Building Delphinid Habitat Models with Passive Acoustic Monitoring Data

Outline

- Data Collection
- Model Challenges
 - True absence vs. false absence
 - Data sampling differences
 - Temporal scale of datasets
- Case Study
 - Pacific white-sided dolphins
- Discussion

Study Area

- Currents
 - California Current
 - Southern California Eddy
 - Southern California Countercurrent
- High Productivity
 - Coastal upwelling
 - Topography
 - Submesoscale eddies
- Human Activity
 - Shipping
 - Fisheries
 - Naval bases

Instrumentation

- High-frequency

HARP Data Analysis

- Identify click bout start and end times
- Classify to species
- Assign one-hour time bins as P / A
Absence = not vocalizing?

- True absence
- Animals not vocalizing
- HARP not sampling
- High ambient noise conditions mask sound
- Missed detection

Absence = not sampling?

- Calls are behavior dependent
 - Not necessarily vital function
 - May not be produced by all population members
 - May vary in temporal production
 - May vary in spatial production
 - e.g. whale song

- But these do not hold for dolphin echolocation

Dolphin Occurrence

- Presence
 - Animals present
 - Animals vocalizing
 - HARP sampling
 - Low ambient noise
 - Acoustic detection

- Absence
 - True absence
 - Animals not vocalizing
 - HARP not sampling
 - High ambient noise conditions mask sound
 - Missed detection

Absence = not vocalizing?

- Calls are behavior dependent
 - Not necessarily vital function
 - May not be produced by all population members
 - May vary in temporal production
 - May vary in spatial production
 - e.g. whale song

- But these do not hold for dolphin echolocation

Echolocation Variability

- Risso’s Dolphins
 - Southern California Bight, CA

Temporal

- Number of time intervals

Spatial

- Time of Day (GMT)

Assumptions

- Risso’s and Pacific white-sided dolphin click most when foraging
- Dolphins need to forage daily
- Quality foraging habitat can be represented by the amount of time echolocating dolphins spend in it
- Absences due to high noise or observer are not biased by habitat conditions

Absence = not sampling?

- Some periods sampled continuously
- Some periods on sampling schedule
- Problems:
 - How to compare between schedules?
 - What is missed?
Temporal Resolution: Autocorrelation & Matching datasets

- Dolphin sampling
 - Minimum of hours per day
 - Hours per week best
- Environmental sampling
 - Variable scales
 - Daily
 - Weekly
 - Monthly
 - Quarterly

Environmental Data

Summary of Data Included in Model

- Dependent variable
 - Hours per week with dolphin clicks present
 - Correction factors
 - HARP sampling schedule correction
 - Hours per week with recordings
- Independent variables
 - Satellite Telemetry (SST & Chl)
 - Upwelling Index
 - Temporal variables – Week and Lunar Phase index

Satellite Telemetry Data

Pros
- Readily available to management
- Appropriate temporal scale
- Weekly scale ideal for coverage and autocorrelation

Cons
- No depth information
- Cannot sample zooplankton
- Cannot sample nekton
Can environmental conditions be used to predict dolphin click bout occurrence?

Generalized Additive Model (GAM)

\[g(\mu) = \alpha + \sum f_i(x_i) \]

- Intercept
- \(f_1(\text{SST}) + f_2(\text{SST CV}) \)
- \(f_3(\text{Chl}) + f_4(\text{Chl CV}) \)
- Region \(* f_5(\text{Week}) \)
- \(f_6(\text{Lunar Phase}) \)
- \(f_7(\text{Upwelling}) \)

Model Selection

- **Predictor Terms**
 - Forward-backward stepwise algorithm
 - Akaike's Information Criterion (AIC)
- **Cross-validation & Predictions**
 - Pseudo-jackknife method
 - 80 % training data
 - 20 % test data
 - 5 models total
 - Average Squared Prediction Error (ASPE)

Case Study: Pacific White-sided Dolphins

- **Distribution**
 - Cool temperate waters
 - Baja California to Alaska
- **Prey types**
 - Squid
 - Mesopelagic fish
 - Epipelagic schooling fish
- **Population structure**
 - Two populations in SCB
 - Baja California
 - CA / OR / WA

Cross-validation Model Comparison

<table>
<thead>
<tr>
<th>Model</th>
<th>AIC</th>
<th>ASPE</th>
<th>Upwelling</th>
<th>Moon Phase</th>
<th>Chl</th>
<th>Chl CV</th>
<th>SST mean</th>
<th>SST CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>367.09</td>
<td>500.31</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Model 2</td>
<td>563.13</td>
<td>5.39</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Model 3</td>
<td>695.75</td>
<td>5.65</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Model 4</td>
<td>529.54</td>
<td>111.00</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Model 5</td>
<td>507.25</td>
<td>30.57</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

- % Models including term:
 - 0 | 0 | 20 | 80 | 100 | 100

Pacific white-sided dolphins Type B Model Fits

- **Habitat characteristics**
 - Homogenous 18°C waters
 - Upwelling
 - Fall-winter season

Observed Data and Model Predictions

82 % Explained deviance
Case Study Conclusions

- Fall-winter season, increased upwelling, and homogenous 18°C waters
- Large confidence intervals at high SST and SST-CV
- High explained deviance compared to visual studies

Modeling Summary

- Modeling hours per week with calls provides quantitative measure of habitat importance
- Calculating detection probability effective for handling variability in sampling schedule
- Ensure appropriate temporal resolution for all model variables and consider autocorrelation

Issues

- Clicks are also used in communication and navigation
- Models represent time spent in habitat, but do not indicate number of animals
- Dolphins may produce additional unknown/unidentified click types
- Mechanisms – Prey availability? Predator avoidance? Competitive interactions?

Future work

- Click production and behavior comparison
- Quantify animals based on calls
- Develop models with in-situ data for comparison
- Include measure of prey abundance
- Include competing species and predators
- Expand spatial coverage

Acknowledgements

SIO Whale Acoustics Lab
Cascadia Research Collective
CalCOFI / CCE-LTER

ARCS Fellowship
CNO-N45

Questions?
Time Series Comparison
Pacific white-sided occurrence, SST and Chl
Santa Catalina Island, CA