
Lecture 4: Geometrical Theory of Diffraction (continued) and

the Shallow Water Theory

Joseph B. Keller

1 Introduction

In this lecture we will finish discussing the reflection from a boundary (Section 2). Next, in
Section 3 we will switch to the geometric theory of diffraction without formal details (see
[3]). Further, in Section 4, we will generalize the surface water wave theory to a case of
non-uniform depth (see [2]). This theory predicts infinite amplitude at the shoreline, hence,
in Section 5, the shallow water theory is introduced to fix that problem.

2 Reflection from a boundary

In the previous lectures we developed a method for solving the Helmholtz equation

∆U + k2n2(X)U = 0. (1)

It yields an asymptotic approximation like geometrical optics. It was applied to reflection
by a parabolic cylinder. Now let us analyze reflection of waves, in water of constant depth
h = const, by an arbitrary smooth boundary B, e.g. a vertical river bank. In this case the
velocity potential is given by an incident contribution φi and a reflected part φr. Since the
normal velocity on the boundary vanishes, ∂νφ|B = 0. The zero-order asymptotic solution
is given by

φ = φi + φr ∼ zi
0(x)eikSi

+ zr
0(x)eikSr

. (2)

The condition of vanishing normal derivative yields

(

ik
∂

∂n
Si

)

eikSi
zi
0(x) + eikSi ∂

∂n
zi
0(x) +

(

ik
∂

∂n
Sr

)

eikSr
zr
0(x) + eikSr ∂

∂n
zr
0(x) ∼ 0. (3)

Upon equating the exponents in (3), we get

Si = Sr on B. (4)

Then upon equating to zero the coefficient of k in (3), we get

zi
0

∂

∂n
Si + zr

0

∂

∂n
Sr = 0. (5)
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¿From (4), the tangential derivative ∂si

∂τ equals ∂sr

∂τ . Then from the eiconal equation, the
normal derivatives are related by

(

∂Si

∂n

)2

= n2 −
(

∂Si

∂τ

)2

= n2 −
(

∂Sr

∂τ

)2

=

(

∂Si

∂n

)2

. (6)

Thus ∂Sr/∂n = ±∂Si/∂n. The “+” sign would yield Sr(x) ≡ Si(x), so we must choose the
“−” sign

∂Sr

∂n
= −∂Si

∂n
. (7)

Then (5) yields
zr
0 = zi

0 on B. (8)

From ∂Sr/∂τ = ∂Si/∂τ and (7) we get law of reflection, familiar from geometrical optics.

Instead of a rigid boundary, we can also consider the impedance boundary condition

∂

∂n
φ + ikZφ = 0. (9)

This condition is frequently used in electrodynamics, and in acoustics for compliant bound-
aries. In this case it follows that

sr(X) = si(X), X on B, (10)

zi
0

(

∂si

∂ν + Z
)

+ zr
0

(

∂sr

∂ν + Z
)

= 0, X on B, (11)

zi
m

(

∂si

∂ν + Z
)

+ zr
m

(

∂sr

∂ν + Z
)

+
∂zi

m−1

∂ν +
∂zr

m−1

ν = 0, m ≥ 1, X on B. (12)

In terms of the incidence angle α and the impedance Z, (11) gives the reflection coefficient

zr
0

zi
0

=
n cos α − Z

n cos α + Z
, (13)

again for X on B.
Fermat’s principle of geometrical optics follows from the eiconal equation. It states

that a ray travelling between two points takes the path with the shortest optical distance.
For media with n(x) = const, we can find this path by imagining a string tightly spanned
between these two points. Then the ray path will lie along this string.

To calculate the wave field numerically one often uses the finite element method. Due
to the oscillatory nature of the wave field, this procedure requires very small elements. But
we know that the leading order approximation has the form zi

0(x)eikSi
+zr

0(x)eikSr
. We can

use this ansatz, calculating the phase by means of rays. After that the amplitudes zi
0(x)

and zr
0(x) can be calculated by the finite element method. This allows us to use much larger

elements.
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Figure 1: Scattering by a smooth object. Regions for asymptotic expansion: A - region of
ordinary geometrical optics, B - point at which incident rays are tangent to the boundary,
S - the object boundary, C - shadow boundary, D - shadow region.

3 Geometrical theory of diffraction

The asymptotic expansion method presented in the previous lectures is incomplete because
of phenomena which are usually not taken into account by ordinary geometrical optics.
Let us for example consider water waves being scattered by an island which we assume
to be an oval-shaped object with smooth boundary. From ordinary geometrical optics
follows that there exists a shadow region D (see Figure 1) in which the intensity of waves
is zero. This region is separated from the region A, reached by incident and reflected
rays, by a surface called the shadow boundary. Obviously, along this boundary the solution
obtained by the ordinary geometrical optics method is discontinuous. However, this is in
sharp contradiction with the fact that solutions of the Helmholtz equation (1) are smooth
away from the boundary. Agreement of asymptotic solutions with actual solutions can be
achieved by introducing boundary layer solution in the neighborhood of shadow boundaries.
They can be found by using asymptotic expansions of certain exactly solvable problems,
or constructed by boundary layer techniques. The construction of asymptotic solutions
requires different expansions in different regions.

We first will consider asymptotic solutions in the shadow region D. The only rays which
reach this region are rays diffracted by the boundary S. They are called surface diffracted
rays. To construct them we introduce surface rays (or creeping rays) which propagate
along the boundary S. The point B (see Figure 2) on the boundary between the shadow
region D and the illuminated region A acts as a source for these rays. Note that at this
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Figure 2: Surface diffracted rays omitted by the propagating surface ray starting at the
point B.

point the incident ray is tangent to the boundary. Therefore, the incident ray splits into
two branches. One branch goes along the shadow boundary C while the other is the ray
travelling along the boundary S. The latter radiates surface diffracted rays into the shadow
region, and therefore the boundary S acts as a secondary source. Because of this radiation,
the intensity on the surface decays exponentially with distance along the ray. The surface
ray travels infinitely many times around the boundary. Thus it sends an infinite number of
surface rays to each point in the shadow, and also to each point in the illuminated region.
Thus the complete wave field in the shadow region is an infinite sum of diffracted fields on
surface diffracted rays.

The wave field on and near the shadow boundary can be obtained by using boundary
layer theory. It yields Fresnel integrals which were used in the method of stationary phase.
In the neighborhood of the separation point B there is yet another kind of asymptotic
solution, given by the Fock function.

The asymptotics of the wave field in the neighborhood of the boundary S can be obtained
from the exact solution of the Helmholtz equation for diffraction by a circular cylinder of
radius a. In cylindrical coordinates a mode of the two dimensional wave field can be written
as

u = eiνθH(1)
ν (kr). (14)

Here H
(1)
ν , the Hankel function of first kind [1], is outgoing. Suppose the boundary condition

is u(r)|r=a = 0. This leads to the equation

H(1)
ν (ka) = 0. (15)
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Figure 3: The Lamé curve.

This equation (15) has infinitely many complex roots νm. The asymptotic behaviour of νm

for ka ≫ 1 is given by

νm ∼ ka + (ka)
1

3 τmeiπ/3. (16)

When (16) is used for ν in (14), u becomes

um = eiνmθH(1)
νm

(kr) ∼ eikaθ+ieiπ/3τm(ka)1/3θH(1)
νm

(kr). (17)

The result (17) shows that a single mode um(r, θ) decays exponentially with θ at a rate
proportional to (ka)1/3. For a noncircular boundary , the local decay rate can be obtained
by replacing a by the local radius of curvature a(s) and setting dθ = a−1(s)ds. Then the
exponent for the n-th mode becomes

iks + ieiπ/3τmk1/3

∫ s

0

(

a(s′)
)

−2/3
ds′. (18)

The amplitude of each mode also involves diffraction coefficients at the point B, where the
surface ray begins, and at the point B′ where it leaves the surface. Then the total field in
the shadow is a sum of all the modes.

When a wave is diffracted by an axially symmetric object in three dimensions, the
diffracted waves have a caustic along the axis. This yields a bright spot in the cross-section
of the shadow. The wave field on and near this caustic can be expressed in terms of Bessel
functions.

Now let us consider diffraction of a normally incident plane wave by a planar screen
of arbitrary shape, with a smooth boundary S. Instead of a bright spot, there is a bright
curved line in each normal cross-section of the shadow. The form of the bright line is
given by the evolute of the curve S, and it is a caustic of the edge diffracted rays. For a
planar curve, the evolute is the locus of centers of curvature of the normals to the curve.
For example, for an ellipse the bright line is given by the Lamé curve, see Figure 3. To
summarize: an asymptotic solution will usually consist of a sum of waves. Every wave
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is constructed by means of rays. They are obtained by solving the ray equations. Then
the phase S and the amplitude z0 are found along each ray by the formulae given above.
The other zm can be found as solutions of the appropriate transport equations. This same
approach is used in the next sections.

4 Surface waves on water of nonuniform depth

Previously we suggested that in water of nonuniform depth, we could determine the wave
motion by using the reduced wave equation. That suggestion yields the correct phase, but
not the correct amplitude. Therefore we shall now present an analysis which determines
correctly both the phase and the amplitude1.

As before, we assume that the water is inviscid, incompressible and in irrotational
motion. It is bounded above by an unknown free surface Z = ℜ[eiωtη(x, y)] (η is the
complex amplitude of the surface wave motion of angular frequency ω) and bounded below
by a rigid, non-uniform surface Z = −H(x, y). The exact linear theory of surface waves
yields for the free surface height

η(x, y) =
iω

g
Φ(x, y, 0),

where Φ(x, y, Z) is the velocity potential and g is the gravitational acceleration2.

The velocity potential satisfies (see Stoker [5])

∆Φ = 0 in 0 ≧ Z ≧ −H(x, y), (19)

ΦZ = βΦ on Z = 0 (β = ω2/g), (20)

ΦZ + HxΦx + HyΦy = 0 on Z = −H(x, y). (21)

In the constant-depth case, the solution decays exponentially with depth, so short waves
do not “feel” the bottom. To keep the influence of the depth variability, we rescale the
vertical axis by introducing

z = βZ, h = βH, φ(x, y, z) = Φ(x, y, Z). (22)

Then the problem (19)-(21) becomes that of finding solutions φ of the set of rescaled
equations

β2φzz + φxx + φyy = 0 in 0 ≧ z ≧ −h(x, y), (23)

φz = φ on z = 0, (24)

β2φz + hxφx + hyφy = 0 on z = −h(x, y). (25)

1It fails at the shoreline, where there is a boundary layer, see Section 5.
2The reason for using upper-case letters is to save the lower-case ones for the rescaled variables.
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We seek solutions of (23)-(25) for large values of β.

Motivated by the constant-depth solution, we express φ in the form

φ = A cosh [k(z + h)]eiβS . (26)

Here k = k(x, y), S = S(x, y) and A(x, y, z, β) are functions to be determined.

Plugging (26) into the system of equations (23)-(25) leads to

β2
(

(k2 − (∇S)2)A cosh α + Azz cosh α + 2kAz sinhα
)

+

+iβ
(

(∇2S)A cosh α + 2∇S · ∇(A cosh α)
)

+ ∇2(A cosh α) = 0, (27)

Az cosh kh + kA sinh kh = A cosh kh z = 0, (28)

β2Az + iβA∇h · ∇S + ∇h · ∇A = 0 z = −h. (29)

Here α = k(z + h) and ∇ = (∂/∂x, ∂/∂y).

Next we assume that A admits the following asymptotic expansion for large β:

A(x, y, z, β) ∼ A0(x, y) +

∞
∑

n=1

An(x, y, z)/(iβ)n. (30)

Again, motivated by the constant-depth case, we have assumed that the first term A0 does
not depend on the vertical coordinate. We also assume that termwise differentiation in (30)
is allowed.

Inserting the asymptotic expansion (30) into (27)-(29), and equating coefficients of the
corresponding powers of β, we obtain the following three systems of equations:







































(∇S)2 = k2

(A1)zz cosh α + 2k(A1)z sinh α = 2∇S · ∇(A0 cosh α) + A0 cosh α∇2S

(An)zz cosh α + 2k(An)z sinhα = 2∇S · ∇(An−1 cosh α) + An−1 cosh α∇2S+

+∇2(An−2 cosh α) (n ≧ 2),

(31)







k tanh kh = 1

(An)z = 0 at z = 0 (n ≧ 1),
(32)

and, finally,







(A1)z = A0∇h · ∇S at z = −h

(An)z = An−1∇h · ∇S + ∇h · ∇An−2 at z = −h (n ≧ 2).
(33)
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The first equation in (32) determines k(x, y) as a function of the known depth h(x, y).
Then the eiconal equation (∇S)2 = k2 can be solved for S(x, y) by the ray method discussed
in the previous lectures.

In order to find the amplitude A0, we use the identity

(An)zz cosh α + 2k(An)z sinhα =

(

(An)z cosh2 α
)

z

cosh α
. (34)

Inserting (34) into (31.2) we obtain
(

(A1)z cosh2 α
)

z
= (2∇S · ∇A0 + A0∇2S) cosh2 α + A0∇S · ∇ cosh2 α. (35)

Now we integrate (35) from 0 to z, using the boundary conditions (32.2)

(A1)z cosh2 α =
1

2

(

2∇S · ∇A0 + A0∇2S + A0∇S · ∇
) (

k−1[sinhα cosh α − sinh kh coshkh] + y
)

.

(36)

Solving (36) will give A1 up to an additive function of (x, y), if A0 is known.

Next we set z = −h in (36) and eliminate (A1)z , using the boundary condition (33.1).
This leads to an equation for A0

2A0∇h · ∇S = −(2∇S · ∇A0 + A0∇2S)(sinh2 kh + h) + A0∇S · (∇h −∇ sinh2 kh). (37)

Equivalently, (37) can be written

∇S · ∇
(

A2
0(sinh2 kh + h)

)

+
(

A2
0(sinh2 kh + h)

)

∇2S = 0. (38)

We note that ∇S · ∇ = k(d/dτ), where τ measures arc-length along a ray. Then the
solution of (38) can be written in the form

A2
0(sinh2 kh + h) = [A2

0(sinh2 kh + h)]τ0 exp

(

−
∫ τ

τ0

k−1∇2Sdτ

)

. (39)

In [4], Luneberg has shown that the exponential above is given by

exp

(

−
∫ τ

τ0

k−1∇2Sdτ

)

=
k(τ0)

k(τ)

da(τ0)

da(τ)
. (40)

Here da(τ) is the width of an infinitesimally narrow strip of rays at τ . Plugging (40) into
(39), we finally get the following equation for A0 along a ray:

A2
0(sinh2 kh + h)k da = const. (41)

Equation (41) simply expresses the fact that the energy flux is constant along a tube of rays.
By using (41) for A0(x, y) in (26), we get the leading term in the asymptotic expansion of
φ in water of variable depth.

The amplitude A0 is infinite at the shoreline, where h = 0 . This means that there is a
boundary layer at the shore. To analyze the solution in this layer, we use the shallow water
theory, which is introduced in the next section.
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5 Shallow water theory

The main reference for this section is Stoker’s famous monograph [5]. For simplicity, we
consider the 2-dimensional case with horizontal x-axis and vertical z-axis. The free surface
is given by z = η(x, t), while the bottom is z = −h(x). The equation of continuity for the
components u(x, z, t) and v(x, z, t) of the water velocity is

ux + vz = 0. (42)

At the free surface we have both the kinematic condition

(ηt + uηx − v) |z=η = 0 (43)

and the dynamic condition
p |z=η = 0 . (44)

The bottom boundary condition is

(uhx + v) |z=−h = 0. (45)

Integrating (42) gives
∫ η

−h
uxdz + v |η

−h = 0. (46)

Using the top and bottom boundary conditions in (46) leads to

∫ η

−h
uxdz + ηt + u |η · ηx + u |−h · hx = 0 . (47)

We can rewrite (47) as
∂

∂x

∫ η

−h
udz = −ηt . (48)

Notice that up to this point no approximation has been introduced. The sole approxi-
mation of the shallow water theory is to ignore the vertical acceleration. This is assumed
because the water is shallow. Hence the pressure is given as in hydrostatics, namely

p = gρ(η − z). (49)

Here ρ is the water density and g is the acceleration of gravity. Differentiating (49) with
respect to x gives

px = gρηx. (50)

Note that since ηx is independent of y, so is px.

Next, we assume that u is independent of z at t = 0 (This is true if the water is
initially at rest). This will imply that u is independent of z at all times, since its horizontal
acceleration ρ−1px does not depend on z either, as (50) shows. Then (48) becomes

[u(η + h)]x = −ηt . (51)
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Figure 4: The “bore” formation.

The Eulerian equation of motion for u(x, t) is

ut + uux = −gηx . (52)

Eqs. (51) and (52) constitute the (nonlinear) shallow water theory for determining u and
η.

When u and η and their derivatives are small enough, we can linearize (51) and (52).
This yields the linear shallow water theory, in which u and η satisfy







ut = −gηx,

(uh)x = −ηt.
(53)

Eliminating η from (53) yields

(hu)xx − 1

gh
(hu)tt = 0. (54)

We have multiplied and divided by h(x) to get the linear wave equation for the quantity
(hu). The propagation speed is

√
gh. If h = const, (54) is a linear wave equation just for u.

The linear shallow water theory is used for the tides, where large wavelengths are involved.

The equations of the nonlinear shallow water theory admit an interesting analogy with
the differential equations of gas dynamics. Let us define ρ̄, the mass per unit area, by

ρ̄ = ρ(η + h). (55)

¿From (55)
ρ̄t = ρηt. (56)
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Then the force per unit width p̄ =
∫ η
−h p dz is given by

p̄ =
gρ

2
(η + h)2 =

g

2ρ
ρ̄2. (57)

Now we multiply (52) by ρ(η + h) to get

ρ(η + h)(ut + uux) = −gρ(η + h)ηx . (58)

Then using (55) and (57), we can write (58) as

ρ̄(ut + uux) = −p̄x + gρ̄hx . (59)

In terms of ρ̄, we can write (51) as

(ρ̄u)x = −ρ̄t. (60)

The equations (57), (59) and (60) are exactly the equations for the one dimensional flow of
a compressible gas with adiabatic exponent γ = 2 and an external force gρ̄hx . This force
vanishes when the depth is uniform. The sound speed is

c =

√

gρ̄

ρ
=

√

g(η + h). (61)

This is the speed of a small disturbance.

As in gas dynamics, the solutions of the nonlinear shallow water equation cease to be
single valued at a finite time for certain initial conditions. They can be made single val-
ued by introducing a discontinuity, called a “shock” in gas dynamics, and a “bore” in water
waves. See Fig. 4. Such discontinuities can be observed in some rivers, and in kitchen sinks.

Notes by Khachik Sargsyan and Walter Pauls.
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