Potential role of particulate forms of Fe in island fertilisation in the Southern Ocean

> Peter J. Statham School of Ocean and Earth Science University of Southampton, UK

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHEMPTONAND WATCHAL ENVIRONMENT RESTAND

Talk Overview

 Vertical particle flux studies around the Crozet Islands

 Implications of biogenic Fe fluxes for conversion of lithogenic to biologically available Fe- how important are particle sources of Fe to micro-organisms in this environment?

•Mechanisms by which organisms access lithogenic Fe- ideas from the geomicrobiology community

National Oceanography Centre, Southampton WATURAL ENVIRONMENT DESEARCH SOUNCIL

- Vertical Fe fluxes from combination of analysis of in situ pump collected samples and Th -234 fluxes
- "labile" (acetic acid leach) total and biogenic (=total – lithogenic) Fe fluxes estimated
- Details in Planquette et al. GBC 2011

National Oceanography Centre, Southampton Natural Environment Destances gouncil

Origin of Fe in particles?

- Possible to estimate Fe budget in this system for area N of the islands
- Dissolved lateral and vertical upward Fe fluxes estimated with use of Ra isotopes (Charette et al DSR (2007) 54, (18-20), 1989.
- Atmospheric input estimate from samples collected on cruise
- Can compare fluxes of labile, biogenic and total particulate Fe

National Oceanography Centre, Southampton MATURAL ENVIRONMENT DESEARCH SOUNCIL white = dissolved orange = labile

Green = biogenic red= total Biogenic ~ third of

Units are nmol/m²/day see Planquette et al. GBC doi:10.1029/2010GB003789 (2011) for details

100

total

48°S

 10^{3}

50°E

46°S

44°S

47°E

National Oceanography Centre, Southampton

Key points from the Crozet particle flux study:

- Lithogenic "refractory" Fe particles dominate vertical flux downstream of islands. Leachable flux does not = biogenic flux
- biogenic flux component, (total lithogenic) greater than other combined dissolved inputs to system
- Infers biota have accessed a fraction of the "lithogenic" Fe present. In agreement with ideas in Frew, Lam and others, but over larger scale

National Oceanography Centre, Southampton WATURAL ENVIRONMENT RESEARCH SOUNCIL

Recycling of Fe in the water column

- Boyd et al. (L&O 2010 55(3)) showed rapid release of DFe and ligands by heterotrophic bacteria in presence of natural particles (near SO)
- Argue release of biogenic Fe important for fuelling algal growth and lithogenic material more relevant to ballast and adsorption site for Fe
- Does not really address potential for lithogenic phases to be source of Fe to micro organisms
- How can organisms access lithogenic Fe??

National Oceanography Centre, Southampton WATURAL ENVIRONMENT RESEARCH SOUNCIL

Microbial access to mineral forms of Fe

- Interactions take two general forms: a) Fe metabolically limiting and mechanism to obtain Fe needed b) Fe redox processes used for microbial energy
- The ocean water column is generally oxic and so Fe II not *expected* form, thus Fe III reduction most likely redox mechanism for energy
- Ocean prokaryotes use predominantly siderophores to access Fe (recycled or mineral)

National Oceanography Centre, Southampton Matural Environment bestared souncil Dissimilatory Electron transfer mechanisms

> Figure from Kappler and Straub, Reviews Min. Geochem (2005) **59**, 85

- A. Bacteria on mineral surface (or nanoparticles on surface of bacterium)- direct electron transfer
- B. Chelated Fe transferred, reduced Fe released
- C. Organic compounds used to transfer electrons (e.g.phenazine-1-carboxamide)

National Oceanography Centre, Southampton NATURAL ENVIRONMENT DESEARCH SOUNCIL

Bacterial reduction processes using nanowires

Recent evidence for electron transfer via external cytochrome "wires" in geobacter-pili (Reguera et al., Nature 2005)

Images from geobacter.org

Geobacter sulfurreducens cells expressing pili (arrows). Photo credit: Gemma Reguera

Centre, Southampton university of southampton and natural environment besearch souncil

Release of Fe II

- Evidence for release of reduced Fe II?
- Not a fully oceanic environment but Balzano [AME (2009) 54(3)] has shown aggregates containing environmental particles can release Fe II. *Leven on the sp*. and *Marinobacter sp.* most likely reducers of bacteria identified
- Forms of FeII may be more bioavailable than FeIII

Southampton

School of Ocean and

Earth Science

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHEAST RESTAND

Summary on microbial access to Fe in minerals

- Fe could be released from minerals by siderophores or though reductive bacterial action. In latter case Fe release is a side issue for bacteria; Fe not limiting for them
- Rates, availability of different substrate, and many other aspects need further study
- Much useful information in geo-microbiology literature

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHAMPTONAND WATURAL ENVIRONMENT RESTARDS

Thanks to : • Helene Planquette for most of the Crozet work (do look at her poster!!) • Captain and crew of RRS Discovery • Colleagues and support staff in lab and at sea • Natural Environment Research Council for support

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHWENT RESEARCH GOUNCIL

National Oceanography Centre, Southampton

Red= total particulate Fe

> Inferred horizontal flux from islands to balance vertical flux off shore

National Oceanography Centre, Southampton MINISTY OF SOUTHAMPTONAND MATURAL ENVIRONMENT DESTAND