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 sity from the Mississippian until the ex-
 pansion of the angiosperms, when spe-
 cies numbers increased significantly. A
 parallel can be drawn with the expansion
 of diversity in the marine record associ-
 ated with the Ordovician radiation of

 sessile suspension feeders. While the ob-
 served Cretaceous-Tertiary rise may be
 influenced in part by some of the biases
 previously discussed, we believe that it
 is nonetheless a real phenomenon associ-
 ated with the biology of the angiosperms.

 The temporal pattern of land-plant di-
 versity in North America resembles that
 described for marine invertebrates (2-4)
 in nature, if not in timing. Extrapolation
 of the present data to a historical inter-
 pretation of worldwide vascular plant
 diversity will require consideration of
 changing levels of geographic and climat-
 ic provinciality through time. Estimates
 of Phanerozoic phytogeographic provin-
 ciality show maximums in the Permian
 and Tertiary-Quaternary (/2). These cor-
 respond to times of maximum climatic
 or geographic heterogeneity, or both.
 This suggests the likelihood of a pre-
 angiosperm global diversity peak in the
 late Paleozoic. The coincidence in the

 present day of both maximum geograph-
 ic/climatic provinciality and high levels
 of species packing in many communities
 supports the hypothesis of Hughes (13)
 that the modem flora contains a greater
 number of vascular plant species than
 any previous flora in earth history.
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 The term "Little Ice Age" refers to
 the period from about 1430 to 1850 dur-
 ing which the Northern Hemisphere cli-
 mate was alleged to be cooler than the
 periods before or after (1, p. 151; 2, pp.
 185-186). Earlier attempts to describe
 the hemispheric average temperature
 variations during this period have been
 hampered by a lack of uniformly distrib-
 uted observations around the hemi-

 sphere. As a consequence, most curves
 describing the climatic change during
 this period are based on European data
 compiled by Lamb (/, pp. 130 and 152;2,
 pp. 228-229). Using two of these curves,
 Eddy (3) has suggested that the Little Ice
 Age was caused by variations in the solar
 constant related to the envelope of the
 sunspot cycle. In fact, the Maunder sun-
 spot minimum (4) does correspond to a
 cool period in the winter severity index
 of Lamb (2, p. 229), particularly at 50?N,
 37.5?E. Both a comprehensive hemi-
 spheric average temperature curve and
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 modeling studies, presented below,
 show this to be a spurious relationship.
 The hemispheric average temperature is
 not well represented by an index at one
 location (5), and volcanic dust produces
 a much better model simulation of the

 climatic change during and after this pe-
 riod.

 Borzenkova et al. (6) have presented
 the annual average hemispheric surface
 temperature from 1881 to 1975; their data
 are taken from instrumental observa-

 tions distributed over the hemisphere.
 Although a dense enough network of sta-
 tions did not exist before this period
 from which to obtain a representative
 hemispheric temperature by spatial aver-
 aging, many annual average individual
 station records do exist. These include

 instrumental observations from Arch-

 angel and Irkutsk, U.S.S.R.; Berlin and
 Regensburg, Germany; Montreal, Can-
 ada; and Philadelphia, Pennsylvania; as
 well as proxy data such as tree ring
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 Table 1. Correlation coefficients of model results with observations. Significance levels (in per-
 centage) are given in parentheses (29); a dash indicates not significant at the 10 percent level.
 V = volcanic dust simulation, S = smoothed sunspots, C = carbon dioxide, R = random forc-
 ing (natural variability). Autocorrelations of each series are also presented, to be compared with
 that of the entire data record, .766. The 5-year average correlations are to be compared with the
 correlation of .93 between this set of observations (24) and those of Mitchell (17).

 *^ , ?. -^ .* jCorrelation with Correlation with entire record, Cor n
 1620 to 1975 instrumental observations, Autocor-

 Model 1881 to 1969 relation
 forcing Including With linear (l-year

 linear trend Annual 5-year lag)
 trend removed average average trend removed

 V .408 (.2) .373 (.5) .823 (.1) .965 (.1) .971
 S .297 (2.0) .037 - .269 (2.0) .384 - .999
 V + S .441 (.1) .313 (2.0) .692(.1) .829(.1) .986
 V + C .430(.1) .384(.5) .819(.) .958(.1) .972
 S + C .322(1.0) .070 - .297(.5) .420 - .999
 V + S + C .451(.1) .323(1.0) .681(.1) .820(.1) .987
 R .035 - .079 - .530
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 widths from Alaska and Finland and win-

 ter temperatures from Tokyo, Japan (7).
 Groveman and Landsberg (8) have used
 the technique of multiple linear regression
 to reconstruct the hemispheric annual
 average surface temperature from 1579 to
 1880, using series such as those above
 based on their correlations with the data

 of Borzenkova et al. Although this re-
 constructed temperature record is the
 best available thus far, it is not a perfect
 reconstruction of the past climate. The
 early part of the record, in particular, is
 reconstructed on the basis of only a few
 stations, and the record of Borzenkova
 et al. itself is not adequately representa-
 tive of ocean areas. Decade average val-
 ues of this time series are presented in
 the topmost curve of Fig. 1, but annual
 average values were used in all calcu-
 lations. The period of the Maunder mini-
 mum (1645 to 1715) was not particularly
 cold; the early 1600's and early 1800's
 were colder. Landsberg, as reported by
 Kraemer (9), also concluded that the
 1800's were the coldest part of the Little
 Ice Age.

 Earlier modeling studies of the climate
 of the past 400 years have been inconclu-
 sive. Schneider and Mass (10), using a
 very simple global average climate mod-
 el, looked at solar forcing, volcanic dust,
 and anthropogenic CO. as possible
 causes of climatic change. Their solar
 forcing, however, was based on observa-
 tions of Kondratyev and Nikolsky (11),
 whose conclusions have since been re-

 tracted (12) because of contamination by
 volcanic dust from Agung Volcano and
 atmospheric nuclear tests. Moreover,
 they did not examine the effects of vol-
 canic dust separately. In addition, a
 hemisphere average temperature record
 was not available for comparison with
 their results, although Mass and Schnei-
 der (13) reported correlation coefficients
 with a few individual records. Robock

 (14, 15), using a detailed seasonal energy
 balance model (16), examined the theo-
 ries of solar forcing, volcanic dust, an-
 thropogenic influences, and natural in-
 ternal variability as possible causes of
 climatic change during the past 100
 years. Comparing the results with the
 observations of Borzenkova et al. (6)
 and Mitchell (17), he found that volcanic
 dust alone produced a very good simula-
 tion, that variations in the solar constant

 as a function of sunspot number pro-
 duced very poor simulations whether the
 sunspot number was smoothed over the
 11-year sunspot cycle or not, that an-
 thropogenic influences were not yet large
 enough to be important, and that random
 natural variability as simulated in the
 model produced temperature variations
 21 DECEMBER 1979

 as large as those of the past 100 years.
 The sensitivity of the model was also
 found to be too large as compared to
 most other climate models because of its

 parameterization of ice and snow areas
 and albedos.

 The present study, based on an im-
 proved climate model, extends the above
 study back to the Little Ice Age and
 compares the model results to the hem-
 ispheric temperature reconstruction of
 Groveman and Landsberg (8). The model
 has been improved by the incorporation
 of a new surface albedo parameterization
 based on the observed seasonal snow

 and ice fluctuations (18). The model now
 has a very reasonable sensitivity, 3, of
 about 200?C (/9), that is, a 1 percent
 change in the solar constant causes a 2?C
 change in the global mean surface tem-
 perature in the same direction. Seven
 model runs were made with various com-

 binations of the following four theoreti-
 cal forcings:

 1) Volcanic dust, using data from
 Lamb (20) for 1620 to 1850 and Mitchell
 (21) for 1850 to the present. The magni-
 tude of the forcing was calibrated as in
 (10) with a dust veil index of 160 corre-
 sponding to a 0.5 percent decrease in the
 solar constant.

 o I 95% Confidence Limit

 -_- with C02

 5 .0.5oc {

 0 > 0

 E a o C =X0

 1600 1700 1800 1900 2000

 Fig. 1. Northern Hemisphere average surface
 temperature observations and climate model
 calculations, shown as 10-year averages. The
 observations come from the reconstruction of
 Groveman and Landsberg (8) for 1600 to 1880,
 shown with the 95 percent confidence inter-
 val, and from the data of Borzenkova et al. (6)
 for 1881 to 1975. The model runs are de-
 scribed in the text.

 2) Variations in the solar constant as a

 function of the envelope of the sunspot
 number, according to the suggestion of
 Eddy (3, 4):

 S = 1.94 + 0.0001 N  (1)

 where S is the solar constant (in calories
 per square centimeter per minute) and N
 is the Wolf sunspot number with the 11-
 year cycle smoothed out. The values
 1.94 and 0.0001 are not based on obser-

 vations but are chosen to give a reason-
 able amplitude to the model response.

 3) Variations in CO2, according to
 Broecker (22).

 4) Natural variability simulated by
 adding random perturbations to the at-
 mospheric eddy heat flux to make the in-
 terannual variability of the same ampli-
 tude as the observations of Vonder Haar

 and Oort (23).
 A more detailed discussion and graphs

 of the time-dependent forcings may be
 found in (15).

 Ten-year average results of the model
 runs are presented in the four lower
 curves in Fig. 1. Table 1 presents corre-
 lation coefficients between the model re-

 sults and two sets of data: (i) the entire
 record from 1620 to 1975, including the
 reconstruction of Groveman and Lands-

 berg (8) and the observations of Borzen-
 kova et al. (6), and (ii) the observations
 of Budyko and Asakura (24) for 1881 to
 1969, which represent a preliminary
 analysis of (6). Correlations between an-
 nual average model results and annual
 average observations are presented for
 both data sets. Correlations with the lin-
 ear trend removed from both the model

 results and observations are given for the
 entire record. Robock (15) found that the
 correlation for the instrumental period
 between the 5-year average observations
 of Mitchell (17) and 5-year averages of
 Budyko and Asakura (24) was .93, and
 so correlations of 5-year averages of the
 model results and observations are pre-
 sented to be compared with this number.
 The significance levels in Table I were
 calculated on the assumption of serially
 independent data. When significance lev-
 els were recalculated including correc-
 tions for autocorrelations in the time se-

 ries (25), none of the coefficients was sig-
 nificant. The results which follow must

 therefore be judged with this qualifica-
 tion. Adding the random results to each
 of the other runs to lower the autocorre-
 lation and produce a more realistic time
 series still did not, after correction for
 autocorrelation, make the results statisti-
 cally significant. The following com-
 ments and conclusions are consequences
 of the computer calculations of climatic
 change:

 1403
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 1) Volcanic dust may have been an im-
 portant cause of climatic fluctuations
 over the past 400 years. Except for the
 warm period in the first half of the 1800's
 (26), the computed volcano curve quite
 closely matches the observations curve
 (Fig. 1). The correlation coefficients
 (Table 1, run V) for the entire record are
 very significant, even with the linear
 trend removed, and the correlation coef-
 ficients for the most recent period, with
 the best volcano data and actual instru-

 mental observations, are very high. The
 5-year average correlation is higher than
 the correlation between 5-year averages
 of the two independent sets of observa-
 tions of Budyko-Asakura (24) and Mitch-
 ell (17).

 2) The hypothesis of sunspot-related
 solar constant changes is not supported.
 The significant correlation (Table 1, run
 S) of the entire record with the model re-
 sult is almost entirely due to the upward
 linear trend in both series, and is even
 lower for the most recent period with
 more reliable data. The computed
 smoothed sunspot curve (Fig. 1) does
 not resemble the observations curve in

 any of its details. Thus the hypothesis of
 Eddy (3) that the Little Ice Age is related
 to the Maunder sunspot minimum
 through variations in the solar constant
 is not supported. This result does not
 rule out changes in the solar constant as
 causes of climatic change, but, if there is
 a relation, these changes must either be
 related to some yet to be discovered in-
 dex other than sunspots or to sunspots in
 some very complex way (27).

 3) Combining the volcano and sunspot
 forcings (Table 1, run V + S) (Fig. 1,
 volcanoes and smoothed sunspots curve)
 does not improve the volcano results.

 4) Carbon dioxide produced by fossil-
 fuel burning does not seem to have had a
 significant effect on climatic change as
 yet. With it the results are slightly better
 for the entire record and slightly worse
 for the most recent portion. This con-
 clusion should be qualified because there
 may be compensating anthropogenic in-
 fluences such as aerosols (15), and the
 model tends to underemphasize the CO2
 effect as compared to more sophisticated
 radiation models which treat the strato-

 sphere explicitly (28).
 5) The random forcing results indicate

 the amount of natural variability to be
 expected in the climate without any ex-
 ternal forcing. This is certainly an impor-
 tant cause of climatic fluctuations and

 1) Volcanic dust may have been an im-
 portant cause of climatic fluctuations
 over the past 400 years. Except for the
 warm period in the first half of the 1800's
 (26), the computed volcano curve quite
 closely matches the observations curve
 (Fig. 1). The correlation coefficients
 (Table 1, run V) for the entire record are
 very significant, even with the linear
 trend removed, and the correlation coef-
 ficients for the most recent period, with
 the best volcano data and actual instru-

 mental observations, are very high. The
 5-year average correlation is higher than
 the correlation between 5-year averages
 of the two independent sets of observa-
 tions of Budyko-Asakura (24) and Mitch-
 ell (17).

 2) The hypothesis of sunspot-related
 solar constant changes is not supported.
 The significant correlation (Table 1, run
 S) of the entire record with the model re-
 sult is almost entirely due to the upward
 linear trend in both series, and is even
 lower for the most recent period with
 more reliable data. The computed
 smoothed sunspot curve (Fig. 1) does
 not resemble the observations curve in

 any of its details. Thus the hypothesis of
 Eddy (3) that the Little Ice Age is related
 to the Maunder sunspot minimum
 through variations in the solar constant
 is not supported. This result does not
 rule out changes in the solar constant as
 causes of climatic change, but, if there is
 a relation, these changes must either be
 related to some yet to be discovered in-
 dex other than sunspots or to sunspots in
 some very complex way (27).

 3) Combining the volcano and sunspot
 forcings (Table 1, run V + S) (Fig. 1,
 volcanoes and smoothed sunspots curve)
 does not improve the volcano results.

 4) Carbon dioxide produced by fossil-
 fuel burning does not seem to have had a
 significant effect on climatic change as
 yet. With it the results are slightly better
 for the entire record and slightly worse
 for the most recent portion. This con-
 clusion should be qualified because there
 may be compensating anthropogenic in-
 fluences such as aerosols (15), and the
 model tends to underemphasize the CO2
 effect as compared to more sophisticated
 radiation models which treat the strato-

 sphere explicitly (28).
 5) The random forcing results indicate

 the amount of natural variability to be
 expected in the climate without any ex-
 ternal forcing. This is certainly an impor-
 tant cause of climatic fluctuations and

 may explain the difference between the
 observations and model results from

 purely external forcing.
 6) In judging the above results, one
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 mate reconstruction and the volcanic

 dust data are less reliable at the begin-
 ning of the record than at the end. Future
 research should help to clarify the mag-
 nitude of this problem and may actually
 improve the above results.
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 the drug produces abnormalities of the
 liver in many patients and infrequently
 causes cholestatic jaundice (3), probably
 by altering the properties of hepatocyte
 membranes. For example, CPZ dimin-
 ishes bile secretion in the dog (4), rhesus
 monkey (5), and isolated perfused rat
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 Chlorpromazine and Its Metabolites Alter

 Polymerization and Gelation of Actin

 Abstract. Hepatic hydroxylated metabolites of chlorpromazine (10-IM to 10-4M),
 a frequently used phenothiazine tranqulilizer, produce solid gel formation w'ith fila-
 mentous actin, butt the less toxic chlorpromazine sulfoxide metabolite does not. At
 higher concentrations (5 x 10-4M) chlorpromazine inhibits actin polymerization.
 These dose-response relationships parallel the drug's hepatic toxicity in vivo and
 suggest that interactions betw'een chlorpromazine or chlorpromazine metabolites
 and actin could be an underlying mechanism of cell injury.
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