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research article

Perturbation analysis of nonlinear matrix
population models

Hal Caswell1 2

Abstract

Perturbation analysis examines the response of a model to changes in its parameters. It
is commonly applied to population growth rates calculated from linear models, but there
has been no general approach to the analysis of nonlinear models. Nonlinearities in de-
mographic models may arise due to density-dependence, frequency-dependence (in 2-sex
models), feedback through the environment or the economy, and recruitment subsidy due
to immigration, or from the scaling inherent in calculations of proportional population
structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equi-
libria, cycles, ratios (e.g., dependency ratios), age averages and variances, temporal aver-
ages and variances, life expectancies, and population growth rates, for both age-classified
and stage-classified models. Examples are presented, applying the results to both human
and non-human populations.

1Distinguished Research Scholar, Max Planck Institute for Demographic Research
2Senior Scientist, Biology Department MS-34, Woods Hole Oceanographic Institution, Woods Hole MA
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1. Introduction

The goal of this paper is to present a new approach to the perturbation analysis of nonlin-
ear population models, providing the sensitivity and elasticity of a wide range of demo-
graphic quantities.

1.1 Perturbation analysis

The output of any model depends on the values of its parameters. Perturbation analysis
asks how changes in one or more parameters will affect the output. Widely used by de-
mographers of all types, perturbation analysis is important in evolutionary biology (where
the perturbations are produced by mutation or recombination), conservation, pest control,
and and population policy (where the concern is with management manipulations), and
sampling theory (the parameters to which a quantity is most sensitive are those that must
be estimated most precisely). The results of perturbation analysis are often expressed as
sensitivities (the sensitivity of y to x is the derivative dy/dx) and elasticities (the elasticity
of y to x is (x/y)dy/dx).

The perturbation analysis of linear demographic models has focused on the sensitivity
of λ or r (e.g., Keyfitz 1971, Hamilton 1966, Caswell 1978, Baudisch 2005), of the stable
age or stage distribution (Coale 1957, 1972, Caswell 1982), and of life expectancy (Key-
fitz 1977, Pollard 1982, Vaupel 1986, Vaupel and Romo 2003, Caswell 2006). The per-
turbation analysis of short-term transient dynamics has recently been presented (Caswell
2007a).

This paper presents new methods for perturbation analysis of nonlinear models, using
matrix calculus. It uses those methods to analyze the sensitivity of a selection of important
nonlinear models: density-dependent, environment-dependent, subsidized, two-sex, and
proportional structure models.

Plant and animal demographers have recognized the need for sensitivity analysis of
nonlinear models (e.g., Grant and Benton 2000, 2003), but until now there has been no
general perturbation analysis for such models. Instead, most studies have relied on nu-
merical calculations using difference quotients. This is a notoriously unstable method for
computing derivatives, requires lots of computation, and provides no analytical insight
into the structure of the sensitivities.

Yearsley et al. (2003) used an analytical approach, analyzing a model with a known
characteristic equation, in which the vital rates depend only on total density. They derived
the sensitivity of the equilibrium density by implicit differentiation of the characteristic
equation. There exists a related but distinct set of results in evolutionary biodemography
that analyze the sensitivity of the invasion exponent in density-dependent models. The
sensitivity of this exponent to a parameter is the selection gradient on that parameter;
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together with a measure of genetic variation it determines the rate of phenotypic change
under selection. The sensitivity of the invasion exponent to parameter changes has been
shown to be equal to the sensitivity of a kind of weighted average population density to
those parameter changes (Takada and Nakajima 1992, 1998, Caswell et al. 2004, Caswell
2007b).

1.2 Organization of this paper

Because this paper relies on techniques from matrix calculus, I begin in Section 2 with
a brief review of those techniques. Section 3 analyzes density-dependent models, intro-
duces methods for analyzing various dependent variables, and shows how to calculate
elasticities as well as sensitivities. Sections 2 and 3 are essential to the rest of the pa-
per. The subsequent sections can, to an extent, be read independently. Section 4 analyzes
environmental feedback models, Section 5 analyzes subsidized models and Section 6 con-
siders the equilibria of proportional structures, such as arise in calculating the stable stage
distribution, the dependency ratio, and means and variances of age at reproduction. Sec-
tion 7 analyzes frequency-dependent two-sex models, including the sensitivity of both
population structure (Section 7) and growth rate (Section 7). Finally, Section 8 analyzes
the sensitivity of cycles in density-dependent models. For a preview of the results that
will be in hand by the end of the paper, skip ahead to Table 3.

This paper contains examples from animal, plant, and human populations, because I
assume at the outset that demographic studies on different species have the potential to
inform each other, especially if the species differ in interesting biological properties. This
perspective has a long history (e.g., Pearl et al. 1927) and enough recent examples (e.g.,
Wachter and Finch 1997, Carey 2003, Wachter and Bulatao 2003, Keyfitz and Caswell
2005) that it is now referred to as biodemography (Carey and Vaupel 2005).

1.3 Nonlinear models and their dynamics

Nonlinearity is defined in contrast to linearity. If x is an age or stage distribution vector,
and if the dynamics of x are

x(t + 1) = f [x(t)], (1)

then the model is linear if f(·) is a linear function, i.e., if

f (ax1 + bx2) = af (x1) + bf (x2) (2)

for any constants a and b and any vectors x1 and x2.
A nonlinear model is simply any model that is not linear. Nonlinearity in demographic

models arises from four main sources: density-dependence, environmental feedback, 2-
sex models, and calculation of proportional structure.
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Density-dependence: arises when the per-capita vital rates are functions of the numbers
or density of the population. Such effects are well documented in plants (e.g., Sol-
brig et al. 1988, Gillman et al. 1993, Silva Matos et al. 1999) and animals (e.g.,
Pennycuick 1969, Longstaff 1977, Clutton-Brock et al. 1997, Tanner 1999, Cush-
ing et al. 2003). Density-dependence has been intensively studied in the laboratory
(e.g., Pearl et al. 1927, Frank et al. 1957, Costantino and Desharnais 1991, Carey
et al. 1995, Mueller and Joshi 2000, Cushing et al. 2003). It can arise from com-
petition for food, space, or other resources, or from interactions (e.g., cannibalism)
among individuals.
Simple density-dependence is less often invoked by human demographers.3 Weiss
and Smouse (1976) proposed a density-dependent matrix model, and Wood and
Smouse (1982) applied it to a population of the Gainj people of Papua New Guinea.
Density-dependence is included in epidemiological feedback models applied to a
rural English population in the 16th and 17th centuries by Scott and Duncan (1998).
The Easterlin effect (e.g., Easterlin 1961) produces density-dependence in which
fertility is a function of cohort size. Analysis of the Easterlin effect has focused
mostly on the possibility that it could generate cycles in births (e.g., Lee 1974,
1976, Frauenthal and Swick 1983, Wachter and Lee 1989, Chu 1998).

Environmental (or economic) feedback. Density-dependent models are often an attempt
to sneak in, by the back door as it were, a feedback through the environment.
A change in population size changes some aspect of the environment, which af-
fects the vital rates, which in turn affect future population size. MacArthur (1972)
showed that simple density-dependent models in ecology could be derived from to
models including the feedback between the dynamics of consumers and their re-
sources. Consumer-resource models (e.g., Hsu et al. 1977, Tilman 1982, Murdoch
et al. 2003) are the basis for the models of food chains and food webs that underlie
models of global biogeochemistry (Fennel and Neumann 2004).
Feedback models are often invoked in human demography, with the feedback op-
erating through the economy (Lee 1986, 1987, Chu 1998). An interesting aspect of
these approaches is the possibility that, if larger populations support more robust
economies, the feedback could be positive instead of negative (Lee 1986, Cohen
1995, Appendix 6). An exciting combination of ecological and economic feedback
appears in the food ratio model recently proposed by Lee and Tuljapurkar (2007).

3 Lee (1987) reviewed the situation and said “. . . we might say that human demography is all about Leslie
matrices and the determinants of unconstrained growth in linear models, whereas animal population studies
are all about Malthusian equilibrium through density dependence in nonlinear models . . . ”. He admits that
this is an exaggeration, and there clearly are nonlinear concerns in the field (Bonneuil 1994), but a non-
exhaustive survey finds no mention of density-dependence in several contemporary human demography
texts (e.g., Hinde 1998, Preston et al. 2001, Keyfitz and Caswell 2005).
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Two-sex models. To the extent that both males and females are required for reproduction
(and, in the bigger scheme of things, this is not always so), demography is nonlinear
because the marriage function or mating function cannot satisfy (2). Nonlinear
two-sex models have a long tradition in human demography (see reviews in Keyfitz
1972b, Pollard 1977) and have been applied in ecology (e.g., Lindström and Kokko
1998, Legendre et al. 1999, Kokko and Rankin 2006, Lenz et al. 2007). Their
mathematical properties have been investigated by e.g, Caswell and Weeks (1986),
Chung (1994), Ianelli et al. (2005), and in a very abstract setting by Nussbaum
(1988, 1989).
In their most basic form, two-sex models differ from density-dependent models
in that the vital rates depend only on the relative, not the absolute, abundances of
stages in the population (they are sometimes called frequency-dependent for this
reason). This has important implications for their dynamics.

Models for proportional population structure. Even when the dynamics of abundance
are linear, the dynamics of proportional population structure are nonlinear (e.g.,
Tuljapurkar 1997). This leads to some useful results on the sensitivity of the stable
age or stage distribution and the reproductive value.

Linear models lead to exponential growth and convergence to a stable structure. Much
of the analysis of linear models focuses on the population growth rate λ or r = log λ.
Nonlinear models do not usually lead to exponential growth (frequency-dependent two-
sex models are an exception). Instead, their trajectories converge to an attractor. The
attractor may be an equilibrium point, a cycle, an invariant loop (yielding quasiperi-
odic dynamics), or a strange attractor (yielding chaotic dynamics); see Cushing (1998)
or Caswell (2001, Chapter 16) for a detailed discussion.

In this paper, I will analyze the sensitivity and elasticity of equilibria and cycles. Be-
cause the dynamic models considered here are discrete, solutions always exist and are
unique. The nature of number of the attractors depends on the specific model. Perturba-
tion analysis always considers perturbations of something, so the equilibria or cycles must
be found before their perturbation properties can be analyzed.

A note on notation. Matrices are denoted by upper case bold symbols (e.g., A), vectors
(usually) by lower case bold symbols (n); aij is the (i, j) entry of the matrix A, ni is the
ith entry of the vector n, and nT is the transpose of n. The exceptions to these conventions
are noted when they occur. Logarithms are natural. The vector norm ‖x‖ is, unless noted
otherwise, the 1-norm. In addition to the ordinary matrix product, the Kronecker product
A ⊗ B and the Hadamard product A ◦ B will appear. The symbol diag (x) denotes the
square matrix with x on the diagonal and zeros elsewhere. The symbol e denotes a vector
of 1s; the vector ei is a vector with 1 in the ith entry and zeros elsewhere. The identity
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matrix is I; sometimes its dimension will be indicated by a subscript, as in Is for the s×s
identity. The end of an example is denoted by the symbol ♦.

2. Matrix calculus

Matrix calculus permits the consistent differentiation of scalar-, vector-, and matrix-
valued functions of scalar, vector, or matrix arguments. Because this method is not well-
known in either ecology (but see Caswell 2006, 2007a) or demography (but see Willekens
1977, Ekamper and Keilman 1993 for related approaches), the next section presents a brief
statement of the essential results. More detail can be found in Caswell (2007a). There
exist several conventions for matrix calculus, differing in their arrangements of the matrix
and vector entries. The best is that of Magnus and Neudecker (1985, 1988); it is called
the vector-rearrangement method in the review paper of Nel (1980).

If x and y are scalars, the derivative of y with respect to x is the familiar derivative
dy/dx. If y is a n × 1 vector and x a scalar, the derivative of y with respect to x is the
n× 1 vector

dy
dx

=




dy1

dx
...

dyn

dx




. (3)

If y is a scalar and x is a m× 1 vector, the derivative of y with respect to x is the 1×m
gradient vector

dy

dxT
=

(
∂y

∂x1
· · · ∂y

∂xm

)
(4)

Note the orientation of dy/dx as a column vector and dy/dxT as a row vector.
If y is a n× 1 vector and x a m× 1 vector, the derivative of y with respect to x is the

n×m Jacobian matrix
dy
dxT

=
(

dyi

dxj

)
. (5)

Derivatives involving matrices are written by transforming the matrices into vectors
using the vec operator (which stacks the columns of the matrix into a column vector), and
then applying the rules for vector differentiation. Thus, the derivative of the m×n matrix
Y with respect to the p× q matrix X is the mn× pq matrix

dvec Y

dvec TX
. (6)
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For notational convenience, I will write vec TX for (vec X)T.
These definitions (unlike some alternatives; see Magnus and Neudecker 1985) lead to

the familiar chain rule. If Y is a function of X and X is a function of Z, then

dvec Y
dvec TZ

=
dvec Y
dvec TX

dvec X
dvec TZ

. (7)

The derivatives of matrices are constructed by forming the differentials of the expres-
sions involving the matrices. The differential of a matrix (or vector) is the matrix (or
vector) of differentials of the elements; i.e.,

dX =
(

dxij

)
. (8)

If, for vectors x and y and some matrix Q, it can be shown that

dy = Qdx (9)

then
dy
dxT

= Q. (10)

(the “first identification theorem” of Magnus and Neudecker (1985); see also Neudecker
1969).

The combination of the chain rule and the identification theorem permits more com-
plicated expressions involving differentials to be turned into derivatives with respect to an
arbitrary vector, say u. If

dy = Qdx + Rdz (11)

then
dy
duT

= Q
dx
duT

+ R
dz
duT

(12)

for any u.
We will make extensive use the Kronecker product, defined as

A⊗B =




a11B a12B · · ·
a21B a22B · · ·

...
...

. . .


 . (13)

The vec operator and the Kronecker product are related (Roth 1934); if

Y = ABC (14)

then
vec Y = (CT ⊗A) vec B. (15)
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3. Density-dependent models

We begin with the basic density-dependent model, written as

n(t + 1) = A[θ,n(t)] n(t) (16)

where n(t) is a population vector of dimension s × 1 and A is a population projection
matrix of dimension s × s. The matrix A depends on a p × 1 vector θ of parameters as
well as on the current population vector n(t).

3.1 Sensitivity of equilibrium

An equilibrium of (16) satisfies

n̂ = A [θ, n̂] n̂. (17)

Our goal is to find the derivatives of all the entries of n̂ with respect to all of the parameters
in θ; these are the entries of the s× p matrix

dn̂
dθT .

We begin by taking the differential of both sides of (17):

dn̂ = (dA)n̂ + A(dn̂). (18)

Rewrite this as

dn̂ = Is(dA)n̂ + A(dn̂), (19)

where Is is an identity matrix of dimension s. Next apply the vec operator to both sides,
remembering that since n̂ is a column vector, vec n̂ = n̂, and apply Roth’s theorem, to
obtain

dn̂ = (n̂T ⊗ Is) dvec A + Adn̂. (20)

However, A is a function of both θ and n̂, so

dvec A =
∂vec A

∂θT dθ +
∂vec A

∂nT
dn̂. (21)
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Substituting (21) into (20) and applying the chain rule leads to4

dn̂
dθT = (n̂T ⊗ Is)

(
∂vec A

∂θT +
∂vec A

∂nT

dn̂
dθT

)
+ A

dn̂
dθT . (22)

Finally, solve (22) for dn̂/dθT to obtain

dn̂
dθT =

(
Is −A− (n̂T ⊗ Is)

∂vec A
∂nT

)−1

(n̂T ⊗ Is)
∂vec A

∂θT (23)

where A, ∂vec A/∂θT, and ∂vec A/∂n̂T are evaluated at n̂.
The following example, applying (23) to a simple model, shows the basic steps and

output of the analysis.
Example 1 (A simple two-stage model) The most basic distinction in the life cycle of
many organisms is between non-reproducing juveniles and reproducing adults. A model
based on these stages (Neubert and Caswell 2000) is parameterized by the juvenile sur-
vival σ1, the adult survival σ2, the growth or maturation probability γ (the expected time
to maturity is 1/γ), and the adult fertility f . The projection matrix is

A =
(

σ1(1− γ) f
σ1γ σ2

)
. (24)

Any of the vital rates could be density-dependent; here we suppose that juvenile survival
σ1 depends on total density:

σ1(n) = σ̃ exp(−eTn); (25)

where e is a vector of ones.
Define the parameter vector as θ =

(
f γ σ̃ σ2

)T. To apply (23) requires the
derivatives of A[θ,n] with respect to θ and with respect to n. These are

dvec A
df

= vec
(

0 1
0 0

)
(26)

4 It is reassuring to check that the dimensions of all these quantities are compatible:

dn̂

dθT
︸︷︷︸
s×p

=
(
n̂T ⊗ Is

)
︸ ︷︷ ︸

s×s2




∂vec A

∂θT
︸ ︷︷ ︸

s2×p

+
∂vec A

∂nT︸ ︷︷ ︸
s2×s

∂n̂

∂θT
︸︷︷︸
s×p


 + A︸︷︷︸

s×s

dn̂

dθT
︸︷︷︸
s×p

.
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dvec A
dγ

= vec
( −σ1(n) 0

σ1(n) 0

)
(27)

dvec A
dσ̃

= vec
(

(1− γ) exp(−eTn) 0
γ exp(−eTn) 0

)
(28)

dvec A
dσ2

= vec
(

0 0
0 1

)
(29)

dvec A
dn1

=
dvec A

dn2
= vec

( −σ1(n)(1− γ) 0
−σ1(n)γ 0

)
. (30)

The derivative of A with respect to the θ is the 4× 4 matrix

∂vec A
∂θT =




0 −σ1(n) (1− γ) exp(−eTn) 0
0 σ1(n) γ exp(−eTn) 0
1 0 0 0
0 0 0 1


 , (31)

where each column corresponds to an entry of θ and each row to an element of vec A.
The derivative of A with respect to n is

∂vec A
∂nT

=




−σ1(n)(1− γ) −σ1(n)(1− γ)
−σ1(n)γ −σ1(n)γ

0 0
0 0


 . (32)

Each column corresponds to an entry of n and each row to an element of vec A.
Using some arbitrary parameter values (not unreasonable for humans or other large

mammals)

f = 0.25
γ = 1/15
σ̃ = 0.98

σ2 = 0.95

leads to an equilibrium population

n̂ =
(

0.1053
0.1109

)
, (33)
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obtained by iterating the model to convergence.
Evaluating (31) and (32) at n̂ and substituting into (23) gives the sensitivity of n̂ to θ,

dn̂
dθ

=
(

dn̂
df

dn̂
dγ

dn̂
dσ̃

dn̂
dσ2

)

=
(

0.57 0.90 0.50 1.77
0.48 2.26 0.52 3.49

)
(34)

Each column is the derivative of the vector n̂ to one of the parameters. With these param-
eters, the equilibrium population is very sensitive to changes in adult survival. Increases
in the maturation rate increase adult density much more than juvenile density. Changes in
fertility or in juvenile survival have about equal effects on juvenile and adult density.

These patterns reflect the life history, although comparative study of this dependence
has scarcely begun. For example, if the demographic parameters were more appropriate
for an insect, say with high fertility (f = 70), rapid maturation (γ = 0.9), and low juvenile
survival (σ̃ = 0.1), and in which most adults die after reproducing once (σ2 = 0.01), then
the equilibrium would become

n̂ =
(

1.826
0.026

)
(35)

with sensitivities
dn̂
dθT =

(
0.01 1.08 9.86 0.99

−0.0002 0.02 0.14 0.01

)
. (36)

In this life history, increases in fertility have very small effects on the equilibrium popula-
tion, and the effect of increased fertility on adult density is slightly negative. Changes in
the maturation rate or in juvenile or adult survival have much larger impacts on juvenile
density than on adult density. ♦

3.2 Dependent variables: beyond n̂

The equilibrium vector n̂ is usually not the only dependent variable of interest. If we
write m = m(n) for any vector- or scalar-valued transformation of n, then the sensitivity
of m is just

dm̂
dθT =

dm̂
dnT

dn̂
dθT . (37)

The possibilities for dependent variables are, roughly speaking, limited only by one’s
imagination. The following is a list of examples.
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1. Weighted population density. Let c ≥ 0 be a vector of weights. Weighted popu-
lation density is then N(t) = cTn(t). Examples include total density (c = e), the
density of a subset of stages (ci = 1 for stages to be counted; ci = 0 otherwise),
biomass (ci is the biomass of stage i), basal area, metabolic rate, etc. The sensitivity
of N̂ is

dN̂

dθT = cT dn̂
dθT . (38)

2. Ratios, measuring the relative abundances of different stages. Let

R(t) =
aTn(t)
bTn(t)

(39)

where a ≥ 0 and b ≥ 0 are weight vectors. Examples include the dependency ratio
(in human populations, the ratio of the individuals below 15 or above 65 to those
between 15 and 65; see Section 6), the sex ratio, and the ratio of juveniles to adults
(used in wildlife management; see Skalski et al. 2005). Differentiating (39) gives

dR̂

dθT =

(
bTn̂aT − aTn̂bT

(bTn̂)2

)
dn̂
dθT . (40)

3. Age or stage averages. These include quantities such as the mean age or size in the
stable population or at equilibrium and the mean age at reproduction in the stable
population. Their perturbation analysis is presented in Section 6.

4. Properties of cycles. Nonlinear models may produce population cycles. Attention
may focus on the mean, the variance, or higher moments of the population vector
or of some scalar measure of density, over such cycles. The sensitivity of these
moments is explored in Section 8.

3.3 Elasticity analysis

The derivatives in the matrix dn̂/dθT give the results of small additive perturbations of the
parameters. It is often useful to study the elasticities, which give the proportional result
of small proportional perturbations. The elasticity of n̂i to θj is

θj

n̂i

dn̂i

dθj
. (41)

Creating a matrix of these elasticities requires multiplying column j of dn̂/dθT by θj and
dividing row i by n̂i. This is just

diag (n̂)−1 dn̂
dθT diag (θ), (42)
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The elasticity of any other (scalar- or vector-valued) dependent variable f(n̂) is given by

diag
(
f(n̂)

)−1 df(n̂)
dθT diag (θ). (43)

Example 2 (Metabolic population size in Tribolium) Flour beetles of the genus Tribol-
ium have been the subject of a long series of experiments on nonlinear population dy-
namics (reviewed by Cushing et al. 2003). Tribolium lives in stored flour. In addition
to feeding on the flour, adults and larvae cannibalize eggs, and adults cannibalize pupae.
These interactions are the source of nonlinearity in the demography, and are captured in
a three-stage (larvae, pupae, and adults) model. The projection matrix is

A[θ,n] =




0 0 b exp(−celn1 − cean3)
1− µl 0 0

0 exp(−cpan3) 1− µa


 (44)

where b is the clutch size, cea, cel, and cpa are rates of cannibalism (of eggs by adults,
eggs by larvae, and pupae by adults, respectively), and µl and µa are larval and adult
mortalities (the mortality of pupae, in these laboratory conditions, is effectively zero).
Parameter values from an experiment reported by Costantino et al. (1997)

b = 6.598
cea = 1.155× 10−2

cel = 1.209× 10−2

cpa = 4.7× 10−3

µa = 7.729× 10−3

µl = 2.055× 10−1

produce a stable equilibrium

n̂ =




22.6
18.0

385.2


 . (45) ♦

The sensitivity of n̂ is calculated using (23). However, the damage caused by Tribolium as
a pest of stored grain products might well depend more on metabolism than on numbers.
Emekci et al. (2001) estimated the metabolic rates of larvae, pupae, and adults as 9, 1, and
4.5 µl CO2 h−1, respectively. We define the metabolic population size as Nm(t) = cTn(t)
where cT =

(
9 1 4.5

)
, and calculate the sensitivity and elasticity of N̂m using (42)

and (38).
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Figure 1 shows the elasticity of n̂ and N̂m to each of the parameters. The elasticities
are diverse and perhaps counterintuitive. Increases in fecundity increase the equilibrium
density of all stages; increases in the cannibalism of eggs by adults reduces the density of
all stages. But increased cannibalism of pupae by adults increases the density of larvae
and pupae, as does an increase in the mortality of adults.

When the stages are weighted by their metabolic rate, the elasticity of N̂m to fecundity
is positive, but the elasticities to all the other paramters (cannibalism rates and mortalities)
are negative. The positive effects of cpa and µa on n̂ disappear when the stages are
weighted according to metabolism.

4. Environmental feedback models

Environmental (or economic) feedback models write the vital rates as functions of some
environmental variable, which in turn depends on population density. Feedback models
may be static or dynamic. In static feedback models, the environment depends only on
current conditions, with no inherent dynamics of its own. In dynamic feedback models,
the environment can have dynamics as complicated as those of the population (e.g., if
the environmental variable was the abundance of a prey species, affecting the dynamics
of a predator species). The sensitivity analysis of dynamic feedback models is given in
Section 8.

A static feedback model can be written

n(t + 1) = A[θ,n(t),g(t)] n(t) (46)

g(t) = g[θ,n(t)] (47)

where g(t) is a vector (of dimension q×1) describing the ecological or economic aspects
of the environment on which the vital rates depend. As written here, the model admits
the possibility that the vital rates in A might depend directly on n as well as on the
environment.

At equilibrium

n̂ = A[θ, n̂, ĝ]n̂ (48)
ĝ = g[θ, ĝ]. (49)

Differentiating these expressions gives

dn̂ = A(dn̂) + (dA)n̂ (50)

dĝ =
∂ĝ
∂θT dθ +

∂ĝ
∂n

dn̂. (51)
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Figure 1: Sensitivity analysis of equilibrium for the flour beetle Tribolium
in Example 2. (a) The elasticity of the equilibrium n̂ to the pa-
rameters (see Example 2 for definitions). (b) The elasticity of the
equilibrium population respiration rate N̂m to the parameters
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Applying the vec operator to (50) and expanding dvec A bives

dn̂ = (n̂T ⊗ Is)
[
∂vec A

∂θT dθ +
∂A
∂gT

dĝ
]

+ Adn̂. (52)

Substituting (51) for dĝ and rearranging gives

dn̂ = (n̂T ⊗ Is)
[
∂vec A

∂θT +
∂vec A

∂gT

∂ĝ
∂θT

]
dθ

+
[
A + (n̂T ⊗ Is)

∂vec A
∂gT

∂ĝ
∂nT

]
dn̂. (53)

Solving for dn̂ and applying the identification theorem yields

dn̂
dθT =

[
Is −A− (n̂T ⊗ Is)

∂vec A
∂gT

∂ĝ
∂nT

]−1

× (n̂⊗ Is)
[
∂vec A

∂θT +
∂vec A

∂gT

∂ĝ
∂θT

]
. (54)

A, g, and all derivatives are evaluated at (n̂, ĝ). A comparison of (54) with (23) shows
that including the feedback mechanism has simply written dvec A/dnT and dvec A/dθT

in terms of g using the chain rule.
The environmental variable g may be of interest in its own right (e.g., in the food ratio

model of Lee and Tuljapurkar (2007), in which it is a measure of well-being, measured in
terms of food per individual). The sensitivity of ĝ at equilibrium is

dĝ
dθT =

∂ĝ
∂θT +

∂ĝ
∂n

dn̂
dθT (55)

where dĝ/dθT is given by (51) and (dn̂/dθT) by (54).

5. Subsidized populations and competition for space

A subsidized population is one in which new individuals are recruited from elsewhere
rather than (or in addition to) being generated by local reproduction. Subsidy is important
in many plant and animal populations, especially of benthic marine invertebrates and fish.
Many of these species produce planktonic larvae that may disperse very long distances
(Scheltema 1971) before they settle and become sessile for the rest of their lives. Thus
a significant part—maybe even all—of the recruitment at any location is independent of
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local fertility (e.g., Almany et al. 2007). Subsidized models have been used to analyze
conservation programs in which captive-reared animals are released into a wild or re-
established population (Sarrazin and Legendre 2000). They have been applied to the
demography of human organizations (e.g., schools, businesses, learned societies; Gani
1963, Pollard 1968, Bartholomew 1982). Wilson (2004) reported that, as of 2004, more
than half of humans lived in countries or regions in which fertility was below replacement
level. Immigration into such countries is form of subsidy that can be explored with these
models.

In the simplest subsidized models, both local demography and recruitment are density-
independent. Alternatively, recruitment may depend on some resource (e.g., space) whose
availability depends on the local population, or the local demography after settlement is
density-dependent. All three cases can lead to equilibrium populations.

5.1 Density-independent subsidized populations

The model,
n(t + 1) = A[θ]n(t) + b[θ], (56)

includes a subsidy vector b giving the input of individuals to the population.5 The param-
eters θ may affect A or b, or both. If the fertility appearing in A is below replacement,
so that λ < 1, then a stable equilibrium n̂ exists.6 This equilibrium satisfies

n̂ = An̂ + b (57)
= (Is −A)−1 b. (58)

Differentiating (57) and applying the vec operator yields

dn̂ = (n̂T ⊗ Is) dvec A + A (dn̂) + db (59)

Solving for dn̂ and applying the chain rule gives the sensitivity of the equilibrium,

dn̂
dθT = (Is −A)−1

{
(n̂T ⊗ Is)

dvec A
dθT +

db
dθT

}
. (60)

5 The same model could describe harvest if b ≤ 0 (e.g, Hauser et al. 2006). This form of harvest produces
unstable equilibria, and is not considered further here.

6 If λ > 1, the population grows exponentially and the subsidy eventually becomes negligible. The equi-
librium in this case is non-positive (and hence biologically irrelevant) and unstable. If λ = 1 then the
population would remain constant in the absence of subsidy; any non-zero subsidy will then lead to un-
bounded population growth.
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Example 3 (The Australian Academy of Sciences) Most human organizations are sub-
sidized; recruits (new students in a school, new employees in a company) come from
outside, not from local reproduction. In an early example of a subsidized population
model, Pollard (1968) analyzed the age structure of the Australian Academy of Sciences,
recruitment to which takes place by election.7 The Academy had been founded in 1954,
and between 1955 and 1963 had elected about 6 new Fellows each year, with an age
distribution (Pollard 1968, Table 2) given by

Age Percent
30–34 0.0
35–39 12.2
40–44 24.5
45–49 26.5
50–54 20.4
55–59 4.1
60–64 10.2
65–69 2.0

♦

Pollard interpolated this distribution to 1-year age classes, and combined it with a 1954
life table for Australian males8 to construct a model of the form (56) and calculated the
equilibrium size and age composition of the Academy. Here, I have used the male life
table for Australia 1953–1955 in Keyfitz and Flieger (1968, p. 558) to construct an age-
classified matrix A with age-specific probabilities of survival Pi on its subdiagonal and
zeros elsewhere. Were these vital rates and the age distribution of the subsidy vector to
remain constant, the Academy would reach an equilibrium size of N̂ = 149.5 with an age
distribution n̂ shown in Figure 2a.

As parameters, consider the age-specific mortality rates µi = − log Pi, and define the
parameter vector θ =

(
µ1 µ2 . . .

)T
. Equation (60) then gives the sensitivity of the

equilibrium population to changes in age-specific mortality. The sensitivity of the total
size of the Academy, N̂ = eTn̂, calculated using (38), is shown in Figure 2b. It shows
that increases in mortality reduce N̂ (not surprising), with the greatest effect coming from
changes in mortality at ages 48–58.

Because learned societies are often concerned with their age distributions, Pollard
(1968) examined the proportion of members over age 70. At equilibrium, this proportion
is R̂ = 0.26. The sensitivity dR̂/dθT, calculated using (40), is shown in Figure 2c.

7 Pollard’s paper is remarkable for its treatment of both deterministic and stochastic models, but here I
consider only the deterministic case.

8 Only one woman, the redoubtable geologist Dorothy Hill in 1956, was elected to the Academy prior to
1969.
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Figure 2: Analysis of the equilibrium of a linear subsidized model for the
Australian Academy of Science, based on Pollard (1968). (a) The
equilibrium age structure of the Academy, assuming recruitment
of 6 members per year. (b) The sensitivity, to changes in age-
specific mortality, of the number of members. (c) The sensitivity,
to changes in age-specific mortality, of the proportion of members
over 70 years old
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Increases in mortality before age 48 would increase the proportion of members over 70,
while increases in mortality after age 48 would decrease it.9

9 It is possible to calculate the average age of the Academy, and its sensitivity, using results to be introduced
in Section 6. The response is very similar to that of the proportion over age 70.
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5.2 Linear subsidized models with competition for space

Recruitment in subsidized populations may be limited by the availability of a resource.
Roughgarden et al. (1985; see also Pascual and Caswell 1991) presented a model for
a population of sessile organisms, such as barnacles, in which recruitment is limited by
available space. Barnacles10 produce larvae that disperse in the plankton for several weeks
before settling onto a rock surface or other suitable substrate, after which they no longer
move.

Roughgarden’s model supposes that settlement is proportional to the free space F (t).
Thus the subsidy vector is

b(t) =
(

φF (t) 0 · · · 0
)T

, (61)

where φ is the settlement rate per unit of free space, and is determined by the pool of
available larvae. The free space is the difference between the total area A and the space
occupied by the population,

F (t) = A− gTn(t) (62)

where g is a vector of stage-specific basal areas. Suppose that all locally-produced larvae
are advected away, so that the first row of A is zero. Then, substituting (62) into (61) and
rearranging gives

n(t + 1) = Bn(t) +
(

φA 0 · · · 0
)T (63)

where

B =




−φg1 −φg2 · · · −φgs

a21 a22 · · · a2s

...
...

. . .
...

as1 as2 · · · ass


 . (64)

Although it includes competition for space, the model is linear. The equilibrium n̂ of
(63) is stable if the spectral radius of B is less than one.11 The formula (60) gives the
sensitivity of this equilibrium to changes in the vital rates, the settlement rate, or the
individual growth rate. This model might apply to any situation where the recruitment of
new individuals depends on the availability of a resource (space, jobs, housing) that can
be monopolized by residents.
Example 4 (Intertidal barnacles) Gaines and Roughgarden (1985) modelled a popula-
tion of the barnacle Balanus glandula in central California. In one site (denoted KLM

10 The temptation to draw analogies between barnacles and the members of learned academies is almost
irresistible.

11 Because B contains negative elements, its dominant eigenvalue may be complex or negative, leading to
oscillatory approach to the equilibrium.
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in their paper), they reported age-independent survival with a probability of Pi = 0.985
per week, i = 1, . . . , 52. The growth in basal area of an individual barnacle could be
described by gx = π(ρx)2, where x is age in weeks and ρ is the radial growth rate
(ρ = 0.0041 cm/wk). The mean settlement rate was φ = 0.107. The matrix B contains
survival probabilities Pi on the subdiagonal, terms of the form −φgi in the first row, and
zeros elsewhere.

The equilibrium population n̂ has an exponential age distribution (Figure 3a). It is
scaled here relative to total area, so A = 1. The equilibrium proportion of free space is
F̂ = 0.865.

To calculate sensitivities, let θ =
(

P1 · · · P52

)
. Some of the possible sensitiv-

ities are shown in Figure 3. Increasing survival at age j (ages j = 10, 20, 40 are shown)
reduces the abundance of ages younger than j and increases the abundance of ages older
than j (Figure 3b). A perturbation to a parameter, call it ξ, that affects survival at all ages
has the effect

dn̂
dξ

=
dn̂
dθT

dθ

dξ
=

dn̂
dθ

e (65)

where e is a vector of ones. An increase in overall survival would reduce the abundance
of age classes 1–6 and increase the abundance of older age classes (Figure 3c).

The sensitivity of n̂ to the larval settlement rate φ is obtained from (60) by setting
dvec B/dφ = 0s2×1, and

db
dφ

=
(

F̂ 0 · · · 0
)T

Not surprisingly, increases in φ increase n̂, with the largest effect on the young age classes
(Figure 3d). The sensitivity of n̂ to the radial growth rate ρ is obtained by writing

dvec B
dρ

=
dvec B

dgT

dg
dρ

(66)

This sensitivity is negative, with the greatest impact on young age classes (Figure 3e).
Finally, the sensitivity of the equilibrium free space is given by

dF̂

dθT =
dF̂

dnT

dn̂
dθT = −gT dn̂

dθT (67) ♦

Increases in survival reduce the amount of free space at equilibrium; the effect is largest
for changes in survival of young age classes (Figure 3f). Figure 3g compares the effect
on F̂ of changes in overall survival, settlement, and radial growth rate. It is not surprising
that increases in survival or settlement will reduce free space, but perhaps surprising that
increases in the radial growth rate actually increase F̂ .
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Figure 3: A sensitivity analysis of a subsidized population of the intertidal
barnacle Balanus glandula. (a) The equilibrium population n̂
(scaled relative to a unit of area A = 1). (b) The sensitivity of b̂on
to a change in survival at ages j = 10, 20, 40. (c) The sensitivity of
n̂ to changes in overall survival at all ages. (d) The sensitivity of n̂
to the settlement rate φ per unit area. Continued on next figure.
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5.3 Density-dependent subsidized models

Once individuals to the population, they may experience a variety of density-dependent
effects. For example, Gaines and Roughgarden (1985) found that increased barnacle den-
sity led to increased mortality due to attack by the starfish Pisaster ochraceus. A model
incorporating such effects would be written

n(t + 1) = A [θ,n(t)]n(t) + b. (68)
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Figure 3: (cont’d.) A sensitivity analysis of a subsidized population of the
intertidal barnacle Balanus glandula. (e) The sensitivity of n̂ to
the radial growth rate ρ. (f) The sensitivity of the equilibrium free
space F̂ to age-specific survival. (g) The sensitivity of F̂ to changes
in overall survival, settlement rate, and radial growth rate. Based
on data of Gaines and Roughgarden (1985)
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The sensitivity result (60) extends to this model by substituting

dvec A =
∂vec A

∂θT dθ +
∂vec A

∂nT
dn̂ (69)

into (59) and solving for dn̂, to obtain

dn̂
dθT =

(
Is −A− (n̂T ⊗ Is)

∂vec A
∂nT

)−1 {
(n̂T ⊗ Is)

∂vec A
∂θT +

db
dθT

}
. (70)

where A, b, and all derivatives of A and b are evaluated at n̂.
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6. Sensitivity of proportional age and stage distributions

The linear model n(t + 1) = An(t) will, if A is primitive, converge to a stable age
or stage distribution. But while the dynamics of the population vector n(t) are linear,
but the dynamics of the proportional population structure are nonlinear (e.g., Tuljapurkar
1997). We can take advantage of this to analyze the sensitivity of proportional structures
by writing them as equilibria of nonlinear maps.

Let p denote the proportional stage structure vector (p ≥ 0, eTp = 1). The dynamics
of p(t) satisfy

p(t + 1) =
Ap(t)
‖Ap(t)‖ . (71)

The stable stage distribution is an equilibrium of (71).

6.1 The stable stage distribution and reproductive value

The sensitivity of the stable stage distribution has been approached as an eigenvector per-
turbation problem (e.g., Caswell 1982, 2001, Section 9.4, Kirkland and Neumann 1994),
but those calculations are complicated. Analysis of the equilibrium of the nonlinear model
(71) is much easier.

The stable stage distribution satisfies

p̂ =
Ap̂

eTAp̂
(72)

where the 1-norm can be replaced by eTAp̂ because p̂ is non-negative. Differentiating
both sides gives

dp̂ =
1

(eTAp̂)2

[
eTAp̂(dA)p̂ + eTAp̂A(dp̂)−Ap̂eT(dA)p̂−Ap̂eTA(dp̂)

]
(73)

Note that Ap̂ = λp̂ and eTAp̂ = λ, where λ is the dominant eigenvalue of A. Making
these substitutions and applying the vec operator to both sides gives

λ dp̂ =
[
(p̂T ⊗ Is)− (p̂T ⊗ p̂eT)

]
dvec A + [A− p̂eTA] dp̂ (74)

Solving for dp̂ and applying the chain rule gives

dp̂
dθT = (λIs −A + p̂eTA)−1 (p̂T ⊗ Is − p̂T ⊗ p̂eT)

dvec A
dθT (75)
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Figure 4: Stable age distribution and sensitivity of stable age distribution
to age-specific survival and fertility. (a) The stable age distribu-
tion. (b) The sensitivity of the stable age distribution to changes in
survival (P5) in age class 5. (c) Sensitivity of the stable age distri-
bution to changes in fertility (F5) in age class 5. Based on life table
data for the United States in 1985 (Keyfitz and Flieger 1990)
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Example 5 (A human age distribution) As an example, consider the age distribution of
the population of the United States in 1985 (data from Keyfitz and Flieger 1990). These
vital rates yield a declining population (λ = 0.975) and an age distribution skewed to-
wards older ages (Figure 4). Applying (75) yields the sensitivity of p̂ to age-specific
survival probabilities Pi and fertilities Fi, where age classes i = 1, . . . , 18 correspond
to ages 0 − 5, . . . , 85 − 90. The overall patterns are familiar from previous sensitivity
analyses of stable age distributions (e.g., Caswell 2001, Figure 9.22). Increasing sur-
vival probability at a given age increases the relative abundance of the next several age
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Figure 5: Sensitivity of the dependency ratio D, and of its old and young
components, to age-specific survival and fertility. Left: calcu-
lated from the stable age distribution of the United States in 1985.
Right: calculated from the stable age distribution of Kuwait in
1970. (a) and (b): Sensitivity of D to survival (Pi) and fertility (Fi).
(c) and (d): Sensitivity of the components of D to survival. (e) and
(f): Sensitivity of the components of D to fertility. Life table data
from Keyfitz and Flieger (1990)
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classes, at the expense of younger and older age classes. Increasing fertility at a given age
increases the abundance of young age classes at the expense of older age classes.

A similar approach gives the sensitivity of the reproductive value vector v, given by
the left eigenvector of A corresponding to λ. Reproductive value is customarily scaled so
that v1 = 1. Scaled in this way, v satisfies

v̂T =
v̂TA

v̂TAe1
(76)

where e1 is a vector with 1 in the first entry and zeros elsewhere. Differentiating both
sides gives

dv̂T =
1

(v̂TAe1)
2

[
v̂TAe1(dv̂T)A + v̂TAe1v̂T(dA)− (dv̂T)Ae1v̂TA− v̂T(dA)e1v̂TA

]

(77)
But v̂TA = λv̂T and v̂TAe1 = λ. Making these substitutions and applying the vec
operator (remembering that vec vT = v) gives

λdv =
[
(Is ⊗ v̂T)− (v̂eT

1 ⊗ v̂T)
]
dvec A + (AT − v̂eT

1A
T) dv. (78)

Solving for dv and using the chain rule gives

dv̂
dθT = (λIs −AT + v̂eT

1A
T)−1 [

(Is ⊗ v̂T)− (v̂eT
1 ⊗ v̂T)

] dvec A
dθT (79)

6.2 Sensitivity of the dependency ratio

The dependency ratio characterizes an age distribution by the relative abundance of two
groups, one assumed to be dependent and the other productive (e.g., Keyfitz and Flieger
1990, p. 32; Li and Tuljapurkar, unpublished). It is often assumed that persons younger
than 15 or older than 65 are dependent on productive individuals between 15 and 65. The
dependency ratio is defined as

D =
aTp̂
bTp̂

(80)

where a is a vector with ones for the dependent ages and zeros otherwise, and b is its
complement. Applying equation (40) for the sensitivity of a ratio gives

dD

dθT =

(
bTp̂aT − aTp̂bT

(bTp̂)2

)
dp̂
dθT . (81)

where dp̂/θT is given by (75).
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This result can be generalized in several ways. The analysis may be performed sepa-
rately for the dependent young and the dependent old, by suitable modification of a and
b. These two components are likely to be influenced by different demographic factors
and can respond to perturbations in opposite directions. The 0−1 vectors a and b may be
replaced by vectors of weights; e.g., age-specific consumption and age-specific income
(Li and Tuljapurkar, unpublished). The analysis applies to stage-classified models, pro-
vided that dependent and independent stages can be identified. It also applies to nonlinear
models, with the stable stage distribution p̂ replaced by the equilibrium population n̂ in
(81). It can be extended to transient dynamics, where the age distribution, and thus the
dependency ratio, varies over time (Caswell 2007a). Finally, the sensitivity (81) makes it
possible to carry out LTRE analyses (Caswell 2001, Chapter 10) to decompose differences
in dependency ratios into components due to differences in each of the vital rates.
Example 5 ((cont’d) Dependency ratios in human populations.) The United States in
1985 had a set of vital rates leading to a low growth rate (λ = 0.975), and a relatively low
dependency ratio, dominated by the old. Kuwait in 1970, in contrast, had a high growth
rate (λ = 1.210) and one of the highest dependency ratios listed in the compilation of
Keyfitz and Flieger (1990), dominated by the young:

U.S.A. 1985 Kuwait 1970
D 0.668 1.025
Dy 0.260 0.956
Do 0.406 0.069 ♦

where Dy and Do are the dependency ratios calculated for the young and old separately.
The sensitivities of D, Dy , and Do to changes in age-specific survival and fertility are
shown in Figure 5. The responses of D to changes in the vital rates differ between the
two countries. In the U.S., increases in fertility would reduce D. In Kuwait, increases
in fertility (especially at young ages) would increase D. In the U.S., increases in sur-
vival12 before age 30 reduce D; increases after age 30 increase D. In Kuwait, increases
in survival, except at very young and very old ages, reduce D.

Breaking D into its young and old components helps to explain these differences. In
both countries, there is a crossover in survival effects. Increases in survival at early ages
increase Dy and reduce Do. At later ages, increases in survival reduce Dy and increase
Do. Increases in fertility increase Dy and reduce Do. In the U.S. population, both these
effects are large, with the negative effect on Do larger than the positive effect on Dy . In
the Kuwaiti population, the positive effect on Dy is much greater than the negative effect
on Do.

12 Or, equivalently, reductions in mortality. For these parameter values, the sensitivity to mortality is approx-
imately the sensitivity to survival with the opposite sign.
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6.3 Sensitivity of mean age and related quantities

From an age distribution p̂, it is possible to compute the mean age of any age-specific
property (e.g., production of children, collection of retirement benefits, exposure to toxic
chemicals; see Chu 1998, p. 26 for general discussions). The most familiar of these is the
mean age of reproduction, which is one measure of generation time (Coale 1972).

Let f be a vector of age-specific per-capita fertilities. The age distribution of offspring
production is then f ◦ p̂, where ◦ is the Hadamard, or element-by-element product. The
mean age of the mothers of these offspring is obtained by normalizing f ◦ p̂ to sum to 1
and taking the mean over the resulting distribution,

āf =
cT (f ◦ p̂)
eT (f ◦ p̂)

(82)

where
cT =

(
1 2 · · · s

)
,

with s as the last age class.
Now differentiate āf , following the now-familiar rules for ratios. The differential of

the Hadamard product of two vectors is d(a ◦ b) = diag (a)db + diag (b)da. The result
is

dāf

dθT =

(
eT (f ◦ p̂) cT − cT (f ◦ p̂) eT

(f Tp̂)2

) (
diag (f)

dp̂
dθT + diag (p̂)

df
dθT

)
(83)

where dp̂/dθT is given by (75).
This result can be generalized in several ways. Setting f = e makes the age-specific

property that of simply being alive, and āe = cTe is then the mean age of the stable
population, the sensitivity of which is

dā

dθT = cT dp̂
dθT (84)

The calculations can also be applied to the equilibrium population in a nonlinear model
by substituting n̂ for p̂. They apply directly to stage-classified models with stages defined
on an interval scale (e.g., size classes), in which case they give, e.g., the mean size at
reproduction. If the stages are not evenly spaced, then c would be replaced by

cT =
(

x1 x2 · · · xs

)
(85)

where xi is the value associated with stage i.
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Figure 6: Sensitivity of the mean age at reproduction to changes in age-
specific survival and fertility, for the life table of the population
of the United States, 1985 (data from Keyfitz and Flieger 1990)
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Example 5 ((cont’d.) Mean age of reproduction.) The mean age of reproduction in the
stable age distribution of the United States in 1985 was āf = 24.02 years (using the mid-
points of the 5-year age intervals as the measure of age). The sensitivities of āf to changes
in age-specific survival and fertility are shown in Figure 6. Increases in survival prior to
age 15 reduce āf . Increases in survival after age 45 have almost no effect on āf , because
fertility is essentially zero after this age. Between age 15 and age 45, increases in survival
increase the mean age of reproduction.

Increases in fertility reduce āf if they happen before age 25 and increase āf if they
happen after age 25. These sensitivities are quite large, although this is somewhat irrele-
vant since the largest sensitivities are for ages at which fertility is zero and unlikely to be
modified.

6.4 Sensitivity of variance in age

We can also calculate the sensitivity of the higher moments. For example, the variance in
the age at reproduction is

Vf = a2
f − (āf )

2
. (86)

This variance might, for example, be useful as a measure of the extent of iteroparity. The
sensitivity of Vf to changes in parameters is obtained by writing the first term as

a2
f =

(c ◦ c)T (f ◦ p̂)
eT (f ◦ p̂)

(87)
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and then differentiating
dVf = d

(
a2
f

)
− 2āf (dāf ) . (88)

The final result is

dVf

dθT =

(
eT(f ◦ p̂)(c ◦ c)T − (c ◦ c)T (f ◦ p̂) eT

(f Tp̂)2

)

×
(

diag (f)
dp̂
dθT + diag (p̂)

df
dθT

)
− 2āf

dāf

dθT . (89)

where dp̂/dθT is given by (75) and dāf/dθT is given by (83).

7. Frequency-dependent two-sex models

In sexually reproducing species, nonlinearity can arise from the dependence of reproduc-
tion on the relative abundance of males and females. This dependence is captured in a
marriage function or mating rule (e.g., McFarland 1972, Pollak 1987, 1990). When the
vital rates depend only on the relative, rather than the absolute, abundance of males and
females, then A[θ,n] is homogeneous of degree 0 in n; i.e.,

A[θ, cn] = A[θ,n] for any c 6= 0. (90)

Such models are called frequency-dependent (Caswell and Weeks 1986, Caswell 2001)
to distinguish them from density-dependent nonlinear models that do not have this homo-
geneity property.

Because of the homogeneity of A[θ,n], frequency-dependent models do not converge
to an equilibrium density n̂. Instead, there may exist13 a stable equilibrium proportional
structure p̂ to which the population will converge, at which point it grows exponentially at
a rate λ given by the dominant eigenvalue of A[θ, p̂]. Thus sensitivity analysis of two-sex
models must include both the population structure and the population growth rate.

7.1 Sensitivity of the population structure

The equilibrium proportional population structure p̂ satisfies

p̂ =
A[θ, p̂] p̂
‖A[θ, p̂] p̂‖ (91)

13 A sufficient, but not necessary, condition for the existence of an equilibrium is that A cannot map a nonzero
vector n directly to zero; necessary conditions are more difficult (Nussbaum 1988, 1989).
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where p̂i ≥ 0 and eTp̂ = 1. Differentiating (91) gives

dp̂ =
eTAp̂

[
(dA)p̂ + A(dp̂)

]−Ap̂
[
eT(dA)p̂ + eTA(dp̂)

]

(eTAp̂)2
. (92)

Making the substitutions Ap̂ = λp̂ and eTAp̂ = λ and rearranging gives

λdp̂ = (dA)p̂ + A(dp̂)− p̂eT(dA)p̂− p̂eTA(dp̂). (93)

Applying the vec operator to both sides, expanding dvec A, invoking the chain rule, and
solving for dp̂/dθT gives

dp̂
dθT =

[
λIs −A + p̂eTA− [

p̂T ⊗ (Is − p̂eT)
] ∂vec A

∂pT

]−1 [
p̂T ⊗ (Is − p̂eT)

]
∂vec A

∂θT

(94)
where A and all derivatives are evaluated at p̂. Note that (94) differs from the expres-
sion (75) for the stable stage distribution in the linear model only in the term involving
∂vec A/∂pT, which of course is zero in the linear model.

7.2 Sensitivity of population growth rate

Because a population with the equilibrium structure grows exponentially, I once suggested
treating A[θ, p̂] as a constant matrix and applying eigenvalue sensitivity analysis to it, in
order to examine life history evolution in 2-sex models (Caswell 2001, p. 577). This was
incorrect, because it ignored the effect of parameter changes on A through their effects
on the equilibrium p̂. A correct calculation obtains the sensitivity of λ including effects
of parameters on both A and p̂.

Note that p̂ is a right eigenvector of A[θ, p̂] corresponding to λ. Let v be the corre-
sponding left eigenvector, where vTA[θ, p̂] = λvT and vTp̂ = 1. Then

dλ = vT(dA)p̂ (95)

(Caswell 1978). Apply the vec operator and Roth’s theorem to get

dλ = (p̂T ⊗ vT) dvec A. (96)

Expanding dvec A gives

dλ

dθT = (p̂T ⊗ vT)
[
∂vec A

∂θT +
∂vec A

∂p̂T

dp̂
dθT

]
(97)
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Figure 7: Life cycle graph for the 2-sex model for passerine birds (Legendre
et al. 1999). Stages 1 and 2 are juvenile and adult females; stages
3 and 4 are juvenile and adult males. Parameters are stage specific
survival probabilities σi, stage-specific fertilities Fi, and primary
sex ratio (proportion female) ρ
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where A, v, and the derivatives of A are all evaluated at the equilibrium p̂, and dp̂/dθT

is given by (94).
Note that λ is the invasion exponent for this model, and thus the sensitivity of λ to

a parameter gives the selection gradient on that parameter. Tuljapurkar et al. (2007)
used this fact to explore the effect of male fertility patterns on the evolution of aging; the
sensitivity (97) could be used to generalize such results.

Although two-sex models are an important case of homogeneous models, they are not
the only case. Keyfitz’s (1972a) interpretation of the Easterlin hypothesis describes fer-
tility as dependent on only the relative, not absolute, size of a cohort. A model based on
this premise would be frequency-dependent (homogeneous) and would lead to an expo-
nentially growing population to which (97) would be applicable.
Example 6 (A two-sex model for passerine birds) Legendre et al. (1999) used a frequency-
dependent two-sex model to study the introductions of passerine birds to New Zealand.
The life cycle includes two age classes (first year and older) for females and for males.
The life cycle graph is shown in Figure 7. The numbers of females and males are
Nf = n1 + n2 and Nm = n3 + n4, respectively.

Because passerines are typically monogamous within a breeding season, and assum-
ing that mating is indiscriminate with respect to age, Legendre et al. (1999) used as a
mating function

B(n) = min (Nf , Nm) , (98)
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giving the number of matings as a function of the number of males and females. The per-
capita fertility of a female of age-class i is the number of matings divided by the number
of females and multiplied by the number of surviving offspring per mating.

F (n) =
σ0φiB(n)

Nf
(99)

=
{

σ0φi
Nm

Nf
Nf ≥ Nm

σ0φ Nf < Nm
(100)

where σ0 is the probability of survival from fledging to age 1 and φi is the clutch size of
age class i. When males are the scarcer sex (the avian equivalent of a marriage squeeze)
fertility is proportional to the ratio of males to females. When females are the scarcer sex,
all females are mated and fertility depends only on fecundity and neonatal survival.

Births are allocated to females and males according to a primary sex ratio ρ which
gives the proportion female. The resulting two-sex projection matrix is

A[n] =




ρF1(n) ρF2(n) 0 0
σ1 σ2 0 0

(1− ρ)F1(n) (1− ρ)F2(n) 0 0
0 0 σ3 σ4


 (101)

Legendre et al. (1999) considered typical values for passerine birds of σ0 = 0.2,
φi = 7, and ρ = 0.5. They set male and female survival equal (σ1 = σ3 = 0.35, σ2 =
σ4 = 0.4), but this is a pathological special case in this model, so instead I consider two
cases, one in which male mortality is higher than female mortality, and one in which the
difference is reversed.14 The survival probabilities and equilibrium population structures
are

σ =




0.35
0.5
0.25
0.4


 p̂ =




0.320
0.226
0.320
0.134


 (102)

σ =




0.25
0.4
0.35
0.5


 p̂ =




0.320
0.134
0.320
0.226


 (103)

(104)
14 In a survey of the literature, adult mortality for female passerines exceeded that for males in 21 out of 28

cases (Promislow et al. 1992). Birds differ from mammals in this respect.
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Table 1: Elasticity of p̂ to parameters in two-sex model for passerine birds,
under two mortality scenarios. When male mortality is greater than
female mortality, males are rarer than females and fertility at equi-
librium is limited by the mating function. When male mortality is
less than female mortality, females are rare and fertility is not af-
fected by the mating function

Males rare
Stage σ0 ρ σ1 σ2 σ3 σ4 φ1 φ2

p̂1 0.455 0.453 −0.226 −0.229 0.000 0.000 0.266 0.189
p̂2 −0.890 1.799 0.774 0.783 −0.398 −0.268 −0.521 −0.369
p̂3 0.455 −1.547 −0.226 −0.229 0.000 0.000 0.266 0.189
p̂4 −0.664 −0.428 −0.226 −0.229 0.669 0.450 −0.389 −0.275

Females rare
Stage σ0 ρ σ1 σ2 σ3 σ4 φ1 φ2

p̂1 0.455 1.547 0.000 0.000 −0.226 −0.229 0.320 0.135
p̂2 −0.664 0.428 0.669 0.450 −0.226 −0.229 −0.467 −0.197
p̂3 0.455 −0.453 0.000 0.000 −0.226 −0.229 0.320 0.135
p̂4 −0.890 −1.799 −0.398 −0.268 0.774 0.783 −0.627 −0.264

The elasticities of p̂ to each of the parameters, calculated from (94), are shown in
Table 1. Regardless of which sex is scarcer, increasing neonatal survival increases the
proportion of young, at the expense of the proportion of adults, in both sexes. Increasing
the sex ratio ρ increases the proportion of females at the expense of males. Increasing
female survival (σ1 or σ2) increases the proportion of adult females at the expense of all
other stages; increasing male survival has the opposite effect. However, when females
are rare, increasing female survival has no effect on the proportion of juveniles. When
males are rare, increases in male survival have no effect on the proportion of juveniles.
Increasing fecundity increases the proportion of juveniles, at the expense of adults, in
both sexes and for either mortality pattern.

The elasticity of the population growth rate λ at equilibrium is shown in Table 2,
and is compared to the naive calculation that treats A[θ, p̂] as a fixed matrix. When
males are rare, so that fertility is limited by the mating function, the naive calculations
are dramatically wrong. When calculated correctly, increases in the primary sex ratio ρ
reduce λ, because they reduce the availability of males. Increases in female survival have
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no effect on λ, because the extra females produced have no opportunity to reproduce.
Increases in male survival increase λ because they increase female fertility. In each case,
the naive calculation leads, incorrectly, to the opposite conclusion.

When females are rare (which renders the model linear and female-dominant at equi-
librium), the correct and the naive calculations agree. This is a consequence of using the
minimum as a birth function. Some preliminary calculations using the harmonic mean
birth function,

B(n) =
2NfNm

Nf + Nm
, (105)

in which both males and females influence fertility at all population structures, suggest
that the naive elasticity calculations are always wrong.

Table 2: The elasticity of λ to parameters in the two-sex model for passer-
ine birds, under two mortality scenarios. The correct calculation is
based on (97). The naive calculation incorrectly treats A[p̂, θ] as a
fixed matrix, ignoring the effect of parameters on the equilibrium
population structure p̂

Males rare Females rare
Correct Naive Correct Naive

σ0 0.669 0.545 0.669 0.669
ρ −0.669 0.545 0.669 0.669
σ1 0 0.226 0.198 0.198
σ2 0 0.229 0.133 0.133
σ3 0.198 0 0 0
σ4 0.133 0 0 0
φ1 0.392 0.319 0.471 0.471
φ2 0.277 0.226 0.198 0.198 ♦

8. Sensitivity of population cycles

Equilibria are not the only attractors relevant in nature (e.g., Clutton-Brock et al. 1997)
or the laboratory (e.g., Cushing et al. 2003). Cycles, invariant loops, and strange attrac-
tors also occur, and are sensitive to changes in parameters. This section examines the
sensitivity of cycles.
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8.1 Sensitivity of the population vector

A k-cycle is a sequence of population vectors n̂1, . . . , n̂k, satisfying

n̂i+1 = A [θ, n̂i] n̂i i = 1, . . . , k − 1

n̂1 = A [θ, n̂k] n̂k. (106)

A change in parameters will modify each point in the cycle; the first goal of perturbation
analysis is thus to find the sensitivities

dn̂1

dθT , . . . ,
dn̂k

dθT . (107)

The following is the derivation of these sensitivities for a 2-cycle. The extension cycles
of arbitrary length will follow. To simplify notation, define

Ai ≡ A [θ, n̂i] . (108)

The 2-cycle satisfies

n̂1 = A2n̂2 (109)
n̂2 = A1n̂1 (110)

Differentiating both equations, applying the vec operator, and expanding dvec Ai/dθT

yields a system of equations

dn̂1

dθT = (n̂T
2 ⊗ Is)

∂vec A2

∂θT + (n̂T
2 ⊗ Is)

∂vec A2

∂nT
2

(
dn̂2

dθT

)
+ A2

(
dn̂2

dθT

)
(111)

dn̂2

dθT = (n̂T
1 ⊗ Is)

∂vec A1

∂θT + (n̂T
1 ⊗ Is)

∂vec A1

∂nT
1

(
dn̂1

dθT

)
+ A1

(
dn̂1

dθT

)
(112)

This system can be written in block matrix form. Defiine Hi ≡ n̂T
i ⊗ Is. Then

d

dθT

(
n̂1

n̂2

)
=

(
0 H2

H1 0

)



∂vec A1

∂θT

∂vec A2

∂θT




+




(
0 H2

H1 0

)



∂vec A1

∂nT
1

0

0
∂vec A2

∂nT
2


 +

(
0 A2

A1 0

)
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× d

dθT

(
n̂1

n̂2

)
(113)

Solving for the sensitivities gives

d

dθT

(
n̂1

n̂2

)
=


I2s −

(
0 H2

H1 0

)



∂vec A1

∂nT
1

0

0
∂vec A2

∂nT
2




−
(

0 A2

A1 0

)



−1

(
0 H2

H1 0

)



∂vec A1

∂θT

∂vec A2

∂θT


 (114)

where the matrices Ai and the derivatives of Ai are all evaluated at n̂i. The analogy with
(23) is apparent.

This calculation can be extended to cycles of any period, in terms of block matrices as
in (114). The pattern of the block matrices is clear from a 3-cycle. Define the following
matrices:

N =




n̂1

n̂2

n̂3


 (115)

A =




0 0 A3

A1 0 0
0 A2 0


 (116)

H =




0 0 H3

H1 0 0
0 H2 0


 (117)

C =




∂vec A1

∂nT
1

0 0

0
∂vec A2

∂nT
2

0

0 0
∂vec A3

∂nT
3




(118)
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D =




∂vec A1

∂θT

∂vec A1

∂θT

∂vec A1

∂θT




. (119)

In terms of these matrices, the sensitivity of each point in the 3-cycle is given by

dN
dθT = [I3s − A−HC]−1HD. (120)

8.2 Sensitivity of weighted densities and time averages

The matrix dN/dθT contains the sensitivity of every stage to every parameter at every
point in the cycle. This potential overload of information can be simplified by calculating
the sensitivities of weighted densities and/or time averages over the cycle. To do this, it is
convenient to write the points in the cycle as an array (of dimension s× k)

G =
(

n̂1 n̂2 · · · n̂k

)
. (121)

The block vector N is
N = vec G. (122)

Weighted densities. Let c be a vector of weights, and let N̂i = cTn̂i be the (scalar)
weighted density at the ith point on the cycle. Then write

N̂ =




N̂1

...
N̂k


 (123)

The vector N̂ can be calculated from N as

N̂ =
(

cTn̂1 · · · cTn̂k

)T

= vec (cTG)
= (Ik ⊗ cT) vec G

= (Ik ⊗ cT)N dimension = k × 1. (124)

Time-averaged population vector. Let b be a probability vector (bi ≥ 0, eTb = 1) and
define the time-averaged population vector as

n̄ =
k∑

i=1

bin̂i. (125)
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Then

n̄ = Gb

= (bT ⊗ Is) vec G

= (bT ⊗ Is)N dimension = s× 1 (126)

Time-averaged weighted density. Taking the time average of the N̂i gives

N̄ =
∑

i

bicTn̂i

= cTGb

= (bT ⊗ cT)N (127)

Thus the sensitivities of the weighted densities, the time-averaged population, and the
time-averaged weighted density are obtained by differentiating (124), (126), and (127) as

dN̂
dθT = (Ik ⊗ cT)

dN
dθT (128)

dn̄
dθT = (bT ⊗ Is)

dN
dθT (129)

dN̄

dθT = (bT ⊗ cT)
dN
dθT (130)

where dN/θT is given by (120).
Example 7 (A 2-cycle in the Tribolium model.) A series of experiments on Tribolium
reported by Dennis et al. (1995) produced stable 2-cycles by experimentally manipulating
the adult mortality µa. Using the model in Example 2 and the estimated parameters

b = 11.677
cea = 1.100× 10−2

cel = 9.3× 10−3

cpa = 1.78× 10−2

µa = 1.108× 10−1

µl = 5.129× 10−1

(Dennis et al. 1995, Table 1) leads to a 2-cycle

n̂1 =




325.3
8.9

118.5


 n̂2 =




18.2
158.4
106.4


 , (131)
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in which the population oscillates between a state dominated by larvae and adults and a
state dominated by pupae and adults.

As an example of the rich sensitivity analyses possible for even such a simple model,
I examine the elasticity of the population vector n̂i, of the total population N̂i = eTn̂i, of
the total population respiration R̂i = cTn̂i (with c the vector of stage-specific respiration
rates from Example 2), and of the time averages n̄, N̄ , and R̄. The results are collected in
Figure 8.

First, the elasticities of the n̂i differ from stage to stage and from one point on the
cycle to another (Figure 8a). Increases in fecundity, for example, increase the density of
larvae and reduce the density of pupae in n̂1, but have the opposite effects in n̂2. The
elasticities to b, cea, and cel are much larger than those to the other parameters (cf. the
elasticities of the equilibrium n̂ in Figure 1).

The elasticities of total population are similar at the two points in the cycle (Figure 8b),
except that larval mortality µl has a large negative effect on N̂2, but only a small effect on
N̂1. The elasticities of total respiration R̂i, however, are different at the two points in the
cycle (Figure 8c).

The elasticities of the time-averaged population vector n̄ (Figure 8d) are similar to
those of the equilibrium vector in Figure 1 (although they need not be). This pattern is
not predictable from the patterns of the elasticities of the population vectors n̂1 and n̂2

(Figure 8a).
Finally, the elasticities of the time averages, N̄ and R̄, of the weighted densities are

similar to each other tnd to the elasticities of the time-averaged population n̄.
The sensitivity analysis of cycles thus depends very much on the dependent variables

of interest. The matrix dN/dθT (Figure 8a) contains 36 pieces of information: the effects
of 6 parameters on 3 stages at 2 points in the cycle. A focus on weighted density reduces
this to 12 (Figures 8b,c), but the results may depend very much on the particular weighting
vector chosen. A focus on time averages reduces the information from 36 to 18 numbers
(Figure 8d), and the response of the time-averaged weighted densities finally are described
by just 6 numbers. The good news is that equations (120), (124), (126), and (127) make
it easy to compute all these sensitivities.

8.3 Sensitivity of temporal variance in density

The variance over a cycle in a weighted density N̂ can be written

V (N̂) = E(N̂2)−
[
E(N̂)

]2

(132)
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Figure 8: Analysis of a 2-cycle in the Tribolium model. (a) Elasticity of the
density of each stage, with respect to each parameter, at n̂1 and n̂2.
(b) Elasticity of the total population N̂ at each point in the cycle.
(c) Elasticity of the total respiration R̂ at each point in the cycle.
(d) Elasticity of the time-averaged population n̄. (e) Elasticity of
the time-averaged total population N̄ and the time-averaged total
respiration R̄
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where E(N̂) = N̄ = cTGb and

E(N̂2) =
k∑

i=1

bi (cTn̂i)
2 (133)

= (c ◦ c)T(G ◦G)b (134)

Taking the differential of E(N̂2) and applying the vec operator gives

dE(N̂2) = 2 [bT ⊗ (c ◦ c)T] diag (N) dN. (135)

Combining this with the differential of E(N̂)2 gives the sensitivity of V (N̂):

dV (N̂)
dθT = 2

{
[bT ⊗ (c ◦ c)T] diag (N)− N̄ (bT ⊗ cT)

} dN
dθT (136)

where dN/dθT is given by (120). The extension to higher moments, should one want to
know, say, the sensitivity of the skewness of population size over a cycle, is possible.

8.4 Dynamic environmental feedback models

The static environmental feedback model of Section 4 assumed that the environmental
variable g(t) had no inherent dynamics of its own. A more general, dynamic environ-
mental feedback model can be written

n(t + 1) = A[θ,n(t),g(t)]n(t)
g(t + 1) = B[θ,n(t),g(t)]g(t) (137)

allowing for n(t) to depend on both the environment and on its own density, and likewise
for the environmental factor.

The sensitivity of the equilibrium of (137) can be found using an approach similar to
that applied above to cycles. At equilibrium,

n̂ = A[θ, n̂, ĝ]n̂ (138)
ĝ = B[θ, n̂, ĝ]ĝ (139)

Differentiating both sides of each equation, expanding dvec A and dvec B, and applying
the vec operator gives

dn̂ = A (dn̂) + (n̂T ⊗ Is)
(

∂vec A
∂θT dθ +

∂A
∂nT

dn̂ +
∂A
∂gT

dĝ
)

(140)

dĝ = B (dn̂) + (ĝT ⊗ Iq)
(

∂vec B
∂θT dθ +

∂B
∂nT

dn̂ +
∂B
∂gT

dĝ
)

. (141)
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Applying the identification theorem and the chain rule gives

dn̂
dθT = A

dn̂
dθT + (n̂⊗ Is)

∂vec A
∂θT + (n̂⊗ Is)

∂vec A
∂nT

dn̂
dθT

+(n̂⊗ Is)
∂vec A

∂gT

dĝ
dθT (142)

with a similar expression for dĝ/dθT. All matrices and their derivatives are evaluated at
the equilibrium (n̂, ĝ). This system can be written in block matrix form by defining

H ≡ (n̂T ⊗ Is) (143)

J ≡ (ĝT ⊗ Iq) (144)

Then define

A =
(

A 0
0 B

)
(145)

H =
(

0 H
J 0

)
(146)

C =




∂vec B
∂nT

∂vec B
∂gT

∂vec A
∂nT

∂vec A
∂gT


 (147)

D =




∂vec A
∂θT

∂vec B
∂θT


 (148)

N =
(

n̂
ĝ

)
(149)

In terms of these matrices,

dN
dθT = HD+ (A+HC)

dN
dθT . (150)

Solving for dN/dθtr gives the sensitivity of both the population and the environmental
factor,

dN
dθT = (Is+q − A−HC)−1HD. (151)
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9. Sensitivity of life expectancy

Life expectancy is traditionally calculated from linear age-classified models. It can also
be calculated from linear stage-classified models (Caswell 2001, 2006). Here, I extend
the caculation to the equilibria of nonlinear age- or stage-classified models. Write the
density-dependent projection matrix as

A[θ,n] = U[θ,n] + F[θ,n] (152)

where U contains the transition probabilities for individuals already present in the pop-
ulation and F describes the production of new individuals by reproduction (this decom-
position dates back to Feichtinger 1971; see Caswell 2001 Chapter 5, Caswell 2006,
Tuljapurkar and Horvitz 2006 for recent developments). The matrix U is the transient
matrix of an absorbing Markov chain, with death as an absorbing state. The fundamental
matrix of this chain at equilibrium is

N[θ, n̂] = (Is −U[θ, n̂])−1 (153)

where the inverse is guaranteed to exist if the spectral radius of U is less than 1 (Iosifescu
1980). The (i, j) element of N is the expected time spent in stage i, before death, by an
individual in stage j. Suppose that stage 1 represents newborn individuals. Then the life
expectancy at birth is the mean time to absorbtion (i.e., death) for an individual in stage
1. This is η1, the first entry of the vector obtained by summing the columns of N; i.e.,

η1 = eTNe1 (154)

where e1 has 1 in the first entry and 0 elsewhere.15 Differentiating η1 and applying the
vec operator gives

dη1 = (eT
1 ⊗ eT) dvec N, (155)

but dvec N = (NT ⊗N) dvec U (Caswell 2006), and in the nonlinear model

dvec U =
∂vec U

∂θT dθ +
∂vec U

∂nT
dn̂. (156)

Thus
dη1

dθT = (eT
1 ⊗ eT)

[
(NT ⊗N)

∂vec U
∂θT + (NT ⊗N)

∂vec U
∂n

dn̂
dθ

]
(157)

15 The usual demographic notation for life expectancy at age x is
o
ex, but the letter e is already doing heavy

lifting in this paper, so I have adopted a notation (Caswell 2006) used in the Markov chain literature (e.g.,
Iosifescu 1980) for the mean time to absorbtion.
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Table 3: Summary of models and main sensitivity results of the paper. Ex-
tending sensitivities to additional dependent variables (ratios, av-
erages, rates, etc.) is described in Section 3. The extension from
sensitivities to elasticities is given in Section 3.
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Table 4: (continued)
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where U, N, and the derivatives of U are evaluated at equilibrium and dn̂/dθT is given
by (23). In a linear model, U is independent of n and (157) reduces to the sensitivity of
life expectancy given in Caswell (2006).

10. Summary and discussion

The results obtained in this paper (Table 3) comprise a fairly complete perturbation analy-
sis of nonlinear demographic models. The nonlinearities may arise from density-dependence,
frequency-dependence, environmental feedback, proportional population structure calcu-
lations, or recruitment subsidy. The sensitivity calculations accommodate a wide range of
dependent variables and the calculation of both sensitivity and elasticity with respect to
any kind of demographic parameters.

Most of the results in this paper follow a straightforward method:
1. Write the model, carefully specifying the dependence of the vital rates on θ and n.
2. Write an expression for the equilibrium.
3. Take the differential of the equilibrium; this usually includes matrix differentials of

the form dA.
4. Use the vec operator and Roth’s theorem to obtain an expression that involves only

the differentials of vectors.
5. If necessary, use the chain rule for total differentials to expand dvecA as in (21).
6. Solve for dn̂ and use the first identification theorem (10) to get the derivative

dn̂/dθT.
7. If desired, use the chain rule to develop sensitivities of a different dependent vari-

able (call it m), to a different set of parameters (call it ξ):

dm̂
dξT =

dm̂
dn̂T

dn̂
dθT

dθ

dξ
.

Obtain elasticities using (43).
The extension of perturbation analysis from linear to nonlinear models has many ap-

plications. Grant and Benton (2003), for example, emphasized the distinction between
applications in evolutionary demography and applications in population policy, manage-
ment, and conservation. Evolutionary questions depend on the selection gradients on
traits. A selection gradient is the sensitivity of the rate of increase of a phenotype, when
introduced at low density into a population with some other phenotype. This rate of
increase is called an invasion exponent; the sensitivity analysis of these exponents in
nonlinear models is now well understood (Caswell 2001, Section 16.11, Caswell et al.
2004, Caswell 2007b). On the other hand, population management (protecting endan-
gered species, controlling invasive pests, or maintaining sustainable harvests) focuses
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more on equilibrium population size than on growth rates. The methods of this paper
solve these problems.

This approach could be applied to many other demographic problems. Of particular
interest are stage-classified epidemic models (Klepac et al. 2007), transient amplifica-
tion of perturbations in reactive ecological systems (Verdy and Caswell 2008), and the
decomposition of rates into components due to changes in the vital rates and to changes
in population structure (a problem independently investigated by ecologists and human
demographers (Vaupel and Romo 2002, Bullock et al. 1996).
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