Ecological modelling – the issues

Examining patterns of marine mammal distributions to insights into ecological processes

Edward Gregr
Ecological modelling workshop
Quebec City
October 11, 2009

Why model?

- Models are how we understand the world
 - We see our world through implicit cognitive models
 - We learn about our world using formal descriptions

- For marine mammals
 - What?
 - Distribution, abundance, ecosystem role, stock structure
 - Why?
 - Ecology, conservation, competition studies, critical habitat, EBM, MPAs, climate change

Challenges to effective modelling

- Complexity
 - Accuracy, precision & uncertainty

- Data sources and limitations

- Space and scale

- Model evaluation & testing

Accuracy, precision, & uncertainty

Uncertainty:
- Parameter estimation
- Observational
- Design
- Stochasticity

Complexity can increase in a number of ways, including biologically, spatially, and temporally

Does model complexity guarantee a better model?

Not necessarily …
Data sources

Biological
- Systematic surveys, tagging
- Platforms of opportunity, historic observations, catch data

Physical
- Field sampling, remote sensing, circulation models, floats

For most applications, need continuous predictions over large spatial extents

Data considerations

- Field data
 - Limited in time and space
 - Effort bias?

- Opportunistic data
 - Always effort biased
 - Absences rarely recorded

- Defining a sampling unit
 - Mixed resolution data sets
 - Gridded data
 - Autocorrelation
 - Collinearity

Effort bias

- Work concentrated on-shelf
- Species are often cosmopolitan in distribution

Does sampling cover a species’ range?

Getting physical with biology

- Systematic data
 - Presence-absence
 - Standard correlative methods (e.g., regression)
- Opportunistic data
 - Presence-only
 - Envelope models (e.g., BioClim)
 - Machine learning (e.g., MaxEnt)
 - Niche breadth (e.g., ENFA)

Defining a sampling unit

- Spatio-temporal resolution
- Depends on data
- Depends on the question
 - Pattern or process?

Gridding your data
(raster aspects of scale)

- Extents
 - Influence of study area size on analysis
 - Prediction \(\rightarrow\) extrapolation?
 - Prevalence \(\rightarrow\) presence-only analyses
- Resolution
 - Autocorrelation
 - Influences summary results
Effects of grid cell size ...

Pr(x) = 5/16 = 0.3125
Pr(x) = 4/4 = 1.0

Sinclair (2007): Area impacted by trawl:
30,000 km² at 5x5 km²
9,000 km² at 1x1 km²

Evaluation and testing

- Most important
- Frequently ignored
- Recognise that not all models need same level of validation (Rykiel 1996)
- Sensitivity analysis can increase confidence in model accuracy

Model evaluation

- Correlation studies
 - Statistical assumptions regularly violated
- Performance based on contingency table

\[
\begin{array}{cc}
+ & - \\
+ & a & b \\
- & c & d \\
\end{array}
\]

• CHI square
• ROC plot
• Kappa statistic

Presence-only data contain no true (i.e., observed) absences.

Possible solutions

- Pseudo-absence data
 - Assumes no bias in presence sampling
 - Influenced by extent of study
- Null model comparisons
- Skewness test
 - Let the presence data tell you what is best

Skewness

Assumption:
- A better model gives higher probabilities at “presence” locations
- i.e., the distribution of probabilities at observations will be more negatively skewed

Model comparison

WA – Winter accessibility
PS – Population-based suitability
HS1 – Partial habitat suitability model
HS2 – Full habitat suitability model

Gregr and Trites 2008. Marine Ecology Progress Series
Two warnings …

• Spatial models are pattern descriptions. Describing patterns is potentially risky (just ask stock assessment).

• Sample unit definition requires data pooling. Pooling creates biases in data that can lead to unexpected results.

Modelling tips

• Ask a clear question
• Add complexity only where necessary
• Judiciously ignore available data
• Ensure transparency
 – in purpose
 – in relationships between inputs and outputs
• Document assumptions and limitations
• Pay attention to sensitivity and validation
• Remember that all models are wrong
• Terrestrial literature is informative, but not always useful

“If we study a system at an inappropriate scale, we may not detect its actual dynamics and patterns but may instead identify patterns that are artifacts of scale. Because we are clever at devising explanations of what we see, we may think we understand the system when we have not even observed it correctly.” – Wiens (1989).