow from single-molecule experiments 

and MD simulations. For instance, recent MD simulations [9, 12, 15] have begun to 
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reveal the sequence-dependent stiffness parameters for linear elastic behavior, while 

other studies [13, 14, 40] have begun to explore nonlinear (and inelastic) behavior, 

though this has also been questioned [39]. It is also recognized that DNA must exhibit a 

strong coupling between twist and extension [62] due to its chiral (helical) construction 

[63] and this requires a modification of the material law used herein as proposed in 

Chapter 5. Overall, the sequence-dependent bending and torsional stiffnesses affect 

computed properties of the Lac-repressor loop [7-14] and these can also be 

accommodated herein by accounting for spatial variations in the stiffness tensor B(s) 

employed in Eq. (7.1); see, for example the problem set up in Chapter 6.   Likewise, the 

sequence-dependent stress-free shape (or `intrinsic curvature’) surely affects the 

mechanics of looping for the LacR-DNA complex and the results herein suggest its 

dominant role for the sequences with designed A-tract bends. 

 

Conclusions 

This chapter employs the computational rod model for the long-length scale structure of 

DNA as a means to explore the mechanics of protein-mediated DNA looping. Our 

specific objective is to understand how looping energy and topology are influenced by 

the sequence-dependent intrinsic curvature of the substrate DNA.   We adopt the lactose 

repressor (LacR) protein-DNA complex  as our example and consider both the wild-type 

sequence possessing relatively little intrinsic curvature and the highly curved sequences 

with designed A-tract bends introduced by Mehta and Kahn [18]. Our method uses the 

known sequence of the inter-operator DNA to construct the intrinsic curvature of the 

helical axis as input to the computational rod model. Simulations allow us to predict the 

elastic (strain) energy required to transform the stress-free conformation into a looped 

conformation that complies with the known LacR-operator crystal structure. Numerical 

studies of loop energetics and topology reveal the following major influences of 

sequence-dependent intrinsic curvature on the LacR-DNA complex. First, the highly 

curved sequences of [18] tend to lower the energetic cost of looping, widen the energy 

distribution among stable and meta-stable loops, and substantially alter loop topology. 

Qualitatively, the inclusion of sequence-dependent intrinsic curvature also leads to non-

uniform twist (or twist deficit) [43] and necessitates consideration of eight distinct 
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binding topologies from the known crystal structure of the LacR complex. The generality 

and several extensions of the computational rod model are also discussed for other 

looping and non-looping behaviors of DNA. 
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Chapter 8 

8. Summary, Conclusions and Future Work 
 

8.1 Summary and Major Conclusions 
 

This dissertation contributes a versatile computational rod model that describes the 

nonlinear dynamics of highly contorted cables, DNA, and other filament-like structures, 

including the mechanics of looping and intertwining. Our formulation is first carefully 

benchmarked by comparing our dynamical solutions with known equilibrium solutions 

for limiting cases of slow (quasi-static) loading. We then employ our computational 

model in four case studies that explore the hockling and tangling of underwater cables 

and the supercoiling and looping of DNA. The scope and the major conclusions from 

each of these case studies are presently summarized. 

 

• Benchmarking Study and Dynamics 

As a first example, we elected to carefully benchmark our dynamical solutions with 

known equilibrium solutions for limiting cases of slow (quasi-static) loading. Doing so 

highlights the accuracy of our formulation.  We refer to Heijden et al. [1] who catalogues 

the equilibria and bifurcations of clamped-clamped rods which in turn have been 

validated by laboratory-scale experiments on nitinol rods. The dynamic rod model 

summarized in Chapter 4 not only reproduces these equilibria under quasi-static loading 

but also captures large dynamic transitions between equilibrium paths. In addition, we 

discover new hysteresis effects that result from our dynamical treatment. 

 

Dynamics of underwater cable is dominated by inertia (high Reynolds number), while 

dynamics of DNA it is dominated by viscous effects (low Reynolds number). The 
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importance of modeling dynamics is well recognized for underwater cable applications, 

but not nearly as well recognized or understood in the context of DNA mechanics. We 

identified at least three reasons for which one might want to formulate dynamics in either 

application. First, the inclusion of dynamics in the rod model formulated herein makes it 

possible to study nonlinear dynamic transitions between equilibria as illustrated by the 

‘figure eight transition’ path in Section 4.2.1 of Chapter 4. Such transitions may help 

explain how small thermal fluctuations in DNA can initiate large changes in its 

supercoiled states. Second, in the dynamic rod formulation, we circumvent all unstable 

equilibria simply by perturbing the rod with a negligibly small random flow. Thus, the 

solutions dynamically relax only to stable equilibria. By contrast, equilibrium rod theory 

yields both stable and unstable equilibria and require a subsequent analysis of equilibrium 

stability. Third, the hysteresis observed near equilibria bifurcations in Section 4.3 

signifies the role of dynamic lag. Also recognize that the first two reasons are 

independent from the goal of quantitative modeling of the time-scales of the nonlinear 

dynamics. In other words, even an artificial choice of inertia and drag coefficients serves 

the purpose of the first two reasons. However, the value of the third reason really depends 

on the quantitative modeling of dynamic effects which for DNA would mainly require the 

quantitative modeling of drag coefficients (low Reynolds number). 

 

• Tension-Torque Coupling 

As a second example, we study in Chapter 5 the influence of chirality by adding tension-

torque coupling to the rod constitutive law. This coupling is motivated by the helically-

wound construction of common wire and synthetic cables as well as the DNA duplex. In 

contrast to isotropic rods, the behavior of a chiral rod differs from that of its mirror image 

[2]. To distinguish it from the anisotropy in bending, Healey [2] describes chiral 

anisotropy as ‘hemitropy’. In an isotropic rod, the torsional moment at any cross-section 

is proportional to twist in the rod. However, in a chiral ( or ‘hemitropic’) rod, tension also 

induces a torsional moment28 at any cross-section due to its helical construction. In terms 

of kinematic quantities, this is equivalent to ‘twist-extension coupling’ and it is this 

                                                 
28 For marine cable applications, this motivates the need to design so-called “torque-balanced” cables by 
using constructions that incorporate both left-handed and right-handed helical winds. 
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observation that is central to the paper titled “Stretching must twist DNA” by Marko [3]. 

The impact of this coupling is highlighted through new solutions to the benchmark 

problem first introduced in Chapter 4. 

 

The analytical and numerical results presented in this chapter demonstrate that tension-

torque coupling can have pronounced influences on the bifurcations of rod equilibria and 

on the mechanics of loop formation. The major influences noted in these results are that 

tension-torque coupling may: 

 

6. substantially alter loop topology, 

7. introduce non-uniform twist (or untwist), 

8. change the stress in the rod and reaction forces and moments at the boundaries, 

9. alter the equilibrium bifurcation characteristics, and 

10. soften the rod due to off-diagonal coupling terms in the stiffness matrix. 

 

• Dynamics of Self-Contact and Intertwining 

As a third example, we model in Chapter 6 the self-contact so as to capture the dynamic 

evolution of intertwining in response to torsional buckling. Modeling self-contact in rods 

is a pre-requisite for the simulation of cable intertwining, hockling and knot formation; 

yet it has been a significant research challenges in rod theory. The intertwined shapes 

resemble hockles in underwater cables and plectonemes (one type of supercoils) in DNA. 

 

In Chapter 6, we presented numerical solutions for an example system of a rod subjected 

to increasing twist at one end. The solutions show the dynamic evolution of the rod from 

an initially straight element, through a buckled element in the approximate form of a 

helix, through the dynamic collapse of this helix into a loop, and subsequent intertwining 

of the loop with multiple sites of self-contact. These results highlight the importance of 

torsion as a dominant mechanism responsible for hockles and plectonemes. 
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• Protein-Mediated DNA Looping 

Looping in DNA is an important mechanism for gene regulation. Gene expression can be 

regulated by specific proteins that deform DNA into a loop. One of the most studied 

examples of this regulation is the Lac gene in the bacterium E.Coli that is mechano-

chemically controlled by ‘Lactose-Repressor’ protein. In chapter 7, we employ the rod 

model to simulate DNA looping mediated by 'Lactose-Repressor' for both the ‘wild-type’ 

(naturally occurring) DNA sequence and variety of other ‘designed sequences’ with large 

intrinsic bends. 

 

The computations provide a fundamental understanding of the energetics and topology 

the DNA loops. They also elucidate experimentally observable trends of looping rates 

and stability of the designed sequences and the overall influence of sequence-dependent 

instrinsic curvature in the looping process. Numerical studies of loop energetics and 

topology reveal the following major influences of sequence-dependent intrinsic curvature 

on the LacR-DNA complex. First, the highly curved sequences tend to lower the 

energetic cost of looping, widen the energy distribution among stable and meta-stable 

loops, and substantially alter loop topology. Qualitatively, the inclusion of sequence-

dependent intrinsic curvature also leads to non-uniform twist (or twist deficit) and 

necessitates consideration of eight distinct binding topologies from the known crystal 

structure of the LacR complex. 

 

This dissertation is an important, yet modest step towards the goal of understanding 

DNA-protein interactions. Many scientific challenges remain in both experimental and 

computational research to accomplish this ambitious goal. Understanding these 

challenges, we conclude by laying out some future research directions based upon the 

computational framework contributed by this dissertation. 
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8.2 Future Work on DNA 
 

8.2.1 Structural  Characterization of DNA 
 

The structural properties of DNA (e.g., sequence-dependent stiffness, intrinsic curvature, 

tension-torque coupling, etc.) are not yet well-characterized by experimental 

measurments due to many experimental challenges at the single molecule level. 

Therefore the structural parameters that are inputs to our computational framework are 

subject to debate. But the simulation results from our computational framework also offer 

insights into the design of experiments that could test the validity of mechanical models 

of DNA. Ideally, one seeks to design experiments guided by model simulations that 

dovetail well with current experimental capabilities. 

 

An example29 of such a simulation study is illustrated in Figure 8.1 in the context of 

LacR-DNA complex described in Chapter 7. This work builds upon the known influence 

of the inter-operator phasing, now extending to operator-A-tract phasing. By conducting 

a parametric study of the effect of the two helical phases, our model can deduce the 

phase-loop energy relationship and thus ultimately predict the probability distributions of 

various loop topologies. By comparing our theoretical predictions with published 

experimental results we expect to better characterize the structural parameters for our 

model. 

 

 

                                                 
29 This is an ongoing work in collaboration with Todd Lillian. See acknowledgements. 
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(a) 

 
(b) 

Figure 8.1 (a) Adding/ subtracting basepairs in straight ‘Linker’ regions changes helical phasing 
between operator and A-tract bend. (b) Contour maps of DNA loop energy in LacR complex 
parameterized over the helical phasings (in ∆bp) introduced at the two linkers. 
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8.2.2 Modeling Entropic Effects 
 

 

 
Figure 8.2 First two normal modes of a LacR-DNA loop. 

 

It was argued in Chapter 7 that the free energy cost of DNA looping might have a 

noticeable contribution from entropy (due to thermal fluctuations of DNA). We can 

extend the rod model to capture thermal fluctuations (entropy) of DNA strands and DNA-

protein complexes by using normal modes. An example30 of a normal mode analysis is 

illustrated in Figure 8.2 for a LacR loop. The equilibrium shape of inter-operator DNA 

loop is first computed from our computational rod model. We then calculate linear 

fluctuations of the DNA loop about its equilibrium shape from the Hamiltonian of the 

system. The entropy ultimately depends on the stiffness (matrix) of  the looped DNA. We 

may further extend this concept to evaluate the entropy of the entire DNA-protein 

complex by using standard techniques of ‘flexible multi-body dynamics’ (FMBD) such 

as ‘component mode synthesis’ perhaps in combination by an initial MD analysis of the 

protein. 

 

                                                 
30 This is an ongoing work in collaboration with David Wilson. See acknowledgements. 
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8.2.3 Coupling of Protein Flexibility/ Dynamics 
 

As noted in Chapter 7, very little is understood about the deformability of the proteins 

that control structural changes in DNA. The current Molecular Dynamics (MD) software 

remains computationally inefficient (if not unusable) when applied to the long time and 

length scale simulations of DNA-protein interactions. Interestingly, computational tools 

from mechanical engineering and belonging to the fast-developing research area of 

flexible multi-body dynamics (FMBD) could be adapted to model proteins. MD tools 

could be interfaced with FMBD tools using multi-scale modeling techniques to yield 

potentially dramatic improvements in both computational speed and accuracy. 

 

8.2.4 Histone Unwrapping 
 

 
Figure 8.3 DNA (blue) unwrapping from histone (red) (Courtesy: Kulic and Schiessel [4]) 

 

Long DNA in “eukaryotes” (higher organisms) are packed inside the cell nucleus by 

wrapping around spool-shaped proteins called “histones” [5]. The unwrapping of DNA 

under tension is known to be a quantized phenomenon [6-8] and this can be explained by 

considering the energy barriers during unwrapping [4]. To some extent, this requires 

overcoming a DNA-histone adsorption potential, and to a much greater extent the 

bending energy barrier as the wrapped loop tends to rotate out of plane (i.e., tends to 

unwrap) as shown in Figure 8.3.   The wrapping and unwrapping of DNA on histone 

spools may be an excellent problem to address using our computational rod model due to 
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the relatively large strain energy involved in this process compared to thermal energy. 

Moreover, through our prior case study of intertwining, we already have formalized a 

similar “contact” problem that can now be modified for this type of study. 
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Appendix 1: Further Comments on DNA Structure and 
Function 

 

3.6 nm 

1.8 nm 

 

 

 

 

Figure A 1.1 DNA shown as a helical coil of two strands. Each strand is made up of sugar-phosphate 
backbone (orange ribbons) and bases (blue planks) enclosed inside the helix. (Courtesy: Brandem 
and Tooze [1]). 
 

A schematic of a DNA polymer is shown in Figure A 1.1. It consists of two strands 

which coil around each other to form a double helix. Each strand is a series of units called 

“nucleotides”. There are four different kinds of nucleotides called adenine, guanine, 

cytosine and thymine, or simply A, G, C and T. Their sequence ciphers the genetic 

information in DNA. Each nucleotide is itself made up of three parts – sugar, phosphate 

and base. The four kinds of nucleotides only differ in their bases. The sugars and 
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phosphates form the polymer chain of the strand while the bases branch from the sugars 

and function like a coding alphabet for genes. 

 

DNA lengths vary from a few micrometers to centimeters. A long length of the DNA 

double helix packs into the small confines of the cell nucleus (or a virus) by wrapping 

upon itself or around spool-shaped proteins (called ‘histones’) in an organized manner. 

This wrapping of the DNA double helix is called “supercoiling” to distinguish it from the 

helical coiling of two constituent strands. Two kinds of supercoiling in DNA, 

plectonemic and solenoidal, are illustrated in Figure A 1.2. Solenoidal supercoils achieve 

higher compaction as described in Lehninger et al. [2]. 

 

  

Figure A 1.2 Two types of supercoiling of the same length of DNA, drawn to scale. Though the 
solenoidal form achieves greater compaction (as needed for packaging it inside a cell nucleus) than 
does the plectonemic form, it is generally not observed unless stabilized by certain proteins (e.g. 
histones). For isolated DNA in solution, the plectonemic form is stable and is mostly observed in the 
laboratory. (Courtesy: Lehninger et al. [2]). 
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How do genes control behavior of a cell or an organism? 

All vital cellular processes result from the functions of various proteins (e.g. enzymes) 

which themselves are copolymers of twenty different types of units called amino acids 

(or twenty ‘standard’ amino acids). Genes encode the amino acid sequence of all 

proteins. To make a protein from amino acids, cellular machinery has to ‘read’ the base 

sequence in DNA through a process called ‘transcription’ and the successful formation of 

proteins concludes the process of ‘gene expression’. In order to inherit genes in newly 

formed cells, DNA makes its own copies through a process called ‘replication’ that again 

requires ‘reading’ of the base sequence. 

 

How can base sequences be replicated? 

The base-pairing in the two chains is unique as suggested by Watson and Crick [3, 4], i.e. 

A pairs up with T and G pairs up with C. This unique pairing explains that if a single 

strand of DNA is left in a solution of nucleotides, it will form its (unique) complimentary 

strand. Therefore to replicate DNA, one simply needs to separate the two strands and 

supply free nucleotides. 

 

How is transcription or replication controlled? 

Twisting and writhing (or curving) of the DNA double helix are the two fundamental 

mechanisms that control transcription and replication through the actions of proteins 

(called ‘polymerases’) that access the base sequence. Note, however, that DNA exists in 

an aqueous environment and the bases, which are hydrophobic, remain enclosed within 

the double helical envelop of the two sugar-phosphate chains, which are hydrophilic. The 

DNA double helix must then partially ‘unravel’ in the regions accessed by polymerase 

proteins to ‘expose’ the base pairs.  
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Figure A 1.3 The linking number in the left-most cable loop is 0 and in the next loop it is -3. The twist 
is converted to successively greater writhe in the remaining loops. (Courtesy: Calladine et al. [5]). 
 

Twist and writhe do not vary independently in any filament whose ends are restrained. 

For example, the filaments shown in Figure A 1.3 and Figure A 1.4 conserve the sum of 

twist and writhe as a topological invariant ‘linking number’ (Calugareanu theorem) [6, 7]. 

The twist is simply the number of twisted turns in the filament (helical coiling turns in 

DNA). Writhe is defined by the curving of the filament centerline (or supercoiling in 

DNA). Specifically, writhe is the number of centerline crossovers averaged over all 

possible views of the filament. The linking number simply tells how many times one has 

to unwrap one strand in the DNA duplex around the other strand to completely separate 

the two strands.  All three quantities (twist, writhe and linking number) can be positive or 

negative depending on whether they are right handed or left handed. 
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Figure A 1.4 The end blocks do not rotate and only translate towards each other. These end 
conditions conserve the linking number. Twist in the top strand converts to writhe. (Courtesy: 
Calladine et al. [5]). 
 

To regulate the biological activity of DNA, there exist proteins that curve/twist DNA 

(repressors, TBP, zinc fingers, transcription factors) by docking or looping. In addition, 

there are other proteins (‘topoisomerases’) that change the linking number by nicking. 

The detailed structural mechanics involved in these processes is not well understood. 

However, there is increasing experimental evidence [8-11] that points to structural 

mechanics as playing a key role in the biological activity of DNA. Therefore structural 

modeling and simulation techniques for DNA are receiving increased research attention. 
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Appendix 2: Buckling Instability in DNA 
 

A simply supported straight rod (homogeneous and isotropic) of length becomes 

unstable and buckles into a helical shape under the action of axial torque and tension or 

compression when the following Greenhill’s condition (described in Timoshenko and 

Gere [12]) is met: 

cL

 

 
2

22
2 44

c
t L

AAPM π
≥−  (A2.1)

 

Here, A  is the bending stiffness and  and  are the torsional moment and tension at 

the boundaries. We can use Greenhill’s condition as a rough guideline to estimate general 

instabilities under torsion/ compression. For example, we can estimate when a straight 

DNA strand that is 5% untwisted will achieve a torsional stress sufficient enough to 

render it unstable and initiate supercoiling. Consider the following table (Table A 2.1) 

that lists order of magnitude estimates of the structural parameters specific to DNA. 

tM P

   

Table A 2.1 Estimates of structural parameters of DNA for instability condition (A2.1) 
Quantity Order of Magnitude (SI units) 

Persistence lengths (torsional and bending) 10-7m 

Boltzmann constant 10-23m2 kg s-2 K-1 
Temperature 102 K 
Stiffness31 (torsional and bending) 10-28 m3 kg s-2 
Intrinsic twist in DNA 109 rad/m-1 
5% untwist 108 rad/m-1 
Torsional moment32  tM 10-20 m2 kg s-2 
    

                                                 
31 = Persistence length × Boltzmann constant × Temperature 
32 = Torsional stiffness × untwist 
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Substituting these into (A2.1) results in the inequality, 

 

 
2

55
2840 101010

cL
P

−
−− ≥− . (A2.2)

 

This inequality is satisfied for tensions as large as 10-12N and lengths as small as 10-7m 

(persistence length). In other words, it would require a tensile force on the order of 

piconewton to restrain a persistence length of 5% untwisted DNA from collapsing into a 

supercoiled state. Higher tensile forces would be needed for longer lengths of DNA. 
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Appendix 3: Physical Interactions Specific to DNA 
 

Hydrodynamic Interactions 

In beaded chain models of polymers, hydrodynamic interactions are included using the 

Rotne-Prager tensor [13]. The Rouse model [14] ignores the effects of hydrodynamic 

interactions while the Zimm model [15] accounts for them. The interactions through the 

fluid become strong when two or more segments fluctuate in close proximity. The overall 

significance of hydrodynamic interactions in DNA has been disputed as illustrated in the 

simulations of Hsieh et al. [16] and subsequently in the experiments of Shusterman et al. 

[17]. However, hydrodynamic interactions might also become prominent when there is a 

large bead attached to the polymer as frequently the case in single-molecule experiments 

done today. This is because the motion of a large bead strongly disturbs the surrounding 

fluid.  

Thermal Kinetics 

The strain energies in DNA are of the order of , where  = Boltzmann constant 

and 

TKb bK

T  = absolute temperature of the aqueous medium. Thus, DNA mechanics are 

affected by the random bombardment of the surrounding fluid molecules. The thermal (or 

Langevin) forces exerted on DNA through these bombardments may be modeled (refer to 

Howard [18]) as random (white noise) external forces whose power spectrum is nbTK ξ4 , 

where nξ  = drag (normal) coefficient (Fluctuation-Dissipation Theorem). For proofs and 

more details refer to Appendix 4.3 in Howard [13]. 

 

Electrostatic Interactions 

DNA is negatively charged due to phosphate ions in its backbone and hence moves 

towards an anode in electrophoresis. The ionic medium screens the electrostatic repulsion 
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as approximated by the nonlinear Poisson-Boltzmann (PB) equation33 which can be 

solved for the potential with specified boundary conditions along the (deformed) DNA 

backbone. The solution of linearized PB equation yields the Debye-Huckel potential, 

which can be readily implemented in the structural mechanics models of DNA through 

configuration-dependent repulsive field forces. However the linear approximation might 

breakdown at very short distances from the charged backbone, especially in low 

electrolyte concentrations. At even shorter distances, the van der Waals attractive-

repulsive potential becomes dominant due to charge fluctuations. The presence of 

multivalent ions or high concentrations of monovalent ions enhances the attractive 

potential at short distances. These transitions are captured approximately in DLVO 

(Derjaguin and Landau [19]; Verwey and Overbeek) theory (refer to Larson [20]) or 

more accurately in the Modified Poisson-Boltzmann (MPB)equation [21, 22] for DNA. 

Though the need to model the attractive potential is disputed by Rybenkov et al. [23, 24], 

its impact on DNA condensation in multivalent solutions has been simulated by Sottas et 

al. [25], perhaps without sufficient experimental justification so far. We will start with the 

simple Debye-Huckel screening model and, if needed, we will employ the approximate 

MPB in the future. 

                                                 
33 Boltzmann distribution is valid in thermal equilibrium at high temperatures. At very low temperatures 
and at constant chemical potential, the Fermi-Thomas approximation is valid. 
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Appendix 4: Hydrodynamic Forces 
 

Marine Cables 
The hydrodynamics of underwater cables is dominated by fluid inertia (high Reynolds 

number) and is effectively modeled with standard Morison drag and added mass effects 

[26] for a cylindrical rod in the far-field flow : fv

 

 ( ) ( ){ }3333332
1 aavavCavaavCDF rrtrrnfdrag ⋅⋅+×××= πρ , (A4.1)
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−= v
t
vmF amassadded ω_ . (A4.2)

 

Here  is the flow relative to the rod, vvv fr −= fρ  is the fluid density,  is the rod 

diameter,  and  are the normal (form) drag and tangential (skin friction) drag 

coefficients respectively and  is the added mass coefficient. The rod’s buoyant weight 

per unit length is 

D

nC tC

am
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where  is the rod’s mass per unit length and the vector m g  is the acceleration due to 

gravity. The forces (per unit length) ,   and  are included in 

linear momentum equation (2.6) through the distributed force term 34. 

dragF massaddedF _ weightbuoyantF _

F

 

DNA Strands 

The hydrodynamics of DNA is dominated by fluid viscosity (low Reynolds number) due 

to its small dimensions and can be modeled with the distributed drag forces and 

moments35 on slender rods in Stokes flow (as described in Howard [18]): 

 

 ( ) ( ){ }3333 aavavaF rtrndrag ⋅+××= ξξ , (A4.4)

 

 ( ) ( ){ }3333 aaaaQ rtorsionalrbendingdrag ⋅+××= ωξωξ  (A4.5)

 

where nξ  and tξ  are translational drag coefficients in the normal and tangential 

directions respectively, bendingξ  and torsionalξ  are rotational drag coefficients in the 

corresponding directions and rω  is the fluid angular velocity relative to the rod. The drag 

coefficients can be determined approximately [27, 28] by Oseen’s model of slow flow 

past a cylinder (refer to Lamb [29]). (But we must note that neglecting fluid inertia 

doesn’t yield any solution to the Navier-Stokes flow past an infinite cylinder (Stokes’ 

paradox). The overall drag for finite length cylinders is given in Howard [18] and 

includes end effects as suggested by Tirado and Garciadelatorre [27, 28]). But this 

description can not model the distributed drag. DNA is nearly neutrally buoyant in its 

aqueous surrounding and the influence of the inertia terms in the Newton-Euler Equations 

(2.6) and (2.7) is negligibly small. 

 

                                                 
34 Since  is also a coefficient of a time derivative term, it has a contribution in the coefficient matrix am
M  defined in Appendix 6. 

35 In the first approximation, we will ignore the moment. This is a fair approximation for slender rods with 
fine discretization. 
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Appendix 5: Constraint Equations 
 

The compatibility constraint (2.9) in Chapter 2 follows from the continuity (in space and 

time) of the transformation  from the inertial frame  to the body fixed frame  L }{ ie }{ ia

 

 Lae ii }{}{ = . (A5.1)

 

The  column of  denoted by  represents the components of  in the body-fixed 

frame . Now refer to Eq. (2.5) that relates the partial derivatives ‘relative to’ the two 

reference frames  and . According to Eq. (2.5), the time-derivative of each unit 

vector  ‘relative to’ the inertial frame  leads to 

thi L iL ie
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(A5.2)

 

Upon re-writing ii LL ωω ~=×  (ω~  is the skew-symmetric form of ω  as defined in 

Appendix 7) for all columns of , (A5.2) reduces to L

  

 
L

t
L ω~−=
∂
∂ . (A5.3)

 

Similarly, differentiation of (A5.1) with respect to  leads to s
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L

s
L κ~−=
∂
∂ . (A5.4)

 

Since the transformation  is continuous with respect to  and  (refer to Nikravesh 

[30]), the order of time and space derivatives is interchangeable, i.e. 

L s t
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which upon repeated use of (A5.3) and (A5.4) leads to 
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. Re-adjusting terms and post-multiplying by the transpose  leads to TL
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But  being orthogonal, L Ι=TLL , where Ι  is the identity matrix. Noting further that 

κωωκ ~~~~ −  is the skew-symmetric form of ωκ ×  leads to the compatibility constraint 
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The constraint (2.8) in Chapter 2 follows from first computing the unit tangent vector t . 

For an inextensible rod, the tangent to the centerline is given by 
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Where  is the position vector.  Due to continuity of  in  and  the order of 

time and space derivatives is interchangeable, i.e. 

),( tsR ),( tsR s t
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The right hand side (R.H.S.) of the above Eq. (A5.10) is 
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The left hand side (L.H.S.) of (A5.10) with substitution of (A5.9) becomes 
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Imposing the unshearability constraint 0
ˆ
=

∂
∂

t
t , the L.H.S. of (A5.10) reduces to 

 

 L.H.S. of (A5.10) = . t̂×ω (A5.13)

 

Finally, equating the ‘R.H.S. of (A5.10)’ from (A5.11) to the ‘L.H.S. of (A5.10)’ from 

(A5.13) leads to the (inextensibility and unshearability) constraint (2.8) 
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Appendix 6: Coefficient Matrices 
 

The coefficient matrices used in (2.10) in Chapter 2 may vary depending on the 

functional forms of the constitutive law ( ),...),(),(),( 0 sstsfntsq κκ −= , distributed force 

 and distributed moment . We provide here the matrices for the case of 

linear elastic constitutive law 

,...),( tsF ,...),( tsQ

))(),()((),( 0 stssBtsq κκ −=  and no dependence of 

 and  on ,...),( tsF ,...),( tsQ
t
Y
∂
∂  or 

s
Y
∂
∂ . Equation (2.10) consolidates the field equations 

in the following order: (2.8), (2.9), (2.7) and (2.6). The resulting coefficient matrix K  is 

diagonal 
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Here  is the null matrix and Θ Ι  is the identity matrix. The matrix  captures the 

nonlinear terms and any distributed external forces/moments 
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Appendix 7: Skew-symmetric form of a vector 
 

The cross product of two vectors x  and  can be written as y yxyx ~=× , where 
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If  x  is the magnitude of x  and  is the unit vector alongu x , then the exponential of the 

skew-symmetric matrix  can be expressed as x~

 

 ( ) ( )( )xuxux cos1~sin~)~exp( 2 −++Ι= , (A7.2)

 

where  is the identity matrix. Note that this computation employs only a scalar power 

series and it therefore avoids the numerical difficulties of matrix exponentiation as 

identified by Moler and Vanloan [31]. 

Ι
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Appendix 8: DNA Sequences and Boundary Conditions 
 

(a) Wild-type LacR sequence [32] 
 

     Operator O3 at Location L1      Operator O1 at Location L2 
GGCAGTGAGCGCAACGCAATT –   Wild-type DNA    – AATTGTGAGCGGATAACAATT 

 
 

Fragment of inter-operator DNA modeled as rod (77 bp) 
ATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAAT 

 
 

(b) Designed sequences [33] (personal communication with Prof. J. D. Kahn, Department 

of Chemistry and Biochemistry, University of Maryland) 
 

Operator Oid 
AATTGTGAGCGCTCACAATT 

| 
 

 L1          L2  
T - Oid - AGATCTCAATTC - Linker – A tracts – Linker - TAGAATCGAAGCTAGCT - Oid.  . 

 
 

11C12 
CTGTACGGATC – CGC(A)6CGGGC(A)6CGGC(A)5{CGGGC(A)6CGGC(A)6}2CGGGC(A)6C - 

CGCTACGCGTCC 
 

9C14 
GTACGGATC – CGG(T)6{GCCCG(T)6GCCG(T)6}3GCCCG(T)6G - CGCTGAACGCGTCC 

 
7C16 

ACGGATC – CGG(T)6GCCCG(T)6GCCG(T)6{GCCG(T)6GCCCG(T)6}2G - CGCTGACAACGCGTCC 
 

Control 
CTGTACGGATCCACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAG 

CCATTACGCTCGTCATCAAAATCACTACGCGTCC 
 

 

In arriving at the final looped state, the boundary base-pairs are made to align with their 

corresponding configurations known from the LacR crystal structure given by PDB ID: 

1LBG [34,35], <http://www.pdb.org>. This alignment is achieved in our calculations by 

slowly translating and rotating the boundary base-pairs (rigid body motion) from the 

initial stress-free configuration to the final protein-bound configuration. As a 
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consequence, the inter-operator DNA deforms into a loop. Note that our boundary 

conditions account for the base-pair inclination with respect to the ds-DNA helical axis. 

We also verified that these boundary conditions are insensitive to the choice of boundary 

base-pairs within their immediate neighbors. To this end, we used commercial software 

NX Imageware (UGS, Plano, TX) to estimate the rigid body motion needed for the best 

alignment of the tri-nucleotide set of atoms around the chosen boundary base-pair (3 

base-pairs highlighted in blue and red in Figure 7.1) and found it to be the same (within 

numerical tolerance) as that needed for the alignment of the chosen boundary base-pair. 

A sample computation from Imageware is shown in Figure A 8.1. 

 

 
Figure A 8.1 A sample computation of rigid body motion ( = translation + rotation) from Imageware. 
The source point cloud represents the atoms in the 3 base-pairs in stress-free DNA that are moved 
over to the corresponding atoms (represented by the destination point cloud) in the operator-protein 
crystal structure 1LBG. 
 

  

Output: Input: 
 
Rotation Tensor = Source Point Rotate 127° about 
{-0.11, 0.93, 0.36} Source  Imageware Point Cloud Translation Vector = 
{-39.2, -54.5, 57.3} Å 

Rigid Body 
Motion = ? 

 
RMS error = 1.41 Å

Destination 
Destination 
Point Cloud 

Point Cloud 
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Appendix 9: Modeling Sequence-dependent Intrinsic 
Curvature 

 

 
Figure A 9.1 The origin and standard base-pair fixed reference frame described in Olson et. al. [36]. 
(This figure is a modification of Fig. 1 from [36]). (b) Base-pairs represented as transparent red 
blocks with the minor-groove face shaded black. Black dots represent the base-pair origins, and the 
blue line represents the helical axis as computed by the moving average over a helical turn. 
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The following steps were used to compute the approximate helical axis  from the 

stress-free all-atom representation (PDB file) of the inter-operator DNA at zero 

temperature (consensus tri-nucleotide model [37]). 

)(0 sR

  

1. Following [36], we first compute the origin of each base-pair as the mid-point of the 

C6 atom of the pyrimidine and the C8 atom of the purine (see Figure A 9.1(a)). A curve 

interpolated through the base-pair origins forms an approximate helix of radius  0.2≈r Å  

and helical pitch  10.3 base-pair (see Figure A 9.1(b)). The helical axis of this curve is 

not straight in general due to the intrinsic (stress-free) curvature of the molecule (see 

Figure A 9.1(b)). 

≈

 

2. An approximation to the helical axis )(0 sR
)

follows from averaging the positions of the 

origins of the base-pairs. We begin at one operator and then average the positions of the 

origins of the first ten base-pairs for the inter-operator DNA (see Figure A 9.1(b)). We 

then increment by one base-pair and repeat this (moving average) computation and 

continue to the other operator thereby developing a point-wise approximation to the 

helical axis )(0 sR
)

. 

 

3. A continuous (differentiable at least three times) curve  is sought to approximate )(0 sR

)(0 sR
)

 in order to compute the intrinsic curvature and torsion. We use the MATLAB 

curve-fitting toolbox (The MathWorks, Natick, MA) to construct a  continuous 

curve . 

∞C

)(0 sR

  

We emphasize that our computed results are insensitive to the specific approximations 

described in Steps 1-3 above. In particular, we have employed alternative curve fitting 

algorithms for Steps 1 and 3 and alternative moving averaging algorithms for Step 2. The 

resulting loop elastic energies typically differ by less than 2%.  
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