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1 Introduction

• A time series is a collection of observations made sequentially in time.

• A stochastic time series is one whose future values cannot be predicted exactly. If such
values can be predicted exactly, the time series is deterministic.

• The analysis of time series is based on two (complementary) approaches:

i. Analysis in time domain (major diagnostic tool = autocorrelation function)

ii. Analysis in frequency domain (major diagnostic tool = spectral density func-
tion)
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2 Simple Descriptive Techniques

2.1 Types of Variation

• Trend

• Cyclic changes

• Irregular fluctuations

2.2 Stationary Time Series

Most of the theory of time series analysis is concerned with stationary time series. Broadly
a time series is stationary if it contains no systematic change in mean level (no trend),
no systematic change in variance, and no variations that are strictly periodic. A more
precise definition of stationarity will be given below.

2.3 Analysing Series Containing a Trend

• Consider a discrete time series with evenly spaced observations x1, x2, . . . , xN .

• The simplest trend is the one described by the linear regression model:

xt = α + βt + ǫt, (1)

where (α, β) are constants, ǫt is a random error with zero mean, and t = 1, 2, . . . , N .

• Filtering:

yt =
s
∑

r=−q

arxt+r. (2)

If
∑

ar = 1 the filter is commonly called a moving average. Moving averages are often
symmetric with s = q and ar = a−r. For example,

Sm(xt) =
1

2q + 1

q
∑

r=−q

xt+r. (3)

The departures of the observations from the trend are often called the residuals. For
example,

Res(xt) = xt − Sm(xt)

=
q
∑

r=−q

brxt+r. (4)
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Thus, Res(xt) is also a filter. Sm(xt) is a low-pass filter, whereas Res(xt) is a high-pass
filter. A more precise definition of both filters will be given later.

• Differencing:
∇xt = xt − xt−1. (5)

Differencing is particulary useful for removing a trend.

2.4 Analysing Series Containing a Cyclic Variation

For example, the seasonal component in a time series can be removed from:

Sm(xt) =
1
2
xt−6 + xt−5 + xt−4 + . . . + xt+4 + xt+5 + 1

2
xt+6

12
. (6)

2.5 Autocovariance and Autocorrelation

• Let x̄ be the arithmetic average of a time series x1, . . . , xN :

x̄ =
1

N

N
∑

t=1

xt. (7)

• The autocovariance coefficient at lag k of the time series is usually computed from

ck =
1

N

N−k
∑

t=1

(xt − x̄) (xt+k − x̄) . (8)

• The autocorrelation coefficient at lag k of the time series is computed from

rk =
ck

c0

, (9)

where c0 is the variance of the observations.

• The correlogram is a plot of rk versus k. It is probably pointless to compute rk for
k > N/4. The correlogram can help to characterize time series, e.g., a purely random series
(to be defined later), short-term correlation, alternating series, non-stationary series, series
showing cyclic changes, as well as potential outliers. In particular, the autocorrelation
coefficients of a purely random series have a normal (Gaussian) distribution with a mean
close to zero and a variance of 1/N, where N is the number of data in the time series,
which we write

rk ∼ N
(

0,
1

N

)

. (10)

Thus, 19 out of 20 of the values of rk from an observed time series are expected to lie
between ±2/

√
N , if this series is purely random. The correlogram provides a means for

testing the randomness in a time series.
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3 Probability Models for Time Series

3.1 Stochastic Processes

• In the theory of time series, each observation of a given time series is regarded as a
random variable. The set of random variables that characterizes the whole series is called
a random or stochastic process.

• Probability models for time series are thus models describing the temporal evolution of
random variables, i.e., stochastic processes.

• If the values of the time series occur only at discrete times, the random variables
are written as Xt, where t = 0,±1,±2, . . ., whereas if they occur continuously they are
referred to as X(t), where −∞ < t < ∞. Thus, a discrete process is written as the
ensemble {Xt}, whereas a continuous process is written as the ensemble {X(t)}.

• A given observed time series is regarded as a particular realization of a stochastic
process. An important part of time series analysis is concerned with inferring the structure
of the process that generated the observed time series.

• Because the values originating from a time series are viewed as random variables, each
of these variables possesses a probability distribution and these variables jointly are char-
acterized by a joint probability distribution.

• Consider a continuous stochastic process {X(t)}. The process is strictly stationary
if its joint probability density function is invariant under a shift of the time origin, i.e., if

p [X(t1) = x(t1), X(t2) = x(t2), . . . , X(tn) = x(tn)] (11)

is equal to

p [X(t1 + τ) = x(t1 + τ), X(t2 + τ) = x(t2 + τ), . . . , X(tn + τ) = x(tn + τ)] . (12)

• A process is second-order stationary it it has a constant mean, a constant variance,
and an autocovariance function that depends only on the lag k. For a discrete process,
these three conditions are, respectively,

E[Xt] = µ, (13a)

Var[Xt] = σ2, (13b)

Cov[Xt, Xt+k] = γ(k). (13c)

3.2 Autocorrelation Function

• The sample autocorrelation function of a discrete time series, rk, has already been
described in section 2.5
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• The theoretical autocorrelation function of a discrete stochastic process is

ρ(k) =
γ(k)

γ(0)
, (14)

where γ(0) = Var[Xt].

• The function ρ(k) has three important properties:

i. ρ(k) = ρ(−k) (ρ(k) is an even function),

ii. −1 ≤ ρ(k) ≤ 1,

iii. Lack of uniqueness: the same function ρ(k) can characterize different stochastic
processes.

3.3 Examples of Stochastic Processes

3.3.1 Purely Random Process (white noise)

• The random variables composing a purely random process are mutually independent
and identically distributed.

• For a discrete process:

E[Zt] = µ, (15a)

Var[Zt] = σ2, (15b)

Cov[Zt, Zt+k] = 0 ∀ k 6= 0. (15c)

3.3.2 Random Walk

• Let {Zt} be a discrete purely random process with mean µ and variance σ2
Z . The process

{Xt} is a random walk if
Xt = Xt−1 + Zt. (16)

• The mean and variance of Xt are (for X0 = 0)

E[Xt] = µ t, (17a)

Var[Xt] = σ2
Zt. (17b)

Thus, the random walk is not a stationary process.
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3.3.3 Moving Average Process

• Let {Zt} be a discrete purely random process with mean zero and variance σ2
Z . The

process {Xt} is a moving average process of order q, noted MA(q), if

Xt = β0Zt + β1Zt−1 + . . . + βqZt−q, (18)

where the coefficients βi are constants.

• The mean and variance of Xt are

E[Xt] = 0, (19a)

Var[Xt] = σ2
Z

q
∑

i=0

β2
i . (19b)

The function ρ(k) has vanishing values for k > q.

3.3.4 Autoregressive Process

• Let {Zt} be a discrete purely random process with mean zero and variance σ2
Z . The

process {Xt} is an autoregressive process of order p, noted AR(p), if

Xt = α1Xt−1 + α2Xt−2 + . . . + αpXt−p + Zt, (20)

where the coefficients αi are constants.

• Example: Autoregressive process of order one or Markov process, noted AR(1):

Xt = αXt−1 + Zt. (21)

The mean, variance, and autocorrelation of a AR(1) process are (for |α| < 1):

E[Xt] = 0, (22a)

Var[Xt] =
σ2

Z

1 − α2
, (22b)

ρ(k) = αk for k = 0, 1, 2, . . . . (22c)

• AR processes can be applied in situations where one expects that the present value of
the time series depends on the past values together with some random effect.
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4 Estimation in Time Domain

• The problem here is to fit a suitable probability model to an observed time series. The
major tool for doing this is the sample autocorrelation function (noted rk for the
discrete case). Inference based on this function is often called an analysis in the time
domain.

• This problem is not exposed here. An introduction is provided in Chatfield (1996). Box
et al. (1994) discuss this problem at length.
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5 Stationary Processes in Frequency Domain

• The problem here is to determine the frequency properties of an observed time series.
The major diagnostic tool for doing this is the sample spectral density function.
Inference based on this function is often called an analysis in the frequency domain.

5.1 Spectral Distribution Function

• Let us consider a stochastic process that is discrete, real-valued, and stationary, with an
autocovariance fonction γ(k). A theoretical result (Wiener-Khintchine theorem) shows
that there then exists a function F (·) that increases monotically with (angular) frequency
ω such that

γ(k) =

π
∫

0

cos (ωk) dF (ω). (23)

• The function F (ω) is the spectral distribution function. It has an important physical
interpretation: F (ω) is the contribution to the variance of the process which is accounted
for by frequencies in the range (0, ω).

• There is no variation at negative frequencies, so that

F (ω) = 0 for ω < 0. (24)

• For a discrete process measured at unit intervals, the highest possible frequency is π,
and so all the variation is accounted for by frequencies less than π, i.e.,

F (π) = Var(Xt) = σ2
X . (25)

• The normalized spectral distribution function is

F∗(ω) =
F (ω)

σ2
X

. (26)

F∗(ω) has similar properties to a cumulative distribution function.

5.2 Spectral Density Function

• The spectral density function (also called the ‘power spectrum’ or more simply the
‘spectrum’) is the first derivative of the spectral distribution function:

f(ω) =
dF (ω)

dω
. (27)
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• The spectrum is thus related to the autocovariance function of the process by

γ(k) =

π
∫

0

cos (ωk) f(ω)dω. (28)

• The spectrum has also an important physical meaning. To show this, consider the
autocovariance function at zero lag, i.e., the variance of the process,

γ(0) = σ2
X =

π
∫

0

f(ω)dω. (29)

Thus, f(ω)dω represents the contribution to variance of components with frequencies in
the range (ω, ω + dω). A peak in the spectrum f(ω) indicates an important contribution
at frequencies in the appropriate interval.

• The spectrum is the Fourier transform of the autovariance function:

f(ω) =
1

π

∞
∑

k=−∞

γ(k)e−iωk. (30)

Thus, γ(k) and f(ω) are a Fourier transform pair. Since γ(k) is an even function,

f(ω) =
1

π

[

γ(0) + 2
∞
∑

k=1

γ(k) cos ωk

]

. (31)

• The normalized spectral density function is

f∗(ω) =
f(ω)

σ2
X

. (32)

Thus, f∗(ω)dω is the proportion of variance in the interval (ω, ω + dω). f∗(ω) has similar
properties to a probability density function. It is the Fourier transform of the autocor-
relation function. The autocorrelation function ρ(k) and the normalized spectral density
function f∗(ω) are another Fourier transform pair.

5.3 Spectra for Selected Stochastic Processes

• For a purely random process Zt,

f∗(ω) =
1

π
. (33)

The spectrum is ‘flat’, hence the name ‘white noise’ (the spectrum has ‘no color’).

• For a first-order moving average process (Xt = Zt + βZt−1),

f∗(ω) =
1

π

(

1 +
2β cos ω

1 + β2

)

. (34)

• For a first-order autoregressive process (Xt = αXt−1 + Zt),

f∗(ω) =
1

π

1 − α2

1 − 2α cos ω + α2
. (35)
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6 Spectral Analysis

• Spectral analysis is concerned with estimating the spectral density function of a given
time series.

• It is essentially a modification of Fourier analysis so as to make it suitable for stochastic
rather than deterministic functions of time.

6.1 Periodogram Analysis

• Consider the possibility of fitting a Fourier series to a time series of N observations
x1, x2, . . . , xN with unit sampling interval (∆t = 1). It is assumed that N is even. The
component with lowest frequency completes only one cycle over the whole length of the
series, which is approximated as N∆t = N ; its frequency ω is thus 2π/N . The component
in the series with highest frequency completes one cycle in two sampling intervals, i.e.,
over a time corresponding to 2∆t = 2; its frequency ω is thus π. This latter component
is the Nyquist frequency. The finite Fourier series representation of the observed time
series is therefore

xt = a0 +
N/2−1
∑

p=1

[ap cos ωpt + bp sin ωpt] + aN/2 cos πt, (36)

where ωp = 2πp/N .

• The Fourier coefficients are given by

a0 =
1

N

∑

xt, (37a)

ap =
2

N

∑

xt cos ωpt for p = 1, 2, . . . , N/2 − 1, (37b)

bp =
2

N

∑

xt sin ωpt for p = 1, 2, . . . , N/2 − 1, (37c)

aN/2 =
1

N

∑

(−1)txt, (37d)

where all summations are from t = 1 to t = N .

• The Fourier series has N parameters to describe N observations and so can be made to
fit the data exactly.

• It expresses the partition of the variability of the series into components at frequencies
2π/N, 4π/N, . . . , π.

• The pth Fourier component (‘harmonic’) can be written as

ap cos ωpt + bp sin ωpt = Rp cos(ωpt + φp), (38)
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where Rp =
√

a2
p + b2

p is the amplitude of the pth harmonic and φp = tan−1(−bp/ap) is

the phase of the pth harmonic.

• Parseval’s theorem:
1

N

N
∑

t=1

(xt − x̄) =
N/2−1
∑

p=1

R2
p

2
+ a2

N/2. (39)

Thus, R2
p/2 is the contribution of the pth harmonic to the variance, and the Fourier series

shows how the variance is partitioned between different frequencies.

• A plot of R2
p/2 versus ωp = 2πp/N is a line spectrum.

• A plot of I(ωp) = NR2
p/(4π) versus ωp = 2πp/N is a periodogram.

• The periodogram ordinate at the Nyquist frequency is computed by regarding a2
N/2 as

the contribution to variance in the range [π(N − 1)/N, π], i.e.,

I(π) =
Na2

N/2

π
. (40)

• The periodogram I(ωp) is the finite Fourier transform of the sample autocovariance
function ck:

I(ωp) =
1

π

N−1
∑

k=−(N−1)

cke
−iωpk (41a)

=
1

π

(

co + 2
N−1
∑

k=1

ck cos ωpk

)

(41b)

• Sampling properties of I(ωp):

i. The estimator I(ωp) is asymptotically unbiased:

E[I(ωp)] → f(ω) as N → ∞ (42)

ii. The estimator I(ωp) is not consistent:

Var[I(ωp)] does not vanish as N → ∞ (43)

6.2 Some Consistent Estimation Procedures

6.2.1 Truncating & Weighting the Autocovariance Function

• The estimator of the true spectrum is

f̂(ω) =
1

π

[

λ0c0 + 2
M
∑

k=1

λkck cos ωk

]

, (44)
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where {λk} is a set of weights called the lag window, and M < N is the truncation
point.

• Example 1: The Tukey, Tukey-Hanning, or Blackman-Tukey window is

λk =
1

2

(

1 + cos
πk

M

)

for k = 0, 1, . . . , M. (45)

• Example 2: The Parzen window is

λk = 1 − 6

(

k

M

)2

+ 6

(

k

M

)3

0 ≤ k ≤ M/2, (46a)

λk = 2 (1 − k/M)3 M/2 ≤ k ≤ M. (46b)

• The bias of the spectral estimates increases with decreasing M and the variance of the
spectral estimates decreases with decreasing M .

6.2.2 Hanning

• The autocovariance function is first truncated:

f̂1(ω) =
1

π

[

c0 + 2
M
∑

k=1

ck cos ωk

]

. (47)

Estimates of the spectrum are then obtained by smoothing with the weights (1
4
, 1

2
, 1

4
):

f̂(ω) =
1

4
f̂1(ω − π

M
) +

1

2
f̂1(ω) +

1

4
f̂1(ω +

π

M
). (48)

• At zero frequency and at the Nyquist frequency,

f̂(0) =
1

2

[

f̂1(0) + f̂1(
π

M
)
]

, (49a)

f̂(π) =
1

2

[

f̂1(π) + f̂1(
π(M − 1)

M
)

]

. (49b)

• Hanning is equivalent to using the Tukey window.

6.2.3 Hamming

• Hamming is similar to Hanning except that the weights for f̂(ω) are changed from
(1

4
, 1

2
, 1

4
) to (0.23, 0.54, 0.23). At frequencies ω = 0 and ω = π, the weights are 0.54 and

0.46, respectively.
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6.2.4 Smoothing the Periodogram

• The spectral estimates are given by

f̂(ω) =
1

m

∑

j

I(ωj), (50)

where ωj = 2πj/N and j varies over consecutive integers so that the ωj are symmetric
about ω.

• The spectral estimates at zero frequency and at the Nyquist frequency assume that the
periodogram can be treated as being symmetric about 0 and π. Thus, taking m to be
odd with m∗ = (m − 1)/2,

f̂(0) = I(0) +
2

m

m∗
∑

j=1

I(2πj/N). (51)

Likewise,

f̂(π) =
1

m



I(π) + 2
m∗
∑

j=1

I(π − 2πj/N)



 . (52)

• The bias of the spectral estimates increases with increasing m, and the variance of the
spectral estimates decreases with increasing m.

6.3 Confidence Interval for the Spectrum

• The construction of the confidence intervals for the spectral estimates assumes that the
observations are normally distributed with constant mean and constant variance. For a
discrete stochastic process,

Xt ∼ N
(

µX , σ2
X

)

. (53)

The assumption of normality may or may not apply to the observations being investigated.

• Consider the estimator

f̂(ω) =
1

π

M
∑

k=−M

λkck cos ωk. (54)

The number of degrees of freedom for this estimator is

ν =
2N

M
∑

k=−M
λ2

k

. (55)

• A typical 100(1 − α)% confidence interval for f(ω) is given by:

νf̂(ω)

χ2
ν,α/2

to
νf̂(ω)

χ2
ν,1−α/2

, (56)
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where χ2
ν is the variate of the χ2 distribution with ν degrees of freedom and α is the

specified level of confidence.

• The degrees of freedom for the Tukey and Parzen windows are 2.67N/M and 3.71N/M ,
respectively. The degree of freedom for the smoothed periodogram is 2m.

6.4 Comparison between Different Estimation Procedures

• The comparison is commonly based on the spectral window or kernel K(ω), which
is the Fourier transform of the lag window.

• If the lag window λk is zero for k > M and λk = λ−k, it can be shown that

f̂(ω0) =

π
∫

−π

K(ω)I(ω0 − ω)dω. (57)

Thus, all estimation procedures are essentially smoothing the periodogram using the
weight function K(ω).

• The expected value of the spectral estimate f̂(ω0) is, for N → ∞,

E
[

f̂(ω0)
]

=

π
∫

−π

K(ω)f(ω0 − ω)dω. (58)

The bias depends on the spectral window.

• The bandwidth is, roughly speaking, the width of the spectral window. The band-
widths of the Tukey and Parzen windows are, respectively, 8π/(3M) and 2π(1.86/M).
The bandwidth of the smoothed periodogram is 2πm/N .

• The choice of bandwidth appears more critical than the choice of the window.

• The choice of bandwidth is based on a trade-off between frequency resolution and
variance. For the Tukey and Parzen windows, the lower the value of the truncation point
the lower the variance but the larger the bias. For the smoothed periodogram, the lower
the value of m the lower the bias but the higher the variance. The choice of bandwidth
is rather like the choice of class interval when constructing a histogram.

6.5 Aliasing, Tapering, and Prewithening

6.5.1 Aliasing

Consider a continuous time series with spectrum fc(ω) for 0 < ω < π, which is sampled
at equal intervals of length ∆t. The resulting discrete time series has a spectrum fd(ω)
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defined over 0 < ω < π/∆t. It can be shown that

fd(ω) =
∞
∑

s=0

fc (ω + 2πs/∆t) +
∞
∑

s=1

fc (−ω + 2πs/∆t) . (59)

Thus, the effect of sampling will be that variation at frequencies above the Nyquist fre-
quency will be ‘folded back’ and produce an effect at a frequency lower than the Nyquist
frequency in fd(ω). Such an effect is called aliasing. Thus, the time interval ∆t should
be chosen such that fc(ω) ≈ 0 for ω > π/∆t.

6.5.2 Tapering and Prewithening

• Consider a stochastic process with a continuous spectrum defined over the frequency
interval [ω1, ω2]. It can be shown that the expected value of the periodogram at frequency
ω is proportional to

ω2
∫

ω1

F(ω − ω′)f(ω)dω′. (60)

The function F(·) is the Fejér’s kernel. Thus, the expected value of the periodogram is
a convolution of the Fejér’s kernel with the true spectrum. The Fejér’s kernel is composed
of a central lobe symmetric around frequency ω and of side lobes that are symmetric on
each side of the central lobe. Because of these side lobes, the convolution also involves
distant frequencies. Thus a transfer of power from one region of the spectrum to another
via the kernel occurs, which is often called leakage. As a result, the periodogram can be
biased for a finite time series. The bias is particularly severe for processes that have a
high dynamic range, which is defined as

10 log10

[

maxωf(ω)

minωf(ω)

]

. (61)

For a white noise, the dynamic range is zero, so that the periodogram is an unbiased
estimator of a purely random process. However, the dynamic range can be quite large
for other processes, in which case the bias of the periodogram can be notable at some
frequencies.

• There are two common techniques for lessening the bias in the periodogram: tapering
and prewithening. Tapering modifies the kernel in the convolution, whereas prewith-
ening preprocesses the data so as to reduce the dynamic range of the spectrum to be
estimated. Both techniques are discussed in Percival and Walden (1993).

6.6 What to Look for in the Spectrum?

i. Are there any peaks?

ii. Is the spectrum large at low frequency (possible non-stationarity in the mean)?

iii. Is the spectrum large at high frequency (possible aliasing)?
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iv. What is the general shape of the spectrum (possible suggestion of a particular
stochastic model)?

• How to plot the spectrum? The axis for the frequency should be linear. The axis for
the spectral estimates could be linear or logarithmic.

• How many values (N) are required to get a reasonable estimate of the spectrum? Many
investigators consider that between 100 and 200 observations is the minimum.

• Which values to use for M, m? Values of M close to 2
√

N are sometimes recommended
for the Tukey and Parzen windows. Values of m close to N/40 are sometimes recom-
mended for the smoothed periodogram.
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7 Bivariate Processes

7.1 Cross-Covariance and Cross-Correlation

• The cross-covariance function is (for a discrete process)

γxy(k) = Cov [Xt, Yt+k] . (62)

• γxy(k) is not an even function (γxy(k) 6= γxy(−k)) but

γxy(k) = γyx(−k) (63)

• The cross-correlation function is

ρxy(k) =
γxy(k)

√

γxx(0)γyy(0)
, (64)

where

γxx(k) = Cov [Xt, Xt+k] , (65a)

γyy(k) = Cov [Yt, Yt+k] . (65b)

• The cross-correlation function has the following properties:

ρxy(k) = ρyx(−k), (66a)

| ρxy(k) | ≤ 1. (66b)

• The cross-covariance function γxy(k) is estimated by the sample cross-covariance func-
tion:

cxy(k) =
1

N

N−k
∑

t=1

(xt − x̄) (yt+k − ȳ) for k = 0, 1, . . . , N − 1, (67a)

cxy(k) =
1

N

N
∑

t=1−k

(xt − x̄) (yt+k − ȳ) for k = −1,−2, . . . ,−(N − 1). (67b)

• The cross-correlation function ρxy(k) is estimated by the sample cross-correlation func-
tion:

rxy(k) =
cxy(k)

√

cxx(0)cyy(0)
. (68)
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• To test for zero correlation between two time series, these should first be filtered to
convert them to white noise before computing the cross-correlation function. For two
uncorrelated series of white noise, it can be shown that

E [rxy(k)] ≈ 0, (69a)

Var [rxy(k)] ≈ 1

N
. (69b)

These expressions provide a test for zero correlation.

7.2 Cross-Spectrum

• The cross-spectrum is the Fourier transform of the cross-covariance function:

fxy(ω) =
1

π

∞
∑

k=−∞

γxy(k)e−iωk, (70)

over the range 0 < ω < π.

• Several functions derived from the cross-spectrum are helpful for interpreting the cross-
spectrum. Note that fxy(ω) is a complex function (unlike the autospectrum function),
because γxy(k) is not an even function. Thus, one can write

fxy(ω) = c(ω) − iq(ω). (71)

The real part of γxy(k), c(ω), is the co-spectrum:

c(ω) =
1

π

∞
∑

k=−∞

γxy(k) cosωk, (72a)

=
1

π

{

γxy(0) +
∞
∑

k=1

[γxy(k) + γyx(k)] cos ωk

}

. (72b)

The imaginary part of γxy(k), q(ω), is the quadrature spectrum:

q(ω) =
1

π

∞
∑

k=−∞

γxy(k) sin ωk, (73a)

=
1

π

{

γxy(0) +
∞
∑

k=1

[γxy(k) − γyx(k)] sin ωk

}

. (73b)

The cross-spectrum function can also be written in polar form:

fxy(ω) = αxy(ω)eiφxy(ω), (74)

where
αxy(ω) =

√

c2(ω) + q2(ω) (75)

is the cross-amplitude spectrum and

φxy(ω) = tan−1

[

−q(ω)

c(ω)

]

(76)
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is the phase spectrum. A particularly useful function derived from the cross-spectrum
is the (squared) coherency,

C(ω) =
c2(ω) + q2(ω)

fx(ω)fy(ω)
(77a)

=
α2

xy(ω)

fx(ω)fy(ω)
, (77b)

where fx(ω) and fy(ω) are the spectra of the individual processes {Xt} and {Yt}. The
coherency measures the square of the linear correlation between the two components of
the bivariate process at frequency ω. It is therefore analogous to the square of the usual
correlation coefficient. Finally, consider the gain spectrum

Gxy(ω) =

√

√

√

√

fy(ω)C(ω)

fx(ω)
, (78a)

=
αxy(ω)

fx(ω)
, (78b)

which is essentially the regression coefficient of the process {Yt} on the process {Xt} at
frequency ω. An equivalent definition exists for Gxy(ω):

Gyx(ω) =
αxy(ω)

fy(ω)
. (79)

• In general, three functions have to be plotted against frequency for a complete de-
scription of the relationship between two time series in the frequency domain. A useful
trio, whose each component has a relatively straightforward physical interpretation, is
coherency, phase, and gain (see below, the analysis of linear systems).

7.2.1 Estimation

• Two basic approaches exist to estimate the cross-spectrum. In a first approach the
cross-spectrum is estimated by truncating and weighting the (sample) cross-covariance
function. Thus, the co-spectrum and quadrature spectrum are estimated as:

ĉ(ω) =
1

π

M
∑

k=−M

λkcxy(k) cosωk, (80a)

q̂(ω) =
1

π

M
∑

k=−M

λkcxy(k) sin ωk. (80b)

The truncation point M and the lag window {λk} are chosen in a similar way to those
used for the individual spectral estimates, with the Tukey and Parzen windows being the
most popular. From ĉ(ω) and q̂(ω), the other cross-spectral functions can be estimated,
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i.e.,

α̂xy(ω) =
√

ĉ2(ω) + q̂2(ω), (81a)

tan φ̂xy(ω) = − q̂(ω)

ĉ(ω)
, (81b)

Ĉ(ω) =
α̂2

xy(ω)

f̂x(ω)f̂y(ω)
. (81c)

• The second approach for estimating the cross-spectrum is to smooth a function called
the cross-periodogram Ixy(ω). The real and imaginary parts of the cross-periodogram at
the discrete frequency ωp = 2πp/N are

ĉ(ωp) =
N

4πm

p+m∗
∑

q=p−m∗

(aqxaqy + bqxbqy) , (82a)

q̂(ωp) =
N

4πm

p+m∗
∑

q=p−m∗

(aqxbqy − aqybqx) , (82b)

where (apx, bpx) and (apy, bpy) are, respectively, the Fourier coefficients of xt and yt at ωp,
and m = 2m∗ + 1. These estimates may then be used to estimate the cross-amplitude,
phase, etc., as before.

• Note that estimates of phase and cross-amplitude are imprecise when the coherency is
relatively small.

• Confidence intervals for the estimators of phase spectrum and squared coherency have
been developed. For both estimators the normality assumption is made. A discussion is
available, for example, in Jenkins and Watts (1968).

7.2.2 Interpretation

• For two time-series that can be viewed as being on a similar footing, the coherency
spectrum is probably the most useful function.

• The other functions, such as the phase spectrum and the gain spectrum, are probably
better understood via the analysis of linear systems.
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8 Linear Systems

8.1 Introduction

• One process, noted {xt} (discrete) or {x(t)} (continuous), is regarded as the ‘input’,
whereas another process, noted {yt} (discrete) or {y(t)} (continuous), is regarded as the
‘output’.

• The systems examined here are linear and time-invariant. A system is considered
as linear if a linear combination of the inputs, say λ1x1(t) + λ2x2(t), produces the linear
combination of the outputs λ1y1(t)+λ2y2(t), where λ1, λ2 are any constants. A system is
considered as time-invariant if, in the case where {x(t)} produces {yt}, {x(t+τ)} produces
{y(t + τ)}, i.e., the relation between the input and output does not change with time.

• The study of linear systems is useful for (1) a better understanding of the relationship
between two time series (e.g., bivariate spectral analysis) and (2) a better understanding
of the properties of linear filters such as used for detrending a time series.

8.2 Linear Systems in Time Domain

• A linear time-invariant filter is defined in continuous time as

y(t) =

∞
∫

−∞

h(u)x(t − u)du, (83)

and in discrete time as

yt =
∞
∑

k=−∞

hkxt−k. (84)

The weight function h(u) in continuous time or hk in discrete time is called the impulse
response function.

• The system is said to be physically realizable if

h(u) = 0 for u < 0, (85a)

hk = 0 for k < 0. (85b)
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8.3 Linear Systems in Frequency Domain

8.3.1 Frequency Response Function

• The frequency response function or transfer function is the Fourier transform of
the impulse response function. In continuous time,

H(ω) =

∞
∫

−∞

h(u)e−iωudu (0 < ω < ∞). (86)

In discrete time,

H(ω) =
∞
∑

k=−∞

hke
−iωk (0 < ω < π). (87)

• Theorem:

A sinuoidal input to a linear system gives rise, in the steady state, to a sinusoidal
output at the same frequency. The amplitude of the sinusoid may change and there may

also be a phase shift

• Example 1. Consider the continuous input

x(t) = cos ωt. (88)

It can be shown that the corresponding output is

y(t) = G(ω) cos [ωt + φ(ω)] , (89)

where G(ω) is the gain of the system and φ(ω) is the phase shift.

• Example 2. Consider the continuous input

x(t) = eiωt. (90)

Then it can be shown that the corresponding output is

y(t) = G(ω)eiφ(ω)x(t),

= H(ω)x(t), (91)

where H(ω) is the frequency response function of the system. The gain is the real part
of H(ω), i.e., G(ω) = |H(ω)|. It describes how an input at frequency ω is damped or
amplified by the filter. It can correspond, for example, to a low-pass filter or to a
high-pass filter.

• More generally, an input consisting of a sum of sinusoidal components,

x(t) =
∑

j

Aj(ωj)e
iωjt, (92)

gives rises to an output
y(t) =

∑

j

Aj(ωj)H(ωj)e
iωjt. (93)
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• Theorem:

Consider a stable linear system with gain function G(ω). Suppose that the input x(t) is
a stationary process with continuous spectrum fx(ω). Then the output y(t) is also a

stationary process, whose spectrum is given by

fy(ω) = G2(ω)fx(ω). (94)

8.4 Identification of Linear Systems

• In many situations, the structure of the system is not known, whereas the input and
output are. The identification of the system is concerned with inferring the properties
of the system from the relationship between the input and the output.

• Consider the physically realizable continuous output

Y (t) =

∞
∫

0

h(u)X(t − u)du + N(t) (95)

where N(t) is a noise that has zero mean and is uncorrelated with the input. For conve-
nience it is assumed that E[X(t)] = 0, so that E[Y (t)] = 0. It is found that

fxy(ω) = H(ω)fx(ω). (96)

Thus, knowledge about the frequency response function of the system is available from
knowledge about the spectrum of the input, fx(ω), and knowledge about the cross-
spectrum of the input and output, fxy(ω). Thus, we have

Ĥ(ω) =
f̂xy(ω)

f̂x(ω)
. (97)

Furthermore, the real and imaginary parts of H(ω) = G(ω)eiφ(ω) can be estimated sepa-
rately. The gain can be estimated as follows

Ĝ(ω) = |Ĥ(ω)|

=

∣

∣

∣

∣

∣

f̂xy(ω)

f̂x(ω)

∣

∣

∣

∣

∣

=
|f̂xy(ω)|
f̂x(ω)

=
α̂xy(ω)

f̂x(ω)
. (98)

Thus, knowledge about the gain is provided by the estimate of the cross-amplitude spec-
trum, α̂xy(ω), and the estimate of the spectrum of the input, f̂x(ω). The phase shift can
be estimated from

tan φ̂xy(ω) = − q̂(ω)

ĉ(ω)
. (99)
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Knowledge about the phase shift is available from estimates of the co-spectrum, ĉ(ω), and
of the quadrature spectrum, q̂(ω).

• The effect of the noise can be elucidated. Consider the discrete system

Yt =
∞
∑

k=0

hkXt−k + Nt. (100)

Again it is assumed that the noise has zero mean and is uncorrelated with the input. It
is also assumed that E[Xt] = 0, so that E[Yt] = 0. It can be shown that

fy(ω) = G(ω)2fx(ω) + fn(ω), (101)

where fn(ω) is the noise spectrum. This result shows how the presence of the noise
corrupts the relationship between the input and the output in the frequency domain. The
noise contribution can be expressed as

fn(ω) = fy(ω) [1 − C(ω)] . (102)

Thus the noise spectrum can be estimated from an estimate of the (auto)spectrum of the
output and an estimate of the coherency,

f̂n(ω) = f̂y(ω)
[

1 − Ĉ(ω)
]

. (103)

• The above results show how to identify a linear system by cross-spectral analysis. They
also provide guidance for the interpretation of the various functions derived from the
cross-spectrum, in particular, the gain, phase, and coherency.
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9 Some Practical Recommendations

• Do not underestimate the value of the time plot (use different aspect ratios, etc.).

• Consider whether your time series is long enough to conduct meaningful analyses in the
time domain and (or) frequency domain.

• Consider that most of the theory is generally based on several assumptions, e.g.,

i. The data are evenly spaced in time,

ii. The process that generated the data is stationary,

iii. The data are normally distributed.

• Produce the correlogram. Compare with correlogram for standard probability models
(test for randomness, etc.)

• Produce lag scatter plots, in particular for lags for which |rk| > 2/
√

N . Check for the
(non)linear nature of the relationship at these lags.

• Produce the periodogram, keeping in mind its poor bias and variance properties.

• Consider different bandwidths and perhaps also different procedures of spectral estima-
tion. Report the actual procedure and bandwith used in your work.

• Consider different interpolation schemes and time steps for interpolation. Possible
interpolation schemes are

i. Linear interpolation,

ii. Smoothing splines,

iii. Data averaging.

• Use spectral procedures that you understand (otherwise, risk of mis-interpretation).

• Use both a linear scale and a logarithmic scale for the spectral estimates.

• Be aware of the assumptions involved in the construction of confidence intervals. Check
for features such as non-normality, the presence of outliers, variable variance, etc.

• Filter the data before testing the cross-correlation between two time series.

• Align the data before generating the estimate of the cross-spectrum so at to reduce its
bias.

• Do not hesitate to consult knowledgeable people for opinion & advice!
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10 Final Remarks

• The field has no consistent terminology: different authors use different symbols and (or)
different terms for the same concept.

• Several techniques are not considered in these notes, such as

i. Maximum entropy method,

ii. Multitaper technique,

iii. Wavelet analysis,

iv. Singular spectrum.


