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Abstract

Recent research concerning the Gaussian canonical form for Simulta-
neous Localization and Mapping (SLAM) has given rise to a handful
of algorithms that attempt to solve the SLAM scalability problem for
arbitrarily large environments. One such estimator that has received
due attention is the Sparse Extended Information Filter (SEIF) pro-
posed by Thrun et al., which is reported to be nearly constant time, ir-
respective of the size of the map. The key to the SEIF’s scalability is to
prune weak links in what is a dense information (inverse covariance)
matrix to achieve a sparse approximation that allows for efficient,
scalable SLAM. We demonstrate that the SEIF sparsification strat-
egy yields error estimates that are overconfident when expressed in
the global reference frame, while empirical results show that relative
map consistency is maintained.

In this paper, we propose an alternative scalable estimator based
on an information form that maintains sparsity while preserving con-
sistency. The paper describes a method for controlling the population
of the information matrix, whereby we track a modified version of the
SLAM posterior, essentially by ignoring a small fraction of temporal
measurements. In this manner, the Exactly Sparse Extended Informa-
tion Filter (ESEIF) performs inference over a model that is conserv-
ative relative to the standard Gaussian distribution. We compare our
algorithm to the SEIF and standard EKF both in simulation as well
as on two nonlinear datasets. The results convincingly show that our
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method yields conservative estimates for the robot pose and map that
are nearly identical to those of the EKF.

KEY WORDS—mobile robotics, SLAM, Kalman filters, in-
formation filters, robotic mapping, robotic navigation

1. Introduction

The capability to accurately navigate in a priori unknown en-
vironments is critical for autonomous robotics. Using a suite
of inertial and velocity sensors, dead-reckoning provides posi-
tion estimates subject to unbounded error growth with time. In
some outdoor applications, one can utilize GPS fixes to period-
ically minimize this error. Unfortunately, GPS measurements
are not available in many common environments (e.g. indoors
and underwater), thus requiring an alternative means of keep-
ing the error drift in check. Underwater vehicles, for example,
often rely upon acoustic long-baseline (LBL) range measure-
ments that are fused with motion sensor data (Whitcomb et al.
1998). Utilizing LBL navigation requires the deployment and
calibration of a transponder network and limits the operating
range of the vehicle. The need for such an infrastructure con-
strains the degree of autonomy that underwater robots are able
to achieve.

Simultaneous Localization and Mapping (SLAM) offers a
solution for unencumbered navigation that exploits the envi-
ronment to maintain accurate pose estimates. By building a

� R. M. Eustice was with the Joint Program in Oceanographic Engineering of
the Massachusetts Institute of Technology, Cambridge, MA, and the Woods
Hole Oceanographic Institution, Woods Hole, MA at the time of this work.
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map on-line while using inertial and velocity measurements to
predict vehicle motion, the robot utilizes observations of the
environment to localize itself within the map. The stochas-
tic nature of the vehicle motion and measurement models, to-
gether with noisy sensor data, further complicates the coupling
between navigation and mapping that is inherent to SLAM.
Many successful SLAM algorithms address these issues by
formulating the problem in a probabilistic manner, tracking the
joint posterior over the vehicle pose and map.

In their seminal paper, Smith et al. (1990) show how
this distribution can be modeled by a Gaussian that is com-
pletely described by a mean vector and covariance matrix,
and tracked via an Extended Kalman Filter (EKF). In part as
a result of its relative simplicity, this model has become the
standard tool of choice for a majority of SLAM algorithms.
With explicit knowledge of the correlation between the ro-
bot state and the map elements, the EKF exploits observations
of the environment to improve the vehicle pose and map es-
timates. Maintaining these correlations, though, imposes an
��n2�memory requirement, where n is proportional to the size
of the map (Moutarlier and Chatila 1989). Furthermore, while
the EKF efficiently predicts the vehicle motion, measurement
updates for the standard EKF are quadratic in the number of
states. As a consequence, it is well known that the standard
EKF SLAM algorithm is limited to relatively small environ-
ments (i.e. on the order of a few hundred features) (Thrun
et al. 2005).

As robots are deployed in larger environments, extensive
research has focused on the scalability restrictions of EKF
SLAM. An intuitive way of dealing with this limitation is to
divide the world into numerous sub-environments, each com-
prised of a more manageable number of l features. These
submap approaches (Guivant and Nebot 2001� Williams et al.
2002� Leonard and Newman 2003� Bosse et al. 2004) shed
some of the computational burden of the full EKF solution by
performing estimation based only upon the robot’s local neigh-
borhood. The performance time for the Kalman updates is then
��l2� rather than the standard ��n2�. One tradeoff of focus-
ing on individual local maps is that some methods forgo an
immediate estimate for the global map and, in general, are be-
lieved to sacrifice convergence speed (Leonard and Newman
2003). Alternatively, the FastSLAM algorithm (Montemerlo
et al. 2002) takes advantage of the conditional independence
of the map elements given knowledge of the robot pose to im-
prove scalability. Employing a particle filter representation for
the pose distribution, FastSLAM efficiently tracks a map for
each particle with a collection of independent EKFs, one for
every feature. The computational cost is proportional to the
number of particles used and is low in situations where rela-
tively few particles are sufficient to describe the robot pose.
With larger uncertainties, though, the efficiency benefits are
not as obvious as an increased number of particles is necessary
(Paskin 2002) to characterize the pose distribution. Addition-
ally, there is the problem of particle depletion (van der Merwe

et al. 2000) as particles describing the true trajectory are lost
due to resampling.

Recently, strategies have emerged that offer the promise of
scalability through the canonical parametrization of the SLAM
distribution. Rather than a dense covariance matrix and mean
vector, the canonical form completely describes the Gaussian
using the information (inverse covariance) matrix and infor-
mation vector. Analogous to the EKF, the evolution of the
posterior is tracked over time via a two-step process compris-
ing the so-called Extended Information Filter (EIF) (Maybeck
1979). The dual of the covariance form, the EIF update step is
efficient as it is quadratic in the number of measurements1 and
not the size of the map. On the other hand, the time projection
step is, in general, quadratic in the number of landmarks. Also,
recovering the mean from the information vector and matrix
requires a costly��n3�matrix inversion. Together, these char-
acteristics would seem to rule out information parametrization
as a viable remedy to the scalability problem of the standard
EKF and are largely the reason for its limited application to
SLAM.

Pivotal insights by Thrun et al. (2004) and Frese and
Hirzinger (2001) reveal that the canonical form is, in fact, par-
ticularly beneficial in the context of feature-based SLAM as
a majority of the off-diagonal elements in the normalized in-
formation matrix are inherently very small. By essentially ap-
proximating these entries as being zero, Thrun et al. take ad-
vantage of what is then a sparse information matrix, present-
ing the Sparse Extended Information Filter (SEIF), an adapta-
tion of the EIF. In addition to incorporating new observations
efficiently, the SEIF performs the time projection step with a
significant savings in costs, offering a near constant-time solu-
tion to the SLAM problem. The caveat is that a subset of the
mean is necessary to linearize the motion and measurement
models as well as to enforce the sparsity of the information
matrix. To that end, the authors estimate the mean of the ro-
bot pose and a limited number of features as the solution to a
sparse set of linear equations that is approximated using relax-
ation.

Similar benefits extend from interpreting the canonical
parametrization as a Gaussian Markov Random Field (GMRF)
(Speed and Kiiveri 1986) where small entries in the normal-
ized information matrix correspond to weak links in the graph-
ical model. By essentially breaking these weak links, Paskin
(2002) and Frese (2005a) approximate the graphical model
with a sparse tree structure. Paskin’s Thin Junction Tree Fil-
ter (TJTF) and Frese’s Treemap filter are then each capable
of efficient inference upon this representation, involving ��n�
and ��log n� time, respectively.

Recently, a number of batch algorithms have been proposed
that solve for the maximum likelihood estimate (MLE) based
upon the entire history of robot motion and measurement data

1. This assumes knowledge of the mean, which is necessary for observations
that are nonlinear in the state.
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(Duckett et al. 2000� Folkesson and Christensen 2004� Frese
et al. 2005� Dellaert 2005� Thrun et al. 2005). They solve for
the MLE by optimizing a full, nonlinear log-likelihood func-
tion over a series of iterations, which provides robustness to
linearization and data association errors. GraphSLAM (Thrun
et al. 2005), in similar fashion to the other batch algorithms,
forms a graph in which the nodes correspond to the robot poses
and map elements and the edges capture the motion and mea-
surement constraints. At each iteration, the linearization yields
a sparse information matrix to which they apply the variable
elimination algorithm to marginalize over the map and reduce
the graph to one over only the pose history. They subsequently
solve for the posterior over the pose history and, in turn, the
current ML map estimate.

Dellaert (2005) adopts much the same strategy, considering
the posterior over the robot’s entire pose history, taking ad-
vantage of what is then a naturally sparse information matrix
(Paskin 2002� Eustice et al. 2005a). The approach formu-
lates the corresponding mean as the solution to a set of linear
equations for which the information matrix is the matrix of
coefficients. The technique decomposes the information ma-
trix into either its Cholesky or QR factorization, paying close
attention to variable ordering. In turn, they jointly solve for
the mean over the pose and map via back-substitution. As
the author insightfully shows, this closely parallels aspects
of the aforementioned graphical model methods. The results
demonstrate promising advantages over the EKF with regards
to performance though the algorithm currently does not ad-
dress some important aspects of the SLAM problem such as
data association.

Alternatively, Wang et al. (2005) treat map building and
localization as two separate estimation problems. They repre-
sent the distribution over the map as a canonical Gaussian that
is maintained using measurements of the relative pose between
pairs of landmarks. The advantage of sacrificing robot pose in-
formation is that the information matrix for the map is then nat-
urally sparse. Meanwhile, the robot is continuously relocated
within the map based upon observations of features. This esti-
mate is fused with that of a standard EKF, which concurrently
performs local SLAM, via covariance intersection (Julier and
Uhlmann 1997) to estimate the robot pose. There are a number
of similarities between this algorithm and the approach pre-
sented in this paper although the two approaches have been
developed independently of one another.

The benefit of maintaining the joint distribution over the
robot and map is that we can take advantage of dependence
relationships between landmarks and the vehicle pose. Unfor-
tunately, the consequence is that, while the information matrix
is relatively sparse, it is nonetheless fully populated. In this pa-
per, we analyze the process by which the SEIF actively breaks
weak robot-landmark links to enforce a desired level of spar-
sity. We show that a consequence of the SEIF sparsification is
an overconfident estimate for the global map and pose errors
while the consistency of the local map relations is preserved.

As a remedy, we propose an efficient information-based
formulation of the SLAM problem that actively controls the
population of the information matrix without relying upon an
approximation to the state distribution. By essentially relocal-
izing the robot within the map, we show that the filter main-
tains exact analytical sparseness while producing state esti-
mates that are both globally and locally conservative relative
to the full EKF solution. We evaluate the performance of our
algorithm alongside the SEIF and full KF in a controlled linear
Gaussian simulation to reveal the consistency traits inherent to
the estimators. We then demonstrate our filter alongside the
SEIF and full EKF on a pair of real-world datasets, including
a benchmark nonlinear experiment. The results reveal that the
SEIF is globally inconsistent while our algorithm yields esti-
mates for the robot pose and map nearly identical to those of
the EKF, yet both globally and locally conservative.

2. Background

Let �t be a random vector governed by a multivariate Gaussian
probability distribution, �t � � �

�t � �t
�
, traditionally para-

metrized in full by the mean vector, �t , and covariance ma-
trix, �t . Expanding the quadratic term within the Gaussian
exponential, we arrive at an equivalent representation for the
multivariate distribution, ��1

�
�t ��t

�
.

p
�
�t
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� � ��1
�
�t ��t

�
(1)

The canonical form of the Gaussian (1) is completely parame-
trized by the information matrix, �t , and information vector,
�t , which are related to the mean vector and covariance matrix
by (2).

�t � ��1
t �t � ��1

t �t (2)

2.1. Duality between Standard and Canonical Forms

The canonical parametrization for the multivariate Gaussian
is the dual of the standard form with regards to the marginal-
ization and conditioning operations (Paskin 2002), as demon-
strated in Table 1. Marginalizing over variables with the stan-
dard form is easy since we simply remove the corresponding
elements from the mean vector and covariance matrix. How-
ever, the same operation for the canonical form involves calcu-
lating a Schur complement and is computationally hard. The
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Table 1. Summary of Marginalization and Conditioning Operations on a Gaussian Distribution Expressed in Covariance and
Information Form

p ����� � �
��

��
��

�
�

�
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��
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�
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Information Form � � �� ������1
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����� �
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opposite is true when calculating the conditional from the joint
distribution� it is hard with the standard form yet easy with the
canonical parametrization.

2.2. Implied Conditional Independence

An advantageous property of the canonical parametrization is
that the information matrix provides an explicit representation
of the structure of the corresponding Gaussian Markov random
field (GMRF) (Speed and Kiiveri 1986� Paskin 2002). This
property follows from the factorization of a general Gaussian
density
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�
are the node and edge potentials, respectively, for the corre-
sponding undirected graph. Random variable pairs with zero
off-diagonal elements in the information matrix (i.e. 	i j � 0)
have an edge potential �i j

�

 i � 
 j

� � 1, signifying the ab-
sence of a link between the nodes representing the variables.
Conversely, non-zero shared information indicates that there is
a link joining the corresponding nodes with the strength of the
edge proportional to 	i j . In turn, as the link topology for an
undirected graph explicitly captures the conditional dependen-
cies among variables, so does the structure of the information

matrix. The presence of off-diagonal elements that are equal
to zero then implies that the corresponding variables are con-
ditionally independent, given the remaining states.

It is interesting to note that one comes to the same conclu-
sion from a simple analysis of the conditioning operation for
the information form. Referring to Table 1, conditioning a pair
of random vectors, � � [��i ��j ]�, on the remaining states,
�, involves extracting the ��� sub-block from the informa-
tion matrix. When there is no shared information between �i

and � j , ��� is block-diagonal as is its inverse (i.e. the co-
variance matrix). Conditioned upon �, the two variables are
uncorrelated and we can conclude that they are conditionally
independent: p

�
�i � � j 	�

� � p
�
�i 	�

�
p
�
� j 	�

�
.

The fact that the information matrix characterizes the
conditional independence relationships emphasizes the sig-
nificance of its structure. In particular, it is important to make
a distinction between elements that are truly zero and those
that are just small in comparison to others. On that note, we
return to the process of marginalization, which modifies ze-
ros in the information matrix, thereby destroying some con-
ditional indpendencies (Paskin 2002). Consider a six state
Gaussian random vector, � � ��1 �����, characterized by
the information matrix and GMRF depicted in the left-hand
side of Figure 1. The canonical form of the marginal density
p��2:6� �

	
p��1:6�d�1 � ��1

�
�
��


�
follows from Table 1

with � � ��2 �3 �4 �5 �6

��
and � � �1. The correction term

in the Schur complement,����
�1
����� , is non-zero only at lo-

cations associated with variables directly linked with �1. This
set, denoted as m� � ��2� �3� �4� �5

�
, comprises the Markov

blanket for �1. Subtracting the correction matrix modifies a
number of entries in the ��� information sub-matrix, includ-
ing some that were originally zero. Specifically, while no links
exist between �2:5 in the original distribution, the variables in
m� become fully connected as a result of marginalizing �1.
Marginalization results in the population of the information
matrix, a characteristic that has important consequences when
it comes to applying the information form to feature-based
SLAM.
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Fig. 1. An example of the effect of marginalization on the Gaussian information matrix. We start out with a joint
posterior over 
 1:6 represented by the information matrix and corresponding Markov network pictorialized on the left. The in-
formation matrix for the marginalized density, p

�

 2:6

� � 	 p
�

 1:6

�
d
 1, corresponds to the Schur complement of ��� � �
1
1

in �
1:6
1:6 . This calculation essentially passes information constraints from the variable being removed, 
 1, onto its adjacent
nodes, adding shared information between these variables. We see, then, that a consequence of marginalization is the population
of the information matrix.

3. Feature-based SLAM Information Filters

We employ a feature-based representation of the environ-
ment, storing the map as a collection of geometric primi-
tives, e.g. points and lines. The robot pose (position and
orientation), xt , together with the set of n map features,
M � 
m1�m2� 
 
 
 �mn�, comprise the state vector,
�t �

�
x�t M���. In similar fashion to Smith et al. (1990), we

take a first-order linearization of the motion and measurement
models and treat the uncertainty in the data as independent,
white Gaussian noise. One can then show that the posterior
obeys a Gaussian distribution:

p
�
�t 	zt �ut

� � � �
�t ��t

� � ��1
�
�t ��t

�
� (3)

where zt and ut denote the history of observational data and
motion control inputs, respectively. Throughout the paper, we
will refer to (3) as the SLAM posterior.

Applying the notation introduced by Thrun et al. (2004),
the map is partitioned into two sets, M � �

m��m��, based
upon the structure of the information matrix. The set of ac-
tive features, m�, consists of the map elements with non-zero
off-diagonal terms that link them with the robot, while m� sig-
nifies the passive features that are conditionally independent of
the vehicle pose. In the example displayed in the left-hand side
of Figure 2, the active features are m� � 
m1�m2�m3�m5�
and the single passive landmark is m� � m4.

An Extended Information Filter (EIF) tracks the SLAM
distribution through time projection and measurement update
steps in much the same way as the EKF. The remainder of this
section is devoted to a detailed description of the canonical
formulation to these processes.

3.1. Measurement Update Step

Observations of landmarks are key to reducing the uncertainty
in the estimates for the robot pose and the map. The measure-
ment model (4a) is a nonlinear function of the state corrupted
by white Gaussian noise, vt � � �0� R�. Equation (4b) is the
first-order linearization about the mean of the robot pose and
observed features with the Jacobian, H , evaluated at this mean.

zt � h
�
�t

�� vt (4a)

� h
� ��t

�� H
�
�t � ��t

�� vt (4b)

The process of updating the current distribution,
p
�
�t 	zt�1� ut

� � ��1
� ��t � ��t

�
, to reflect a new observa-

tion follows from Bayes’ rule,

p
�
�t 	zt � ut

� � p
�
zt � �t

�
p
�
�t 	zt�1� ut

�
� (5)

where we exploit the conditional independence of the mea-
surements given the state. The EIF estimates the canonical
form of the new posterior via the update step:

p
�
�t 	zt � ut

� � ��1
�
�t ��t

�
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Fig. 2. A graphical explanation for the inherent density of the information matrix due to the motion update step. Darker shades
in the matrix imply larger magnitude. On the left are the Markov network and sparse information matrix prior to time projection
in which the robot shares information with the active features, m� � 
m1�m2�m3�m5�. We augment the state with the new
robot pose, which is linked only to the previous pose due to the Markovian motion model. Subsequently, we marginalize over
xt , resulting in the representation shown on the right. The removal of xt creates constraints between the robot and each map
element in m�, which are now fully connected. Along with filling in the information matrix, we see from the shading that the
time projection step weakens many constraints, explaining the approximate sparsity of the normalized information matrix.

�t � ��t � H�R�1 H (6a)

�t � ��t � H�R�1
�
zt � h

� ��t

�� H ��t

�
(6b)

For a detailed derivation, the reader is referred to Thrun et al.
(2004).

At any timestep, the robot typically makes a limited num-
ber, m, of relative observations to individual landmarks. The
measurement model is then a function only of the vehicle pose
and this small subset of map elements, mi and m j and, in turn,
a majority of terms in the Jacobian (7) are zero.

H �


�����
�h1
�xt

� � � 0 � � � �h1
�mi

� � � 0






 
 







�hm
�xt

� � � �hm
�m j

� � � 0 � � � 0

������ (7)

The matrix outer-product in (6a), H�R�1 H is zero every-
where except at positions associated with the vehicle pose and
observed features. More specifically, the matrix is populated
at the xt , mi , and m j positions along the diagonal as well as at
the off-diagonal positions for the �xt �mi � and �xt �m j � pairs.

The addition of this matrix to the original information matrix
only modifies the terms exclusively related to the robot and the
observed landmarks. The update then acts to either strengthen
existing constraints between the vehicle and these features or
to establish new ones (i.e. make them active).

Due to the sparseness of H , computing H�R�1 H involves
��m2� multiplications. Assuming knowledge of the mean for
the robot pose and observed features for the linearization, this
matrix product is the most expensive component of (6). Since
the number of observations, m, is limited by the robot’s field
of view, the EIF update time is bounded and does not grow
with the size of the map. In general, though, we do not have
an estimate for the current mean and computing it via (2) re-
quires an ��n3� matrix inversion. The exception is when the
measurement model is linear, in which case the mean is not
necessary and the update step is indeed constant-time.

3.2. Time Projection Step

The time projection step predicts the distribution over the
new robot pose through what can be thought of as a two-step
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process. First, we augment the canonical form with a new ran-
dom variable that represents the new vehicle pose. We then
marginalize over the old pose, leaving us with the up-to-date
state distribution.

3.2.1. State Augmentation

A Markov model governs the motion of the robot and is, in
general, a nonlinear function (8a) of the previous pose and the
control input. The additive term, wt � � �0� Q�, represents a
Gaussian approximation to the uncertainty in the model. The
first-order linearization about the mean robot pose, �xt

, fol-
lows in (8b) where F the Jacobian matrix.

xt�1 � f �xt � ut�1�� wt (8a)

� f
�
�xt
� ut�1

�� F
�
xt � �xt

��wt (8b)

First, we grow the state vector to include the new robot
pose, ��t�1 � [x�t x�t�1 M�]�. The distribution over ��t�1 fol-
lows from the current posterior, p

�
�t 	zt � ut

� � ��1
�
�t ��t

�
,

through the factorization

p
���t�1	zt � ut�1

�
� p

�
xt�1� �t 	zt �ut�1

�
� p �xt�1	xt �ut�1� p

�
�t 	zt � ut

�
where we have exploited the Markov property. Accordingly,
the augmentation to the information matrix and vector is
shown by Eustice et al. (2005a) to have the form given in
(9). Notice that the new robot pose shares information with
the previous pose but not the map. This is exemplified in the
middle schematic within Figure 2 by the fact that the only ef-
fect on the structure of the graphical model is the addition of
the xt�1 node linked to that of xt . Given xt , the xt�1 pose is
conditionally independent of the map as a consequence of the
Markov property.

p
�
xt � xt�1�M	zt � ut�1� � ��1

�
��t�1� ��t�1

�

��t�1 �


�����
�
�xt xt � F�Q�1 F

� �F�Q�1 �xt M

�Q�1 F Q�1 0

�Mxt 0 �M M

������

�

�� ��11

t�1
��12

t�1

��21
t�1

��22
t�1

��� (9a)

��t�1 �


����
�xt

� F�Q�1
�
f
�
�xt
� ut�1

�� F�xt

�
Q�1

�
f
�
�xt
� ut�1

�� F�xt

�
�M

�����

�
�
��1

t�1

��2
t�1

�
(9b)

3.2.2. Marginalization

We complete the time projection step by marginalizing xt from
the posterior to achieve the desired distribution over �t�1 �
[x�t�1 M�]�.

p
�
xt�1�M	zt � ut�1

� � �
xt

p
�
xt � xt�1�M	zt �ut�1

�
dxt

This brings us back to the expression for marginalization in the
canonical form from Table 1 that we apply here:

p
�
�t�1	zt �ut�1

� � ��1
� ��t�1� ��t�1

�
��t�1 � ��22

t�1 � ��21
t�1

� ��11
t�1

��1 ��12
t�1 (10a)

��t�1 � ��2
t�1 � ��21

t�1

� ��11
t�1

��1 ��1
t�1 (10b)

To better understand the consequences of this marginaliza-
tion, we refer back to the discussion at the end of section 2.2.
Prior to marginalization, the old robot pose is linked to the
active features, m�, while the new pose shares information
only with xt . When we remove the old pose, though, a link
is formed between the new pose and each feature in m� and
this set itself becomes fully connected. The information matrix
that was originally sparse is now populated as a consequence
of (10a). In the scenario depicted in the right-hand side of Fig-
ure 2, the only remaining zero entries correspond to the lone
feature, m4, which will become connected to the robot upon
the next observation. As Paskin (2002) previously showed, the
time projection step, then, naturally leads to a dense informa-
tion matrix in online, feature-based SLAM.

The density of the matrix affects the computational cost of
time prediction, specifically the marginalization component.
The correction term of the Schur complement (10a) is calcu-
lated as the outer product with the off-diagonal submatrix for
the old pose, ��21

t�1. Computing the outer product is quadratic
in the number of nonzero elements within this submatrix and,
equivalently, the number of map elements linked to the old
pose (i.e. the size of m�). As we have just mentioned, though,
this number will only increase over time with the size of the
map. Thus, while it may be possible to efficiently incorporate
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Fig. 3. A sequence of illustrations highlighting the benefits of breaking links between the robot and the map. If feature
m1 is first made passive by removing the constraint to the old pose, xt , then marginalizing over xt will not link it to the other
active features. This implies that we can control the density of the information matrix by maintaining a bound on the number of
active features.

new measurements with an EIF, the price we pay is a quadratic
complexity for the motion update step.

In its natural form, the EIF is no better than ��n2� and
doesn’t offer an alternative to the EKF in addressing scalability
issues. A closer look at the structure of the information matrix,
though, reveals that an adapted form of the EIF may provide
a solution. Returning to the example pictorialized in Figure 2,
note that, aside from populating the information matrix, the
time projection step weakens the off-diagonal links. This has
been shown to result in a normalized information matrix that
is nearly sparse (Frese 2005b). The analyses of Thrun et al.
(2004), Frese and Hirzinger (2001) and Paskin (2002) reveal
that, by approximating the matrix as being exactly sparse, it
is possible to achieve significant gains when it comes to both
storage and time requirements. Specifically, a bound on the
number of links between the robot and the map allows for
near constant-time implementation of the time projection step
and controls the fill-in of the information matrix resulting from
marginalization. The delicate issue is how to approximate the
posterior, p

�
�t 	zt � ut

�
, with a sparse canonical form.

4. Sparsification via Enforced Conditional
Independence

The fill-in of the information matrix induced by the motion
update step, together with its computational complexity, are

proportional to the number of links between the robot and the
map. Unfortunately, while these links may weaken, they never
disappear and lead to an ever-growing size of the active map
(Paskin 2002). In order to achieve a scalable SLAM infor-
mation filter, we need to break links with the robot, thereby
bounding the number of active landmarks. Adopting the nota-
tion used in Thrun et al. (2004), we let �a signify the bound
on the number of active map elements and use �p to denote
the number of inter-landmark links in the matrix.

As motivation, consider again the scenario depicted in Fig-
ure 2 in which four features are active. Marginalizing out xt

creates links among each element in m�, potentially violating
the �p bound. Instead, Figure 3 demonstrates that if m1 was
first made passive, then the number of non-zero elements cre-
ated as a result of marginalization can be controlled.

4.1. SEIF Sparsif ication

Recalling the conditional dependency implicit in the GMRF,
the SEIF breaks links between the robot and a set of land-
marks by replacing the SLAM posterior with a distribution that
approximates the conditional independence between the robot
and these features. Decompose the map into three disjoint sets,
M � �m0�m��m��, where m� refers to the passive features
that will remain passive, m0 are the active landmarks that will
be made passive, and m� denotes the active features that are
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to remain active. The sparsification routine proceeds from a
decomposition of the SLAM posterior

p
�
�t 	zt � ut

� � p
�
xt �m0�m��m��

� p
�
xt 	m0�m��m�� p

�
m0�m��m�� (11a)

� p
�
xt 	m0�m��m� � ��

� p
�
m0�m��m�� (11b)

where we have omitted the dependence upon zt and ut for no-
tational convenience. In (11b), we are free to condition on an
arbitrary instantiation of the passive features, m� � �, due
to the conditional independence between the robot and these
landmarks.

The SEIF deactivates landmarks by replacing (11) with an
approximation to the posterior that drops the dependence of
the robot pose on m0:

�pSEIF
�
�t 	zt � ut

� � �pSEIF
�
xt �m0�m��m��

� p
�
xt 	m��m� � ��

� p
�
m0�m��m�� (12)

While the expression in (11b) is theoretically exact, it is no
longer valid to condition upon a particular value for the pas-
sive map elements while ignoring the dependence upon m0 as
we have done in (12). Given only a subset of the active map,
the robot pose and passive features are dependent, suggesting
that the particular choice for � affects the approximation. In
fact, Eustice et al. (2005b) show that setting the passive fea-
tures to any value other than their mean (i.e. � �� �m�) yields
a mean of �pSEIF

�
�t 	zt �ut

�
that differs from that of the orig-

inal posterior2 , p
�
�t 	zt � ut

�
. Furthermore, we will demon-

strate that by ignoring the dependence relationships in (12),
the SEIF sparsification strategy leads to inconsistent covari-
ance estimates.

4.2. Discussion on Overconf idence

An important consequence of the SEIF sparsification algo-
rithm is that the resulting approximation to the SLAM pos-
terior significantly underestimates the uncertainty in the state
estimate. In this section, we show that this inconsistency is
a natural consequence of imposing conditional independence
between the robot pose and the m0 subset of the map. To illus-
trate this effect, consider a general three state Gaussian distri-
bution,

2. The mean is preserved by the sparsi�cation routine in Thrun (2004) since
they condition upon � � �m� and not � � 0 as is stated in the paper.

p �a� b� c�

� �

���

���a

�b

�c

��� �

�� � 2

a �ab� a� b �ac� a� c

�ab� a� b � 2
b �bc� b� c

�ac� a� c �bc� b� c � 2
c

���
���

� ��1

����

���a

�b

�c

��� �

���
	aa 	ab 	ac

	ab 	bb 	bc

	ac 	bc 	cc

����
���� � (13)

that we would like to sparsify by forcing a and b to be condi-
tionally independent given c:

p �a� b� c� � p �a� b	c� p�c�

approx.���� �p �a� b� c� � p �a	c� p �b	c� p�c�
 (14)

Recalling the discussion in section 2.2., the approximation is
implemented in the canonical form by setting 	ab � 0. In the
standard form, this is equivalent to treating a and b as being
uncorrelated in p �a� b	c�. The resulting approximation then
follows as

�p �a� b� c�

� �

�����������


���a

�b

�c

��� �

�� � 2

a �ac�bc� a� b �ac� a� c

�ac�bc� a� b � 2
b �bc� b� c

�ac� a� c �bc� b� c � 2
c

���

�����������

 (15)

In order for the approximation to be consistent, it is nec-
essary and sufficient that the resulting covariance matrix obey
the inequality,

�� ��

�


���
0

�
�ac�bc � �ab

�
� a� b 0�

�ac�bc � �ab

�
� a� b 0 0

0 0 0

����
� 0
 (16)

A necessary condition for (16) to hold is that the determi-
nant of the upper-left 2� 2 sub-block be non-negative (Strang
1980). Clearly, this is not the case for every �ac�bc �� �ab. Ex-
tending this insight to the SEIF sparsification strategy sheds
some light on why enforcing the conditional independence
between the robot pose and the m0 landmarks leads to over-
confident state estimates.
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Fig. 4. At time t , the robot observes four features, 
m1�m2�m3�m5�, three of which are already active, while m3 is
passive. The update strengthens the shared information between vehicle pose and m1, m2, and m5 and adds a link to m3 as we
indicate on the left. The next time projection step forms a clique among the robot and these four features and populates the
information matrix. The ESEIF sparsification strategy avoids this effect by controlling the number of active landmarks and, in
turn, the size of this clique.

5. Exactly Sparse Extended Information Filters

Recall that, as landmarks are added to the map, EIF SLAM al-
gorithms create shared information with the robot pose. Over
time, these off-diagonal elements in the information matrix
may decay, but never to zero. Together with the time projection
step, this leads to a populated matrix as discussed in Paskin
(2002) and noted earlier. The SEIF deals with this by substi-
tuting the SLAM posterior with an approximation in which the
vehicle is conditionally independent of much of the map. The
algorithm takes advantage of what is then a sparse information
matrix to achieve near constant-time efficiency. The drawback,
though, is that the SEIF yields overconfident state estimates as
a result of approximating conditional independencies.

We propose the Exactly Sparse Extended Information Fil-
ter (ESEIF) as an alternative sparse information matrix SLAM
algorithm� one which imposes exact sparsity in contrast to the
approximate conditional independencies enforced in SEIF. As
we show, the result is a computationally efficient SLAM al-
gorithm that tracks a posterior distribution, pESEIF

�
�t 	zt � ut

�
,

that is consistent with respect to that of the full EKF/EIF.

5.1. ESEIF Sparsif ication

The general premise of ESEIF sparsification is straightfor-
ward: rather than deliberately breaking links between the ro-
bot and map, we maintain sparsity by controlling their initial
formation. More specifically, the ESEIF manages the num-
ber of active landmarks by first marginalizing out the vehicle
pose, essentially “kidnapping” the robot. The algorithm subse-
quently relocalizes the vehicle within the map based upon new
observations to a set of known landmarks. The set of features
that were originally active have been made passive and the set
of landmarks used for relocalization form the new active map.

The ESEIF sparsification algorithm takes the form of a vari-
ation on the measurement update step and is outlined in Algo-
rithm 1. For a more detailed description, we consider a situa-
tion that would give rise to the GMRF depicted in Figure 4. At
time t , suppose that the robot makes four observations of the
environment, �t � 
z1� z2� z3� z5�, three of active features and
one of a passive landmark:

Active: z1 � h�x� �m1�� z2 � h�x� �m2�� z5 � h�x� �m5�

Passive: z3 � h�x� �m3�


 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIVERSITY OF MICHIGAN on July 9, 2007 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Walter, Eustice, and Leonard / Exactly Sparse Extended Information Filters for Feature-based SLAM 345

Time Projection :
�
��t�1��

�
t�1

� �� �
��t ���t

�
Measurement Update

�
zt �

�
zactive� zpassive

��
:

if Nactive � n
�
zpassive

� � �a then

Standard update:
�
��t ���t

� �6��� �
��t ���t

�
Nactive � Nactive � n

�
zpassive

�
else

Partition zt �
�

z�� z�
�

s.t. n
�
z�
� � �a

(i) Update using z�:
�
��t ���t

� �17��� � ���t � ���t �
(ii) Marginalize over robot:

� ���t � ���t � �19���
�
���t � ���t

�
(iii) Relocate robot with z� :

�
���t � ���t

�
�22���

�
���t � ���t

�
Nactive � n

�
z�
�

end

Algorithm 1. A description of the ESEIF algorithm. Note that
Nactive denotes the number of features which are currently
active.

Updating the current distribution, p
�
�t 	zt�1� ut

�
, based

upon all four measurements would strengthen the off-diagonal
entries in the information matrix pairing the robot with the
three observed active features, m1, m2, and m5. Additionally,
the update would create a link to the passive landmark, m3,
the end result being the information matrix and correspond-
ing graphical model shown in the left-hand side of Figure 4.
Suppose that activating m3 would violate the �a bound. Aside
from updating the filter and subsequently implementing the
SEIF sparsification rule, one strategy would be to simply dis-
regard the observation of the passive landmark entirely. This
approach, though, is not acceptable since the size of the map
that we can build is then dictated by the �a bound. Alterna-
tively, ESEIFs allow us to incorporate all measurement data
while simultaneously maintaining the desired degree of spar-
sity.

In the ESEIF sparsification step, the measurement data is
partitioned into two sets, z� and z� , where the first set of ob-
servations is used to update the filter and the second is re-
served for performing relocalization. Several factors guide
the specific allocation, including the number and quality of
measurements necessary for relocalization. Of the four mea-
surements available in our example, group that of the passive
feature together with one of the active measurements for the
update, z� � 
z1� z3�. The remaining two observations will be
used for relocalization, z� � 
z2� z5�. With that said, we now
describe the two components of sparsification.

5.1.1. Posterior Update

We first perform a Bayesian update on the current distribution,
p
�
�t 	zt�1� ut

�
to incorporate the information provided by the

z� measurements:

p
�
�t 	zt�1� ut

� � ��1 ��t � �t ��t
�

z��
z1�z3������� p1
�
�t 	

�
zt�1� z�

�
� ut
�

� ��1
�
�t � ��t � ��t

�

 (17)

The p1
�
�t 	

�
zt�1� z�

�
�ut
�

posterior follows from the stan-
dard update equations (6) for the information filter. The Jaco-
bian matrix, H , is nonzero only at indices affiliated with the
robot pose and the m1 and m3 landmarks. As a result, the
process strengthens the link between the robot and the active
feature, m1, and creates shared information with m3, which
was passive. The middle diagram of Figure 5 demonstrates
this effect. With regards to the computational complexity, re-
call that the update step is constant-time with, in the nonlinear
case, access to the mean estimate for the robot pose as well as
m1 and m3.

5.1.2. Marginalization and Relocalization

Now that a new connection to the vehicle node has been added
to the graph, there are too many active features. The ESEIF
sparsification routine proceeds to marginalize out the robot
pose to achieve the distribution over the map,

p2
�
Mt 	

�
zt�1� z�

�
�ut
� �

�
xt

p1
�
�t 	
�

zt�1� z�
�
� ut
�

dxt

� ��1
�

Mt � ��t � ��t

�

 (18)

In order to make the derivation a little clearer, decompose the
canonical expression for p1

�
�t 	
�

zt�1� z�
�
�ut
�

into the robot
pose and map components,

p1
�
�t 	
�

zt�1� z�
�
�ut
� � ��1

�
�t � ��t � ��t

�
��t �

� ��xt

��M

�
��t �

� ��xt xt
��xt M

��Mxt
��M M

�



The information matrix for the marginalized distribution then
follows from Table 1:

p2
�
Mt 	

�
zt�1� z�

�
�ut
� � ��1

�
Mt � ��t � ��t

�
��t � ��M M � ��Mxt

� ��xt xt

��1 ��xt M (19a)

��t � ��M � ��Mxt

� ��xt xt

��1 ��xt

 (19b)

This marginalization component of sparsification is com-
putationally efficient. Inverting the robot pose sub-matrix,
��xt xt � �p�p, is a constant-time operation since p is fixed.
The ESEIF then multiplies the inverse by ��Mxt � �n�p, the
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Fig. 5. A graphical description of the ESEIF sparsification strategy. At time t , the map is comprised of three active
features, m� � 
m1�m2�m5�, and two passive features, m� � 
m3�m4�, as indicated by the shaded off-diagonal elements in
the information matrix. The robot makes three observations of active landmarks, 
z1� z2� z5�, and one of a passive feature, z3. In
the first step of the sparsification algorithm, shown in the left-most diagram, the ESEIF updates the distribution based upon a
subset of the measurements, z� � 
z1� z3�. The result is a stronger constraint between m1 and the robot as well as the creation
of a link with m3, which we depict in the middle figure. Subsequently, the ESEIF marginalizes out the vehicle pose, leading
to connectivity among the active landmarks. The schematic on the right demonstrates the final step of sparsification in which
the robot is relocated within the map based upon the remaining z� � 
z2� z5� measurements. The result is a joint posterior,
pESEIF

�
�t 	 zt � ut

�
, represented by an exactly sparse information matrix where the size of the active map is controlled.

sub-block that captures the shared information between the ro-
bot and map. With a bound on the number of active land-
marks, a limited number of k rows are populated and the ma-
trix product is ��kp2�. In (19a), we then post-multiply by the
transpose in ��k2 p� time while, in (19b) we post-multiply by
��xt

� �p�1, an ��kp� operation. With the valid assumption
that k � p, the marginalization component of ESEIF spar-
sification is quadratic in the bounded number of active features
and, thus, constant-time.

The ��Mxt � ��xt xt �
�1 ��xt M outer product in the Schur com-

plement (19a) is zero everywhere except for the entries that
pair the active features. Recalling our earlier discussion on
marginalization in section 2.2, this establishes connectivity
among the active features as we show in the right-hand side
of Figure 5. Of course, unlike the figure shows, we do not
have a representation for the robot pose, which brings us to the
next step.

We conclude sparsification by relocalizing the vehicle
within the map with the remaining z� observations of a set of
features denoted by the random vector m� . The expression for
the new pose is a nonlinear function of m� and the measure-
ment data. We include an additive white Gaussian noise term,
wt � � �0� R� to account for model uncertainty and sensor
noise, giving rise to the expression in (20a). Equation (20b)
is the first-order linearization with respect to the mean vector
for the observed features, ��m� , from the map distribution (18).
The Jacobian matrix, G, is sparse with nonzero entries only
within the columns associated with the m� landmarks. In turn,
(20b) requires only the ��m� mean.

xt � g
�
m�� z�

�� wt (20a)

� g
�
��m� � z�

�
� G

�
m� ��t

��wt (20b)
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We augment the map state with this new pose, �t � [x�t M�
t ]�,

and form the joint distribution,

pESEIF
�
xt �Mt 	zt �ut

�
� p

�
xt 	m�� z�

�
p2
�
Mt 	

�
zt�1� z�

�
�ut
�
� (21)

where the factorization captures the conditional independence
between the pose and the remaining map elements.

The problem of adding the robot pose is fundamentally
the same as adding a new feature to the map or augment-
ing the state as part of the time prediction step (9). One can
then easily show that (22) is the canonical parametrization for
pESEIF

�
�t 	zt �ut

�
.

pESEIF
�
�t 	zt � ut

� � ��1
�
�t � ��t � ��t

�

��t �
�

R�1 �R�1G

�G�R�1 ��t � G�R�1G

�
(22a)

��t �

� R�1

�
g� ��m� � z��� G ��t

�
��t � G�R�1

�
g� ��m� � z��� G ��t

�
�� (22b)

As a consequence of the sparseness of G, a majority of
terms within the �R�1G � � �G�R�1

��
blocks of the in-

formation matrix that link the robot to the map are zero. The
landmarks used for relocalization are the only exception as
we show in the right-hand diagram in Figure 5 with the robot
linked to the m� � 
m2�m5� features but no others.

The ESEIF controls the information constraints between
the vehicle and the map in a consistent manner since it does
not break (i.e. set to zero) undesired links. Instead, the
filter marginalizes over the pose, in effect, distributing the
information encoded within these links to features in the ac-
tive map, m�. The marginalization (19a) populates the in-
formation sub-matrix associated with m�, which then forms
a clique in the graph. This fill-in would otherwise occur as
part of the next time prediction step and, with the active map
growing ever larger, would fully populate the matrix. The
ESEIF avoids extensive fill-in by bounding the number of ac-
tive landmarks. When the active map reaches a predetermined
size, the ESEIF “kidnaps” the robot, sacrificing temporal in-
formation as well as a controlled amount of fill-in. The algo-
rithm then relocalizes the vehicle, creating a new set of active
features. Since observations are typically confined to the ro-
bot’s local environment, these features are spatially close. The
active map is built up from neighboring landmarks until the
next sparsification. As a result, the ESEIF forms marginaliza-
tion cliques that resemble submaps that are structured accord-
ing to the robot’s visibility and the density of features in the
environment.

5.2. Mean Recovery

The sparse information filter provides for a near constant-
time SLAM implementation. The caveat is, in part, a con-
sequence of the fact that we no longer have access to the
mean vector when the posterior is represented in the canoni-
cal form. Naïvely, we can compute the entire mean vector as
�t � ��1

t �t , though the cost of inverting the information ma-
trix is cubic in the number of states, making it intractable even
for small maps.

Instead, we pose the problem as one of solving the set of
linear equations

�t�t � �t (23)

and take advantage of the sparseness of the information matrix.
There are a number of techniques that iteratively solve such
sparse, symmetric positive definite systems of equations in-
cluding conjugate gradient descent (Shewchuck 1994) as well
as relaxation-based algorithms such as Gauss–Seidel (Barrett
et al. 1994) and, more recently, the multilevel method pro-
posed by Frese et al. (2005). The optimizations can often be
performed over the course of multiple time steps since, aside
from loop closures, the mean vector evolves slowly in SLAM.
As a result, we can bound the number of iterations required at
any one time step (Duckett et al. 2000).

Often we are only interested in a subset of the mean, such
as during the time projection step, which requires an estimate
for the robot pose. We can then consider partial mean recovery
(Eustice 2005a) in which we partition (23) as�

�ll �lb

�bl �bb

��
�l

�b

�
�
�
�l

�b

�
(24)

where �l is the “local portion” that we want to solve for and
�b is the “benign portion” of the map. Given an estimate for
�b, we can reduce (24) to an approximate solution for the local
mean,

��l � ��1
ll

�
�l ��lb ��b

�

 (25)

Due to the sparsity of �lb, this formulation requires only a
subset of ��b, corresponding to the Markov blanket for the local
map. Assuming that we have an accurate estimate for the mean
of this portion of the benign map, (25) provides an efficient
approximation to the mean that we are interested in.

5.3. Data Association

The successful implementation of any SLAM algorithm re-
quires the ability to correctly match observations of the en-
vironment with the associated landmarks in the map. The data
association problem is often addressed by choosing the fea-
ture that best explains the measurement, subject to a thresh-
old that identifies spurious observations. For a particular cor-
respondence, the likelihood follows from the marginal distri-
bution for the particular states associated with the hypothe-
sis (typically the robot pose, xt , and a single landmark, mi ),
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p
�
xt �mi 	zt�1� ut

�
. Unfortunately, the information form is not

amenable to computing this marginal from the full joint pos-
terior since, referring back to Table 1, the Schur complement
requires the inversion of a large matrix.

Consequently, the traditional approach to data association
is not an option for scalable information filters. Instead, Thrun
et al. (2004) approximate the measurement likelihood from a
conditional distribution rather than the marginal. Specifically,
the SEIF considers the Markov blanket, MB�xt �mi �, for xt

and mi consisting of all states directly linked in the GMRF
to either xt or mi . The SEIF first computes the condi-
tional distribution p

�
xt �mi �MB �xt �mi � 	M
� zt�1�ut

�
where

M
 denotes all state elements not in 
xt �mi �MB�xt �mi ��.
This distribution is then marginalized over the Markov blan-
ket to achieve an approximation to the desired marginal,
p
�
xt �mi 	M
� zt�1� ut

�
, which is used to determine the likeli-

hood of the hypothesis. The cost of conditioning on M
 is neg-
ligible and does not depend on the size of the map. Once most
of the map has been conditioned away, the matrix that is in-
verted as part of the subsequent marginalization is now small,
on the order of the size of the Markov blanket. The resulting
distribution has been successfully utilized for data association
with SEIFs (Liu and Thrun 2003), although it has been demon-
strated to yield overconfident estimates for the likelihood of
measurements (Eustice et al. 2005c).

The marginal is easily determined from the standard para-
metrization, described by the mean and sub-blocks of the full
covariance matrix corresponding to xt and mi . Inverting the
information matrix to access the covariance, however, is equiv-
alent to performing the marginalization in the canonical form
and is, thus, impractical. Alternatively, Eustice et al. (2005c)
propose an efficient method for approximating the marginal
that gives rise to a conservative measure for the hypothesis
likelihood. The technique stems from posing the relationship,
�t�t � I , as a sparse system of linear equations,�t��i � ei ,
where ��i and ei denote the i th columns of the covariance and
identity matrices, respectively. They estimate the robot pose
joint-covariance, ��xt , online by solving the system of equa-
tions with one of the iterative algorithms mentioned for mean
recovery. The algorithm combines this with a conservative es-
timate for the feature covariance to achieve the representation
for the marginal covariance. The marginal, which is itself con-
servative, is then used for data association.

6. Results

This section explores the effectiveness of the ESEIF algorithm
in comparison to the SEIF and EKF when applied to different
forms of the SLAM problem. We first present the results of a
controlled linear Gaussian (LG) SLAM simulation that allows
us to compare the consequences of the different sparsification
strategies relative to the “gold standard” Kalman Filter (i.e. the
optimal Bayes estimator). We then discuss the performance of

the sparsified information algorithms on a pair of real-world,
nonlinear SLAM problems including the benchmark Sydney
Park outdoor dataset widely popular in the SLAM community.

6.1. Linear Gaussian Simulation

In an effort to better understand the theoretical consequences
of enforcing sparsity in information filters, we first study the
effects of applying the different approaches in a controlled
simulation. In this example, the environment is comprised of
a set of point features, located according to a uniform distri-
bution that yields a desired density of 0
10 features per unit
area. The robot moves translationally according to a linear,
constant-velocity model and measures the relative position of
a bounded number of neighboring features. Both the measure-
ments as well as the vehicle motion are corrupted by additive
white Gaussian noise.

We implement the ESEIF and SEIF using their correspond-
ing sparsification routines to maintain a bound of �a � 10
active features. In the case of ESEIF sparsification, we reserve
as many of the measurements as possible for the relocalization
component, to the extent that we do not violate the �a bound
(i.e.

��z��� � �a). Additionally, we apply the standard Kalman
filter that, by the linear Gaussian (LG) nature of the simulation,
is the optimal Bayesian estimator. Aside from the different
sparsification routines, each estimator is otherwise identical.

Our main interest in the LG simulation is to evaluate the ef-
fect of the different sparsification strategies on the estimation
accuracy. To that end, we perform a series of Monte Carlo
simulations, using two formulations of the normalized esti-
mation error squared (NEES) (Bar Shalom et al. 2001) as a
measure of filter consistency. The first metric considers the
global error between the unadulterated filter estimates for the
vehicle and feature positions and their ground truth positions.
We compute this score over several simulations and plot the
averages in Figures 6(a) and 6(b) for the vehicle and a single
landmark, respectively. The 97
5% chi-square upper limit for
the series of simulations is denoted by the horizontal thresh-
old, which the KF normalized errors largely obey. The SEIF
vehicle pose error is significantly larger than that of the KF
and ESEIF, and exceeds the chi-square bound for most of the
simulation. The same is true of the estimate for the landmark
positions. This behavior indicates that SEIFs maintain an ab-
solute state estimate that is inconsistent. In contrast, the ESEIF
yields global errors for both the vehicle and map that are sim-
ilar to the KF and pass the chi-square test. This suggests that
the ESEIF SLAM distribution is globally consistent.

The second normalized error concerns the accuracy of the
relative state elements. We first reference the vehicle and map
positions relative to the first observed feature, xm , via the com-
pounding operation, xmi � �xm � xi (Smith et al. 1990). We
then measure the local error by comparing the relative map
estimates to the root-shifted ground truth positions. The lo-
cal error in the estimates of the vehicle and the same feature
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Fig. 6. Plots of the normalized estimation error squared (NEES) measured based upon a series of Monte Carlo simulations of
linear Gaussian SLAM. The global errors associated with the estimates for (a) vehicle pose and (b) a single feature representative
of the map are computed by comparing the direct filter estimates with ground truth and provide a measure of global consistency.
The plots in (c) and (d) correspond to the local error in the vehicle and feature estimates, respectively, that follows from expressing
the state relative to the first feature added to the map. The horizontal threshold denotes the 97
5% chi-square upper bound and
serves as a test for the consistency of the different filters. For both the vehicle and the map, the global as well as local ESEIF
errors satisfy the chi-square limit. The same is true of the local measure for the SEIF yet the global errors are significantly greater
and far exceed the chi-square bound.
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Fig. 7. Histograms for the LG simulation describing the global map uncertainty maintained by the (a) SEIF and (b) ES-
EIF compared with that of the KF. For each feature, we compute the log of the ratio between the information filter covariance
sub-block determinant and the determinant for the actual distribution as given by the KF. Values greater than zero imply
conservative estimates for the uncertainty while log ratios less than zero indicate overconfidence. Note that all of the SEIF
estimates are overconfident while those of the ESEIF are conservative.

as in Figure 6(b) are shown in Figures 6(c) and 6(d), respec-
tively, together with the 97
5% chi-square bound. Unlike the
global estimates, the SEIF sparsification results in local errors
that are nearly indistinguishable from those of the KF. Fur-
thermore, the SEIF appears to satisfy the chi-square test as
the errors rarely exceed the threshold. The local errors main-
tained by the ESEIF also fall well below the chi-square limit.
It seems, then, that while SEIFs are globally inconsistent, the
sparsification routine preserves the consistency of the relative
map relationships. The ESEIF, on the other hand, maintains a
posterior that is both globally and locally consistent.

The high global NEES scores for the SEIF are not so much
a consequence of error in the vehicle and map estimates as
they are of the overconfidence of the SEIF in these estimates.
This becomes apparent when the SEIF’s uncertainty estimates
are compared against the true distribution maintained by the
Kalman Filter. We recover the map covariance from the in-
formation matrix and, for each landmark, compute the log of
the ratio of the covariance sub-block determinant to the de-
terminant of the KF sub-block. Since the KF estimate rep-

resents the true distribution, log ratios less than zero signify
overconfidence while values greater than zero imply conserv-
ative uncertainty estimates. Figure 7 presents a histogram plot
of these ratios for the two information filters. The SEIF uncer-
tainty bounds for the global map are significantly smaller than
those of the KF, indicating that the SEIF posterior is suscep-
tible to overconfidence as a consequence of the sparsification
strategy. This agrees with our discussion in section 4.2. on the
inherent implications of enforcing sparsity by approximating
conditional independence. In comparison, the ESEIF main-
tains confidence estimates for each landmark that are conserv-
ative with respect to the Kalman Filter.

In similar fashion to the NEES score, when we transform
the map relative to the first feature, we see in Figure 8(a)
that the SEIF and KF estimates for the local uncertainty agree
much more closely than do the global estimates. The one ex-
ception is the representation for the original world origin in
the relative map, which the SEIF assigns a higher measure of
confidence. Overall, though, the SEIF is far less overconfident
in the accuracy of its local estimates, which helps to explain the
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Fig. 8. The uncertainty attributed to the relative map estimates for the (a) SEIF and (b) ESEIF expressed relative to the
optimal KF. The uncertainty ratios are determined as before, in this case based upon the local covariance estimates that follow
from root-shifting the state to the first feature added to the map. While still overconfident, the SEIF local uncertainty estimates
are significantly closer to the values maintained by the KF, with the one exception being the representation of the original world
origin in the relative map. The ESEIF, meanwhile, produces relative map estimates that are conservative.

reduced normalized error values we saw earlier. Meanwhile,
the histogram in Figure 8(b) demonstrates that the ESEIF esti-
mates for the local map accuracy remain conservative relative
to the true distribution.

Figure 9 illustrates the computational benefits of the ES-
EIF over the KF. Plotted in Figure 9(a), the KF update time
grows quadratically with the number of states. In contrast, the
ESEIF and SEIF updates remain constant-time despite an in-
crease in the state dimension. While this efficiency is inherent
to information filter updates, sparseness is beneficial for the
prediction step, which is quadratic in size of the map for non-
sparse information filters. We see this benefit in Figure 9(b)
as the prediction time is similar for all three filters, with a
gradual increase with the number of features. Additionally,
the memory requirements for sparse matrices are considerably
less than those of the covariance matrix. Consider the density
of the three matrices that are each 536 � 536 at the end of
the simulation. The covariance matrix is fully-populated, yet
92% of the terms in the ESEIF information matrix are exactly
zero as is 89% of the SEIF matrix. Figure 9(c) plots the dif-

ference in the memory requirements as a function of the state
dimension.

6.2. Experimental Validation

The linear Gaussian simulations allow us to explore the the-
oretical implications of sparsification and validate our claims
that approximating the conditional independence of the robot
and a set of map elements leads to an inconsistent distribution.
The results empirically show that the ESEIF provides a sparse
representation of the canonical Gaussian while simultaneously
preserving consistency. Unfortunately, the simulations are not
representative of most real-world applications, which gener-
ally involve motion and measurement models that are nonlin-
ear and noise that is non-Gaussian. To study the performance
of the ESEIF under these circumstances, we apply it to two
nonlinear datasets, along with the SEIF and standard EKF.
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Fig. 9. A comparison of the performance of the ESEIF, SEIF, and KF for a LG simulation. The update times (a) for the ESEIF
and SEIF are nearly identical and remain constant with the growth of the map. In contrast, the KF exhibits the well-known
quadratic increase in complexity. The prediction times (b) gradually increase with the map size and are similar for the three
filters by virtue of the sparsity of the information matrices. The plot in (c) reveals that the sparse information forms demand
significantly less memory than the fully-populated covariance matrix.
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Fig. 10. An overhead image of Victoria Park in Sydney, Aus-
tralia along with a rough plot of the GPS vehicle trajectory.
The environment is approximately 250 meters East to West
and 300 meters North to South.

Victoria Park Dataset
For the first real-world SLAM problem, we consider the
benchmark Victoria Park dataset courtesy of E. Nebot of the
University of Sydney (Guivant and Nebot 2001). The dataset
is widely popular in the SLAM community as a testbed for dif-
ferent algorithms that address the scalability problem (Guivant
and Nebot 2001� Montemerlo et al. 2003� Bosse et al. 2004�
Thrun et al. 2004). In the experiment, a truck equipped with
odometry sensors and a laser range-finder drives in a series of
loops within Victoria Park, Sydney, shown in Figure 10 along
with a rough plot of the GPS trajectory. We use a simple per-
ceptual grouping implementation to detect tree trunks located
throughout the park among the laser data, which is cluttered
with spurious returns. We solve the data association problem
offline to ensure that the correspondences are identical for each
filter.

We apply the SEIF and ESEIF algorithms together with the
EKF, which has been successfully applied to the dataset in the
past (Guivant and Nebot 2001). We limit the size of the active
map to a maximum of �a � 10 features for the two informa-
tion filters. As with the LG simulation, we place a priority on
the relocation step when sparsifying the ESEIF, reserving as
many tree observations as possible (i.e. no more than �a � 10)
for the sake of adding the vehicle back into the map. Any addi-
tional measurements are used to update the filter prior to mar-
ginalization. This helps to minimize the influence of spurious
observations on the estimate for the relocated vehicle pose.

The final SEIF and ESEIF maps are presented in Fig-
ures 11(a) and 11(b), respectively, along with the estimate for
the robot trajectory. The ellipses denote the three-sigma uncer-
tainty bounds estimated by the two filters. As a basis for com-
parison, we plot the map generated by the EKF, which is sim-
ilar to results published elsewhere. One sees that the feature
position estimates are similar for the three filters, yet the SEIF
exhibits a larger deviation from the EKF map than does the ES-
EIF. The most obvious distinction between the two maps, how-
ever, is the difference in the estimated accuracy of the maps in-
dicated by the uncertainty ellipses. While not ground truth, the
EKF results represent the baseline that the information filters
seek to emulate, yet many of the EKF feature estimates fall
outside the three-sigma SEIF uncertainty bounds. This is par-
ticularly evident in the periphery as we reveal in the inset plot.
The ESEIF confidence regions, on the other hand, capture all
of the EKF landmark estimates.

The difference becomes more apparent when we directly
compare the uncertainty measures for each feature. Figure
12(a) presents a histogram plot of the log ratio between the
global feature covariance determinants for the SEIF and ESEIF
with respect to the EKF determinants. The SEIF global uncer-
tainty estimates are all smaller than those of the EKF while the
ESEIF estimates are larger. This is consistent with the linear
Gaussian simulation results and suggests that the SEIF spar-
sification strategy results in an overconfident SLAM posterior
while the ESEIF produces a distribution that is conservative
with respect to the EKF.

In similar fashion to the LG experiment, we observe con-
trasting behavior for the relative map that follows from root-
shifting the state relative to the vehicle’s final pose. The
SEIF map shown in Figure 11(c) and the ESEIF map plotted
in Figure 11(d) are both nearly identical to the relative EKF
map. Furthermore, the three-sigma relative uncertainty bounds
maintained by the two filters contain the EKF position esti-
mates. Nonetheless, the SEIF is still more confident than the
EKF as the histogram in Figure 12(b) indicates. Aside from
the representation for the original world origin, the local SEIF
uncertainties are nearly identical to those of the EKF. Together,
this implies that the consistency of the relative state distribu-
tion is less sensitive to the approximations used in the SEIF
sparsification. Meanwhile, the ESEIF estimates for the rela-
tive uncertainty remain conservative with respect to the EKF.

Figure 13(a) compares the total time required for the
time prediction and measurement update steps for the ESEIF
and EKF. We do not include the SEIF performance but note
that it is similar to that of the ESEIF. The ESEIF implemen-
tation employed partial mean recovery (25), solving the full
set of equations only upon sparsification. The EKF is more
efficient when the map is small (less than 50 landmarks), a
reflection of the ESEIF prediction time that is quadratic in the
number of active features along with the mean estimation cost.
Yet, as the map grows larger, the quadratic update of the EKF
quickly dominates the filtering time of the ESEIF, which varies
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Fig. 11. Estimates for the vehicle trajectory and feature positions along with the three sigma confidence bounds for the
Victoria Park dataset. The global maps generated by (a) the SEIF and (b) the ESEIF are similar to the EKF map. The SEIF
uncertainty ellipses, however, are significantly smaller than those of the ESEIF and, in many cases, do not include the EKF
feature estimates. In (c) and (d) we plot the relative SEIF and ESEIF maps, respectively, that follow from root-shifting the state
into the reference frame of the robot at its final pose. The three relative maps are nearly identical and the SEIF uncertainty
bounds are not nearly as small, capturing each of the EKF position estimates.

with the number of active features rather than the state dimen-
sion.

The plot in Figure 13(b) displays the EKF and ESEIF mem-
ory allocations. In order to store the correlations among the
map and robot pose, the fully-populated EKF covariance ma-
trix requires quadratic storage space. The ESEIF information
matrix, however, is sparse with a bounded quantity of non-
zero terms that pair the vehicle and map and a linear number
of links between landmarks. As a result, we see that the ESEIF
storage requirement is linear in the size of the map.

Hurdles Dataset
In the second experiment, a wheeled robot drives among 64
track hurdles positioned at known locations along the baselines
of four adjacent tennis courts. The vehicle observes nearby
hurdles with a SICK laser scanner and uses wheel encoders to
measure pose velocity inputs for the kinematic motion model.

We again apply the ESEIF, SEIF, and EKF SLAM algo-
rithms. The data association problem is solved independently
such that the correspondences are identical for all three filters.
The maximum number of active landmarks for the three infor-
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Fig. 12. Histograms for the Victoria Park dataset comparing the ESEIF and SEIF uncertainty estimates to the results of the
EKF. We again use the log of the ratio of the covariance sub-block determinants for each landmark. The plot in (a) describes the
global map uncertainties while the histogram in (b) corresponds to the relative map. The SEIF marginal distributions are largely
overconfident when compared with the EKF for the global map, but less so for the relative feature estimates. The representation
of the world origin in the root-shifted map is the one outlier in the latter. The ESEIF is conservative with respect to the EKF both
globally and locally.

mation filters is set at �a � 10 hurdles. As with the Victoria
Park dataset, we prefer to relocalize the vehicle during spar-
sification with as many measurements as possible and use any
surplus observations in the preceding update step.

We present the final map estimates for the ESEIF and SEIF
in Figure 14 along with the EKF map and the ground truth
poses. The ellipses denote the three-sigma uncertainty bounds
for the position of a leg of each hurdle. Qualitatively, the maps
for the information filters closely agree with the EKF estimates
as well as the true hurdle positions, however the same is not
true for the global uncertainties. The SEIF is again unique in
that sparsification results in global uncertainty estimates that
are too small to capture a majority of the true hurdle posi-
tions, indicative of an overconfident SLAM posterior. Fig-
ure 14(b) shows that SEIF estimates are more accurate upon
root-shifting to the first hurdle added to the map. The ESEIF
global and relative maps are comparable to those of the SEIF
and EKF as well as the ground-truth. Unlike the SEIF, though,
both the global and local ESEIF uncertainty estimates are con-
sistent with the EKF.

7. Discussion

We have taken a closer look at the SEIF sparsification strategy
and, in particular, the consequences for the uncertainty esti-
mates. We presented an alternative algorithm for maintaining
sparsity and have shown that it does not suffer from the same
overconfidence. In this section, we elaborate on our claims
regarding the consistency of the ESEIF. In addition, we draw
comparisons between the ESEIF and the D-SLAM algorithm
(Wang et al. 2005), which similarly achieves sparsity while
preserving consistency.

7.1. Estimator Consistency

The results presented in the previous section empirically
demonstrate that the SEIF global uncertainty estimates are no-
ticeably overconfident while the ESEIF is globally and locally
conservative. In the linear Gaussian case, this is sufficient
to conclude that the ESEIF preserves the consistency of the
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Fig. 13. Plots of the computational efficiency of the EKF and ESEIF for the Victoria Park dataset. In (a) we show the total
prediction and update time as a function of state dimension. The complexity of the EKF increases with the size of the map while
the ESEIF does not. Instead, the ESEIF cost is a function of the number of active features. Shown in (b), the EKF memory
requirement is quadratic in the size of the map, yet only linear for the ESEIF.

SLAM posterior for the local and global representations. On
the other hand, as the ESEIF is based upon the dual of the
EKF, it is subject to the same convergence issues as the EKF
for nonlinear applications (Bar Shalom et al. 2001). While the
results empirically demonstrate that the ESEIF is conservative
with respect to the EKF, this does not guarantee that the ES-
EIF SLAM posterior is consistent with the true, non-Gaussian
distribution. Nonetheless, the algorithm allows us to capitalize
on the computational and storage benefits of a sparse informa-
tion form without incurring additional inconsistency. The EKF
has been successfully applied to a wide range of real-world
datasets and the ESEIF provides a scalable means of achieving
nearly identical estimates.

7.2. Comparison with D-SLAM

Wang et al. (2005) propose a similar algorithm that main-
tains a sparse canonical parametrization in a consistent man-
ner. The approach decouples SLAM into separate localiza-
tion and map building problems and addresses them concur-
rently with different estimators. D-SLAM considers the map
distribution p

�
M	zt � ut

�
to be Gaussian and represents it in

the canonical form. It then uses an EIF to maintain the in-
formation matrix and vector with updates based upon relative
landmark measurements that have been extracted from the ro-
bot’s observations of the environment. The EIF time projec-
tion step is trivial since the robot pose is not contained in this
distribution and, in turn, the information matrix is naturally
sparse. An estimate for the vehicle pose is determined from
map observations by solving the kidnapped robot problem at
each time step. Additionally, D-SLAM implements a standard
EKF SLAM process for the robot’s local neighborhood that
provides a second estimate of pose. To account for unmodeled
correlation between the two estimates, they are fused with co-
variance intersection (Julier and Uhlmann 1997) to achieve a
conservative belief over pose. By decoupling the problem in
this way, D-SLAM capitalizes on an exactly sparse informa-
tion matrix without sacrificing consistency.

The key component to maintaining the sparseness of the in-
formation matrix follows from the observation that the time
projection step for the robot pose causes fill-in. By period-
ically kidnapping and relocalizing the robot, the ESEIF con-
trols the population of the information matrix. The D-SLAM
algorithm takes this one step farther by essentially performing
kidnapping and relocalization at each time step. As a result,
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Fig. 14. The final maps for the hurdles dataset generated with the SEIF and ESEIF compared with the EKF estimates
and the ground truth hurdle positions. The ellipses define the three-sigma uncertainty bounds on the location of the base leg of
each hurdle. The only exception is the inset plot for the global ESEIF map where, for aesthetic reasons, we plot the one-sigma
uncertainty region. In (a) we show the global estimates given directly from the three filters while (b) contains the relative
maps transformed with respect to the first hurdle added to the map. As indicated in (a), the SEIF maintains global uncertainty
estimates that are overconfident while the lower plot reveals that it retains the local map structure. In comparison, the ESEIF
yields estimates that are consistent with the EKF both for the global and relative maps.
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they sacrifice nearly all information provided by the temporal
constraints between successive poses. Additionally, in order to
preserve exact sparsity for the map distribution, the algorithm
does not incorporate any knowledge of the robot’s pose when
building or maintaining the map. We believe the D-SLAM
estimator to be less optimal as it ignores markedly more in-
formation than the ESEIF, which only occasionally disregards
temporal links.

8. Conclusions

To summarize, the computational demands of the Extended
Kalman Filter limit its use in feature-based SLAM to small
environments. This problem is currently a hot research topic
in robotics and has led to a number of different algorithms that
scale with larger maps. In particular, the key observation that
the canonical SLAM distribution is relatively sparse has given
rise to scalable adaptations to the information filter. The algo-
rithms take advantage of the fact that, when the density of the
information matrix is bounded, estimation can be performed
in near constant time, irrespective of the number of landmarks.
The problem, however, is that while a majority of the elements
in the information matrix are relatively weak, the feature-based
SLAM matrix is fully populated. In order to achieve the com-
putational benefits of the sparse form, the algorithms explicitly
break these weak links.

The Sparse Extended Information Filter sparsification strat-
egy approximates the conditional independence between the
robot and most of the map. We have examined the conse-
quences of performing inference based upon this approxima-
tion to the SLAM posterior. The results demonstrate that the
SEIF estimates for the robot pose and map suffer from global
inconsistency, yet they empirically preserve relative relation-
ships.

We have presented the Exactly Sparse Extended Informa-
tion Filter as an efficient feature-based SLAM algorithm. The
ESEIF maintains an exactly sparse information matrix with-
out incurring additional global or local inconsistency. The pa-
per has shown that occasionally marginalizing the robot pose
from the distribution and subsequently relocalizing the vehi-
cle within the map allows us to control the number of active
features and, in turn, the population of the information matrix.
The ESEIF then takes advantage of the benefits of a sparse
canonical parametrization while maintaining conservative ro-
bot pose and map estimates.

We demonstrated the consistency of the ESEIF through a
series of controlled linear Gaussian simulations. The algo-
rithm was then applied to two different nonlinear datasets in-
cluding a benchmark SLAM experiment. The results reveal
that the ESEIF maintains estimates nearly identical to those
of the EKF with savings in computation time and memory re-
quirements. The ESEIF offers an improvement in scalability
while it maintains estimates that are both globally and locally
conservative.
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