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a b s t r a c t

Models predicting species spatial distribution are increasingly applied to wildlife manage-

ment issues, emphasising the need for reliable methods to evaluate the accuracy of their

predictions. As many available datasets (e.g. museums, herbariums, atlas) do not provide

reliable information about species absences, several presence-only based analyses have

been developed. However, methods to evaluate the accuracy of their predictions are few and

have never been validated. The aim of this paper is to compare existing and new presence-

only evaluators to usual presence/absence measures.

We use a reliable, diverse, presence/absence dataset of 114 plant species to test how com-

mon presence/absence indices (Kappa, MaxKappa, AUC, adjusted D2) compare to presence-

only measures (AVI, CVI, Boyce index) for evaluating generalised linear models (GLM). More-

over we propose a new, threshold-independent evaluator, which we call “continuous Boyce

index”. All indices were implemented in the BIOMAPPER software.

We show that the presence-only evaluators are fairly correlated (� > 0.7) to the pres-

ence/absence ones. The Boyce indices are closer to AUC than to MaxKappa and are fairly

insensitive to species prevalence. In addition, the Boyce indices provide predicted-to-

expected ratio curves that offer further insights into the model quality: robustness, habitat

suitability resolution and deviation from randomness. This information helps reclassify-
ing predicted maps into meaningful habitat suitability classes. The continuous Boyce index

is thus both a complement to usual evaluation of presence/absence models and a reliable

nly based predictions.

assessing ecological impacts of various factors (e.g. pollution,
measure of presence-o

1. Introduction

Models predicting the spatial distribution of species (Boyce
and McDonald, 1999; Guisan and Zimmermann, 2000; Manly et

al., 2002; Pearce and Boyce, 2006) – sometimes called resource
selection function or habitat suitability models – are currently
gaining interest. As they often help both in understanding
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species niche requirements and predicting species potential
distribution, their use has been especially promoted to tackle
conservation issues, such as managing species distribution,
ment of Ecology and Evolution, University of Lausanne, CH-1015

climate change), risk of biological invasions or endangered
species management (Scott et al., 2002; Guisan and Thuiller,
2005). These models statistically relate field observations to
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one may use threshold-independent methods, like Kmax (or
MaxKappa, Guisan et al., 1998) and area under the curve (AUC,
Zweig and Campbell, 1993; Fielding and Bell, 1997). The Kmax

index is the highest Kappa obtained when varying the thresh-
e c o l o g i c a l m o d e l l i n

set of environmental variables, presumably reflecting some
ey factors of the niche, like climate, topography, geology or

and-cover. They produce spatial predictions indicating the
uitability of locations for a target species, community or bio-
iversity. Different types of modelling techniques are used to
t different types of biological information recorded at each
ample site: (1) presence-only: occurrences of the target species
re recorded; (2) presence/absence: each sample site is carefully
onitored so as to assert with sufficient certainty whether

he species is present or absent. With plants, for instance, it is
ommonly done by listing exhaustively all species present in
ach sample site. The reliability of absences depends on the
pecies’ characteristics (e.g. biology, behaviour, history) (Hirzel
t al., 2001), their local abundance and ease of detection (Kéry,
002), and the survey design (Mackenzie and Royle, 2005). More
arely, data record information about species’ abundance or
emography (e.g. growth rate, survival).

Although models based on presence-only and pres-
nce/absence data provide the same kind of predictions (e.g.
abitat suitability scores), they generally cannot use the same
echnique. This is because presence-only methods cannot
ontrast their predictions with the characteristics of places
here the species is absent. This partly explains why pres-

nce/absence methods have known a greater development.
hese differences, and the lack of absences, make compari-
on of the two model types difficult (Zaniewski et al., 2002).

Assessing the predictive power of a model is of paramount
mportance, both for theoretical and applied issues. However,

hile presence/absence models have received a lot of atten-
ion and many evaluators are available for them (Fielding
nd Bell, 1997), evaluation of presence-only models is lagging
ehind. There is therefore a crucial need for reliable presence-
ased evaluation measures, as well as an assessment of how
hey compare to the presence/absence measures.

The main problem of presence-only evaluation measures
s the lack of absences to counterbalance the presences. It
s thus difficult to discriminate a model predicting presence
verywhere from a more contrasted model. Attempts to solve
his problem have followed two main approaches: (1) a first
pproach is to generate pseudo-absences and then apply the
tandard presence/absence techniques (e.g. Zaniewski et al.,
002; Anderson et al., 2003). (2) A second approach is to assess
ow much the model predictions differ from random expec-
ation (e.g. Boyce et al., 2002; Hirzel et al., 2002; Reutter et al.,
003). In this category, the index recently proposed by Boyce
t al. (2002) offers new insights. We tested it thoroughly and
erived a new evaluator from it, which does not depend on
he choice of boundaries between habitat suitability classes.

third original approach, proposed by Ottaviani et al. (2004),
s based on compositional analysis. However, it is restricted
o cases where evaluation data are in the form of polygons or
arge mapping units (e.g. large grid cells in an atlas), and thus
oes not apply here.

In this paper, we present various presence-only evaluation
easures. To validate them, we build 114 presence/absence
odels chosen for the reliability of their absences and eval-
ate them with presence-only and presence/absence evalua-
ors. We test correspondence between them and discuss how
he new “Boyce indices” can improve the interpretation and
tilisation of habitat suitability models.
9 ( 2 0 0 6 ) 142–152 143

2. Materials and methods

We define a habitat suitability (HS) map as composed of cells
(or pixels) whose quantitative values range from 0 to 1. These
values indicate how close the local environment is to the
species’ optimal conditions, higher values standing for the
most suitable areas. This map may result from any statistical
analysis (Guisan and Zimmermann, 2000; Pearce and Boyce,
2006). The models’ evaluation consists in quantifying how
accurately the map is predicting the presence and absence of
the species (Buckland and Elston, 1993; Manel et al., 2001), as
given by a set of evaluation points. This set may consist either
of verified presences and absences, or of verified presences
only. Optimally, this data set should be completely indepen-
dent from the data used to calibrate the model, e.g. collected
on other areas (Randin et al., in press). However, due to time
and money constraints, most studies have only one dataset
and have to split it between a calibration and an evaluation
sets. This is the method we use in this paper.

2.1. Evaluation indices

Most measures currently used in the literature are based on
presence/absence information. Their first step generally con-
sists of choosing a habitat suitability threshold (often 0.5) sup-
posed to separate unsuitable areas (HS below threshold) where
the species should be absent, from suitable areas (HS above
threshold) where it should be present. From this Boolean map,
one builds the confusion matrix, which counts how many pres-
ence and absence evaluation points occur in the suitable and
unsuitable areas (Fig. 1). Many evaluators are based on this
matrix (see Fielding and Bell, 1997), the commonest being the
Kappa index K (Cohen, 1960):

K = N
∑

xii −
∑

xi·x·i
N2 −

∑
xi·x·i

(1)

where x and N are counts of evaluation points as defined in
Fig. 1. K varies from −1 to 1, high values indicating a good
agreement between prediction and data, and 0 corresponds to
random agreement.

These methods depend strongly on the suitability cut-
off threshold, which is often chosen arbitrarily. Alternatively,
Fig. 1 – Contingency table of the model predictions against
the actual observations. The xij represent counts of
evaluation points, with N = �xij.
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Fig. 2 – Curve of the true presence fraction (=x11/x·1) against
the false presence fraction (=x12/x·2) computed for all
possible cut-off points between 0 and 1. The AUC is the
“area under the curve” and practically varies between 0.5

(not different from random expectation) and 1 (best model).

old from 0 to 1. The AUC is obtained by plotting, for each
threshold in this range, the proportion of true positive x11/x·1
against the proportion of false positive x12/x·2 and by comput-
ing the area under the curve thus defined (Fig. 2). The AUC
varies between 0 (worse-than-random model), 0.5 (random
model) and 1 (best discriminating model).

When absence data are unreliable or unavailable, the
model evaluation should be assessed for presences only. For
this purpose, one possibility is to compare the model results
to what would be expected from chance alone. Two simple
evaluators are the absolute validation index (AVI) and contrast
validation index (CVI) (Hirzel and Arlettaz, 2003; Hirzel et al.,
2004). The AVI is the proportion of presence evaluation points
falling above some fixed HS threshold (e.g. 0.5); it varies from
0 to 1. The CVI is the AVI minus the AVI of a model predicting
presence everywhere (chance model), and varies from 0 to 0.5.
As for the Kappa index, this approach suffers from having to
choose an arbitrary threshold.

Boyce et al. (2002) proposed a way to relieve somewhat the
threshold constraint. Their method consists in partitioning
the habitat suitability range into b classes (or bins), instead
of only two. For each class i, it calculates two frequencies: (1)
Pi, the predicted frequency of evaluation points:

Pi = pi
∑b

j=1pj

(2)

where pi is the number of evaluation points predicted by the
model to fall in the habitat suitability class i and

∑
pj is the

total number of evaluation points; (2) Ei, the expected frequency
of evaluation points, i.e. the frequency expected from a ran-
dom distribution across the study area. This is given by the

relative area covered by each class:

Ei = ai
∑b

j=1aj

(3)
1 9 9 ( 2 0 0 6 ) 142–152

where ai is the number of grid cells belonging to habitat suit-
ability class i, or area covered by the class i, and �aj is the
overall number of cells in the whole study area.

Finally, for each class i, the predicted-to-expected (P/E) ratio Fi

is given by

Fi = Pi

Ei
(4)

If the habitat model properly delineates the species suitable
areas, a low suitability class should contain fewer evaluation
presences than expected by chance, resulting in Fi < 1. Con-
versely, high suitability classes should have Fi increasingly
higher than 1. The plot of P/E against the mean habitat suitabil-
ity of each class thus provides a handy interpretation tool. In
such a context, a good model is expected to show a monoton-
ically increasing curve, i.e. Fi increase as suitability increases.
Boyce et al. (2002) measure this monotonic increase by the
Spearman rank correlation coefficient between Fi and i. This
“Boyce Index” Bb varies from −1 to 1. Positive values indicate a
model whose predictions are consistent with the presences
distribution in the evaluation dataset, values close to zero
mean that the model is not different from a chance model,
negative values indicate an incorrect model, which predicts
poor quality areas where presences are more frequent.

The main shortcoming of the Boyce index is its sensitivity
to the number of suitability classes b and to their boundaries
(Boyce et al., 2002; personal observations). To fix this problem,
we derived a new evaluator based on a “moving window” of
width W (say W = 0.1) instead of fixed classes. Computation
starts with a first class covering the suitability range [0,W]
whose P/E ratio is plotted against the average suitability value
of the class, W/2. Then, the moving window is shifted from a
small amount upwards and the P/E is plotted again. This oper-
ation is repeated until the moving window reaches the last
possible range [1 − W, 1]. This provides a smooth P/E curve, on
which a “continuous Boyce index” Bcont(W) is computed.

One of the main differences between the Boyce indices and
the classical evaluators is that they require the HS prediction
to be computed on the whole study area. For maps with low
number of pixels, the whole information can be imported into
a statistical application; however, in most cases their compu-
tation must be done within a GIS, or a program having direct
access to the GIS data files. We have thus implemented all
these evaluators into the free software BIOMAPPER (Hirzel et
al., 2006), which works directly on GIS files and controls the
free statistical application R (R Development Core Team, 2005)
to compute the GLMs.

2.2. Cross-validation

All the evaluation methods presented above provide a sin-
gle measure of the model predictive power. k-fold cross-
validation is a resampling approach that allows assessment
of the robustness of this measure (Van Houwelingen and Le
Cessie, 1990; Fielding and Bell, 1997; Hastie et al., 2001). More-

over, it also enables one to evaluate a model even when the
species dataset is small, as it ensures an optimal use of the
data to calibrate and evaluate the model. Cross-validation
consists of randomly dividing the dataset into k independent
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artitions, using k − 1 of them to calibrate the model, and com-
uting the evaluator on the left-out partition. This procedure

s repeated k times, each time leaving out another partition.
his produces k estimations of the evaluator, allowing assess-
ent of its central tendency and variance (in this study, we

sed median and 90%-confidence interval). The number of
artitions typically varies between 3 and 10, depending on the
umber of species points. This method assumes that the k
artitions are independent. See Hastie et al. (2001) for more
etails on cross-validation processes.

.3. Test dataset

n order to test and compare the above evaluators, reli-
ble data were required. We used data from 539 non-forest
ountain vegetation plots located in a ∼700 km2 area in

he external calcareous Alps of Canton de Vaud (6◦60′–7◦10′E
nd 46◦10′–46◦30′N, altitude ranging from 375 to 3210 m) in
witzerland. The sampling points were randomly stratified by
lasses of elevation, slope and aspect. The plants of each sam-
ling point were exhaustively inventoried (Randin et al., in
ress). Among these plants, we selected those species that ful-
lled three criteria: (i) species are easily detectable in the field
uring the sampling period, so that absences cannot be due
o the species being undetected; (ii) species cannot be con-
ounded with another sister species; (iii) species are at least
resent in 10 vegetation plots. The points (i) and (ii) guarantied
eliable presences and absences. We ended up with 114 species
hat were present in at least 10 cells and at most 249. These
ata were collected during three field-sampling periods, in the
ummers 2002–2004.

.4. Environmental variables

he environmental variables we used to fit the models are
nown to have a major direct ecophysiological impact on
lant species (Pearson et al., 2002; Dirnböck et al., 2003; Körner,
003). They were all calculated with a 25 m × 25 m spatial
esolution, as derived from the digital elevation models (DEM)
vailable in the study area (MNT25, Swisstopo). We calculated
lope from the DEM to account for gravitational processes act-
ng upon vegetation. The TOPO index indicates local convexity
f the topography, which is partly correlated with water accu-

ulation, snow persistence, nitrogen enrichment or wind

rotection. Basic climatic variables were obtained by spatial
nterpolation of climatic weather stations (monthly data
or the period 1961–1990), and then transformed into three

Table 1 – Environmental variables used to model habitat suitab

Variables Details

Moisture (mm day−1) Monthly average of daily atmospheric w
September

Degree-days (◦C day) Number of days with mean temperature
temperature

Global solar radiation
(kJ m−2 day−1)

Monthly average of daily global solar rad

Slope (degrees) Slope inclination
Topo Topographic convexity
9 ( 2 0 0 6 ) 142–152 145

physiologically meaningful bioclimatic variables: degree-days
(with 0 ◦C as threshold of plant growth), moisture index over
the growing season (June–August) and potential global solar
radiation of the growing season (see Table 1 and references
therein). Details on these variables can be obtained in Randin
et al. (in press).

2.5. Habitat suitability modelling

We used generalised linear models (GLM, McCullagh and
Nelder, 1989) with a binomial probability distribution and
a logit link to compute the habitat suitability maps based
on presence/absence data. In a first step, we computed
generalised linear models (GLMs) (as implemented in R,
R Development Core Team, 2005) for the whole pres-
ence/absence dataset. To prevent the models’ sensitivity to
species prevalence, we weighted the absence points so as to
have a presence/absence ratio of 1:1. The independent vari-
ables were those listed in Table 1. For each species, the relevant
variables of the model were selected by a stepwise proce-
dure based on the AIC criterion (Akaike, 1973; S-Plus, 1999);
whenever a variable was retained in its squared form, we
forced its linear form to be also included (T. Hastie, personal
communication). The retained model was then fixed and, in
a second step, we applied a k-fold cross-validation process
(with k = 5) using only the retained variables. To ensure a simi-
lar presence/absence ratio between all partitions, the random
selection of the k partitions was done independently for the
presence and absences data. Presences and absences were
weighted as in the full model. This produced five GLM models
and five HS maps for each species.

2.6. Evaluation index comparisons

Each HS map resulting from the cross-validation was evalu-
ated by D2

adj, K, Kmax, AUC, AVI and CVI. In comparison, to
investigate the sensitivity and the significance of the Boyce
index, we tested it with several number of classes b: B2, B4,
B5 and B10, as well as, in its continuous form, with the corre-
sponding class sizes: Bcont(0.5), Bcont(0.25), Bcont(0.2) and Bcont(0.1).
B10 corresponds to the number of classes used by Boyce et al.
(2002). We tested B2 as it was expected to be more comparable
to two classes evaluators like K, AVI and CVI. Moreover, the

GLM fit to the calibration data was evaluated by the adjusted
explained deviance D2

adj, which corresponds to the amount of
deviance explained by the model corrected by the effective
number of degrees of freedom used to build the model (Guisan

ility of the 114 plants

References

ater balance from July to Zimmermann and Kienast (1999)

above 0 ◦C time their mean Prentice et al. (1992)

iation from July to September Kumar et al. (1997)

ArcInfo (2004)
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and Zimmermann, 2000). We computed the median and 90%-
confidence interval of each evaluator for the five HS maps.
We finally plotted the medians of each evaluator against each
other for all species and computed their Pearson’s correlation
coefficient �. We validated the Boyce indices by comparison
to AUC and Kmax, as they are common threshold-independent
presence/absence evaluators.

3. Results

The chosen species cover a wide spectrum of ecological niche
types and sample size. The quality of their habitat suitability
models range from very bad to excellent. All the investigated
evaluation measures convey similar information, with Pear-
son correlation coefficients greater than 0.5 in most cases
(Table 2a). In particular, for the models where more than 50
presence points were available, most evaluators show more
than 70% of correlation (Table 2b).

Except for those based on very wide classes (B2 and
Bcont(0.5)), Boyce indices are highly correlated together, and
are moreover highly consistent with presence/absence
evaluators. They tend to be more correlated to AUC than
to Kmax; this tendency is stronger for the whole dataset
(Table 2a) than for the 48 most prevalent species (Table 2b). In
spite of having the same class pattern, B2 and Bcont(0.5) are but
weakly correlated to K, AVI and CVI; they both give the poorest
correlations and will not be considered further. The Boyce
indices most consistent with the AUC and Kmax were those
with the largest number of classes (or smallest window sizes),
B10, Bcont(0.1), B5 and Bcont(0.2). We tested more than 10 classes
but the variance of the P/E curves becomes too high (results
not shown). To simplify the discussion, we will from now on
only consider one evaluator of each type: D2

adj, AUC, Kmax, B10,
Bcont(0.1) and CVI (correlation graphs shown in Fig. 3). Although
all Boyce indices are highly correlated with K, we chose not
to consider this evaluator as it is not threshold-independent.

Fig. 4 shows the sensitivity of these evaluators to species
prevalence. Kmax is sensitive to species prevalence, tending to
give higher values to common-species models, while D2

adj and
CVI tend to give higher scores to low prevalence models. The
other evaluators are insensitive to prevalence (Fig. 4).

4. Discussion

On the range covered by the 114 studied plant species, and
according to the environmental characteristics of our study
area, all evaluators convey correlated information. This is an
important result meaning that the presence-only evaluators
can be trusted.

4.1. Evaluator comparisons

As expected, the quality of the 114 GLM models fitted varies
greatly. Overall, the tested evaluators agree about their rank-
ing, in particular among prevalence-insensitive indices (AUC,

B10, Bcont(0.1)). The results show that Boyce indices tend to give
poor results when computed on a small number of classes. In
particular, B2 and Bcont(0.5) have a low correlation with almost
all evaluators, including those based on a fixed threshold as
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Table 3 – Median value taken by the evaluators
(minimum and maximum in brackets)

Evaluator Value

D2
adj 0.34 (0.07, 0.75)

AUC 0.88 (0.63, 0.99)
K 0.27 (−0.04, 0.70)
Kmax 0.49 (0.10, 0.82)
B10 −0.07 (−0.67, 0.65)
Bcont(0.1) −0.07 (−0.66, 0.61)
CVI 0.24 (−0.12, 0.98)
AVI, CVI and K. As the Boyce indices are based on the Spear-
man rank correlation, they are more sensitive to larger number
of classes. However, classes cannot be added indefinitely as
the variance among cross-validation partitions increases as
their width decreases. Ten classes (class width = 0.1) seems to
be the optimum, advocating for B10 and Bcont(0.1). We prefer
the later as it does not depend on any particular class cutting
thresholds.

The agreement between presence/absence and presence-
only measures tends to be lower when the species prevalence
is below 10% (<50 presences) (Tables 2). This is because a
low number of presences prevent presence-only evaluators
from assessing the overall quality of the model, whilst pres-
ence/absence evaluators can still rely on the fit between pre-
dicted and observed absences. Therefore, when presences are
scarce, presence/absence evaluators often give an intermedi-
ate score to the model on the base of absence predictions,
whilst presence-only evaluators assess the model as poor (cf.
evaluator ranges in Table 3 and Fig. 5). This redemption of the
model by the absences may be acceptable if the cost of over-
looking suitable habitat is not too high. It is important to take
such evaluation scale shifts into account for wildlife manage-
ment applications.

Why some models better predict absences than presences
may come from various causes. First, unreliable species data
may bring too much noise for a proper niche modelling. In
our case, as the species were carefully selected for the relia-
bility of their presence/absence dataset, we can mostly rule
out this effect. Second, the model accuracy depends on the
environmental variables relevance for the species. Although
we chose good general predictors for plants (Dirnböck et al.,
2003), some more specialised variables are obviously missing
for the badly modelled species. This was expected, and actu-
ally sought, as we wanted the model quality to cover as wide
a palette as possible. Thus, when the environmental variables
are irrelevant to the species niche, the model cannot efficiently
predict presences.

Most measures evaluate how well a model can predict
absence and presence. By contrast, the Boyce indices assess
the model ability to consistently predict several levels of suit-
ability. A complementary evaluation would be to apply the
same Boyce approach to the absences. In that case, one would

expect negative P/E curves, i.e. negative Spearman ranks. The
combination of these two facets of the Boyce indices seems
promising, as it would bring the power of continuous evalua-
tion to presence/absence models.
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Fig. 3 – Relationship between the main evaluators. Each point represents the median value of the evaluators computed on
the cross-validation partitions. The grey lines represent the interquartile range. The Pearson’s correlation coefficient is

indicated for each pair of evaluators.

4.2. Interpreting the P/E curves

While an evaluation index gives a summary of the model pre-
diction ability, the continuous P/E curves provide a wealth of
valuable insights into the model accuracy, offering three levels
of information.

First, the variance among the cross-validation curves gives
information about model robustness all along the HS range. The
narrowness of the confidence interval reflects the model sen-
sitivity to particular calibration points. As the variance often
fluctuate along the curve, one can thus determine which parts

of the model are the most accurate. For instance, a model could
provide trustable prediction for low suitability regions (good
absence prediction) but be more variable about high suitability
(bad presence prediction). Such information provides a finer
understanding of the weaknesses of the model. The manager
can then take these weaknesses into account when apply-
ing the predictions to management decisions. Alternatively,
these weaknesses may give clues about what parts of the pre-
dictions (e.g. absences) must be improved. In this study, we
indicate robustness by using cross-validation and providing a
confidence interval around the evaluators.

The second information level is related to the actual shape
of the P/E curve. An ideal model would have a linear P/E curve
and could thus predict habitat suitability with an infinitely fine
resolution. It means that the suitability index is really propor-

tional to the probability of use, as defined by Manly et al. (2002).
Real curves however may exhibit non-linear (e.g. exponential)
or staircase shapes. Wherever the local slope is flat or nega-
tive, the corresponding range of HS may be pooled into one
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Fig. 4 – Evaluator sensitivity to species prevalence (proportion of presence points in the dataset). The points represent the
index median value and the grey lines the interquartile range. t-test significance of the Pearson’s correlation coefficient
indicated by stars: *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 5 – Typical examples of the three models: (A and B) good model; (C and D) random model (confidence interval brackets
the 1-line all along); (E and F) bad model (presences fall in low suitability areas). In the left-hand column, the white bars
show the number of cells belonging to each habitat suitability class, while black bars are the number of cells with asserted
presence in these classes. These histograms average the results of the five cross-validation HS maps, where vertical scales
are logarithmic. In the right-hand column, the predicted/expected curves computed by a moving window of width 0.1 (plain
line = median, dashed lines = 90%-confidence interval). More details on the models include: (A and B) Lathyrus pratensis,
Kmax = 0.68, AUC = 0.92, B10 = 0.82, Bcont(0.1) = 0.76; (C and D) Alchemilla xanthochlora, Kmax = 0.68, AUC = 0.87, B10 = 0.00,
Bcont(0.1) = 0.00; (E and F) Gypsophila repens, Kmax = 0.37, AUC = 0.78, B10 = −0.26, Bcont(0.1) = −0.40.
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class without loss of information (Fig. 5). This means that any
departure from the straight line actually decreases the resolu-
tion of the model predictions, i.e. its ability to distinguish many
different classes of suitability. Model resolution is partly con-
tained in the Boyce indices as they get penalised whenever
the P/E curve goes down. However, being based on the Spear-
man correlation coefficient, they cannot discriminate between
monotonic curves (e.g. linear, exponential and sigmoid curves
would all get the same score).

The third information level refers to the maximum value
reached by the P/E curve. This value reflects how much the
model differs from chance expectation, or deviation from ran-
domness. This score reflects the model ability to differentiate
the species niche characteristics from those of the studied
area. This measure must be taken with care as our experience
has shown that it highly depends on the species niche breadth,
the extent of the study area, the scale of the study (i.e. the envi-
ronmental variables resolution), and the relevance of the cho-
sen environmental variables. For instance, with a mountain
species, a model built at the whole country level with climatic
variables is bound to get a higher information index than one
focusing on the mountain ranges; however, the country-wide
model is obviously not better than the mountain-wide one.
Practically, one must use this deviation from randomness only
to compare models applied to the same species and the same
study area.

4.3. Reclassifying HS maps

Most habitat suitability models (including GLMs) generate
maps showing continuous gradients of suitability. This kind
of output obviously conveys more information than a sheer
presence/absence map and is more convenient for wildlife
management support. However, the present study has shown
that a continuous scale is often misleading. Even good pre-
dictive models suffer from uncertainty, making the use of a

full continuous HS scale spurious. A reclassified map show-
ing only a few classes may be more honest about its actual
informative content. The problem of choosing objectively the
HS class boundaries immediately arises. For binary reclassi-

Fig. 6 – Predicted/expected curve shapes. An ideal model would
often exhibit an irregular increase (black plain curve). The curve
used to define the boundaries of habitat suitability classes (as su
line at P/E = 1 would be the curve of a completely random model.
1 9 9 ( 2 0 0 6 ) 142–152

fications – presence/absence – methods already exists: the
Kmax approach readily provides the HS threshold that max-
imise the K index. The AUC approach allows weighting the
risks of over- and under-prediction and computing the opti-
mal threshold accordingly (Fielding and Bell, 1997). For more
than two classes, the P/E curves provide a handy support for
choosing (1) the number of classes and (2) their boundaries.
The optimal number of classes may be defined by looking at
the confidence interval around the continuous P/E curve (e.g.
Fig. 5B), the goal being of finding how many HS classes (on the
horizontal axis) may be defined while minimizing their over-
lap in P/E ratio (vertical axis). The continuous P/E curves also
allow choosing the class boundaries objectively (Fig. 6). A first,
natural boundary is defined by the P/E = 1 line: where P/E con-
fidence interval is lower than 1, the model is predicting less
presences than expected by chance, and the opposite when it
is greater than 1; this may be used to distinguish unsuitable,
marginal (random and uncertain) and suitable habitat (Fig. 6).
Another natural threshold is the HS below which no pres-
ence ever occurs, suggesting uninhabitable conditions, which
is equivalent to the threshold defining the minimal predicted
area (MPA100) of Engler et al. (2004). Additional thresholds may
be placed at the steps of the curve. The P/E ratios also provide
a reproducible HS partitioning scheme: one could define HS
classes predicting twice more presences than expected, thrice
more, and so on. Fig. 6 illustrates this process of HS partition-
ing. Note that with categorical variables, it would make little
sense to have more HS classes than categories.

In conclusion, our work has shown that evaluating a habi-
tat suitability model based only on presences is possible and
a valuable exercise. Among the presence-only evaluators, the
continuous Boyce index Bcont(0.1) was most accurate for charac-
terizing predictive capability among our sample of 114 plant
distributions. Accordingly, we suggest that it is both a com-
plement to usual evaluation of presence/absence models (e.g.
GLMs and GAMs, Guisan et al., 2002) and a reliable measure

of presence-only based predictions (e.g. ecological niche fac-
tor analysis: Hirzel et al., 2002; or resource selection functions:
Manly et al., 2002). Such measures could also prove useful to
evaluate presence/absence-based models when an accurate

give a straight P/E curve (plain grey line). Actual models
shape and its confidence interval (dashed curves) may be
ggested by the vertical dashed lines). The horizontal thin
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rediction of presences is crucial, as in the case of detecting
ew populations of threatened species (e.g. Engler et al., 2004).
oreover, we stress the need to reclassify habitat suitability
aps so as to provide more honest and relevant predictions.

he P/E curves described offer a handy support for this reclas-
ification.
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