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ABSTRACT

Particle filtering methods for data assimilation may suffer from the “curse of dimensionality,” where
the required ensemble size grows rapidly as the dimension increases. It would therefore be useful
to know a priori whether a particle filter is feasible to implement in a given system. Previous
work provides an asymptotic relation between the necessary ensemble size and an exponential
function of τ2, a statistic that depends on observation-space quantities and that is proportional to
the system dimension when the number of observations is large; for linear, Gaussian systems, the
statistic τ2 can be computed from eigenvalues of an appropriately-normalized covariance matrix.
Tests with a low-dimensional system show that these asymptotic results remain useful when the
system is nonlinear, with either the standard- or optimal-proposal implementation of the particle
filter. We also explore approximations to the covariance matrices that facilitate computation in
high-dimensional systems, as well as different methods to estimate the accumulated system-noise
covariance for the optimal proposal. Since τ2 may be approximated using an ensemble from a
simpler data-assimilation scheme, such as the ensemble Kalman filter, the asymptotic relations
thus allow an estimate of the ensemble size required for a particle filter before its implementation.
Finally, we demonstrate the improved performance of particle filters with the optimal proposal,
relative to those using the standard proposal, in the same low-dimensional system.

1. Introduction

Ensemble methods have been used in a variety of geo-
physical estimation problems, including atmospheric appli-
cations, oceanography, and land surface systems. Recently
there has been growing interest in particle filtering meth-
ods in particular, as these methods are better able to cap-
ture the nonlinearity inherent in many geophysical systems
[e.g. the merging particle filter of Nakano et al. (2007), the
equivalent-weights filter of Ades and van Leeuwen (2013),
and the implicit particle filter (Morzfeld et al. 2012)]. At
the same time, particle filters also tend to suffer from the
“curse of dimensionality” where the required ensemble size
grows very rapidly as the dimension increases. Thus, it
would be useful to know a priori whether a particle filter
is feasible to implement in a given system.

The curse of dimensionality is a well-known problem
in density estimation, as Monte-Carlo estimation of high-
dimensional probability densities demands notoriously large
sample sizes (Silverman 1986). In a series of related papers,
Bengtsson et al. (2008), Bickel et al. (2008), and Snyder
et al. (2008) show the curse of dimensionality is also man-
ifest in simple particle filters. They demonstrate that the
required ensemble size scales exponentially with a statistic
related, in part, to the system dimension and which may be

considered as an effective dimension. In general, the parti-
cle filter allows a choice of proposal distribution from which
particles are drawn. Snyder and Bengtsson (2015) (see also
Snyder (2012)) showed that the exponential increase of the
ensemble size with effective dimension also holds for parti-
cle filters using the optimal proposal (Doucet et al. 2001),
which we will introduce in more detail in section 5.

We will consider particle filters based on both the pro-
posals above. In the case examined by Bengtsson et al.
(2008); Bickel et al. (2008); Snyder et al. (2008), the pro-
posal is the transition distribution for the system dynam-
ics, where new particles are generated by evolving parti-
cles from the previous time under the system dynamics. It
yields the bootstrap filter of Gordon et al. (1993) and was
termed the “standard” proposal by Snyder (2012); Snyder
and Bengtsson (2015). The optimal proposal is of interest
both because of its relation to the implicit and equivalent-
weights particle filters and because it minimizes the degen-
eracy of weights, as shown in Snyder and Bengtsson (2015),
and thereby provides a bound on the performance of other
particle filters.

Our ultimate goal is to be able to determine whether a
particle filter would be feasible to implement, given that we
have statistics from, say, a working ensemble Kalman filter.
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For the standard proposal, this is straightforward: the fore-
cast step of ensemble forecasts provides a draw from the
proposal and we simply need to compute weights based on
the observation likelihood for each member. However, it is
harder to use an existing ensemble to assess the feasibility
of the particle filter based on the optimal proposal, since
it is non-trivial to develop an algorithm to sample from
this proposal [c.f. Morzfeld et al. (2012)]. An alternative
is to utilize the results of Bengtsson et al. (2008); Bickel
et al. (2008); Snyder et al. (2008); Snyder and Bengtsson
(2015) that relate the behavior of the weights in the linear,
Gaussian case to eigenvalues of certain covariance matrices
which may be estimated from an existing ensemble. We
evaluate the use of these results in more general nonlin-
ear, non-Gaussian settings. Note that sampling error also
presents an issue in applying these results; we investigate
these effects and possible methods for overcoming them in
this paper as well.

We note here that Chorin and Morzfeld (2013) have in-
vestigated a different, but related, effective dimension of
a Gaussian data assimilation problem. In particular, they
define a “feasibility criterion” to be the Frobenius norm of
the steady state posterior covariance matrix (which can be
exactly calculated in the linear, Gaussian regime.) While
both studies explore potential limitations of particle filter-
ing in high-dimensional systems, their criterion is based on
bounding the total posterior error variance as a function of
an effective dimension, whereas the studies of Snyder et al.
(2008) and Snyder and Bengtsson (2015) quantify the rela-
tion between degeneracy of the particle-filter weights and
an effective dimension.

The remainder of this paper is organized as follows. In
Section 2, we review the ensemble Kalman filter and the
particle filter and their respective implementations. Sec-
tion 3 reviews the previous results of Snyder et al. (2008)
regarding the limits of particle filters in high dimensional
linear systems. Section 4 verifies the applicability of the
results for linear, Gaussian systems and the standard pro-
posal to nonlinear systems; this is specifically useful for
understanding the similar extension needed for the optimal
proposal. In Section 5, we consider the optimal proposal
in a nonlinear system and discuss some of the difficulties
that arise, in particular regarding additive model noise in
nonlinear systems. Section 6 includes comparisons of per-
formance of the standard and optimal proposals in a non-
linear system. Finally, Section 7 summarizes the results
and draws conclusions.

2. Review of Ensemble Methods and Previous Re-
sults

Ensemble data assimilation methods approximate prob-
ability distributions using an ensemble of states, either
weighted or unweighted. Two common ensemble meth-

ods are the ensemble Kalman filter (EnKF) and the parti-
cle filter. Generally, the traditional EnKF algorithm uses
unweighted ensemble members, which are themselves up-
dated when an observation becomes available. On the
other hand, the particle filter uses a weighted ensemble.
When an observation is available, the particles are drawn
from a proposal distribution and then reweighted according
to the observation.

In this section, we will first describe the setup and some
notation, and then briefly review the standard and optimal
proposal implementations of the particle filter as well as the
ensemble Kalman filter.

a. Setup and Notation

Assume that our state of interest is given by xk ∈ RNx ,
where k indexes time and Nx is the dimension of the state.
We will additionally assume that model noise is added at
integration time steps (of size dt) indexed by l below, while
observations are available every Nt integration steps, in-
dexed by k. Let the time between observations be denoted
by ∆t = Nt · dt. The model evolution can be described as:

xk,l = m(xk,l−1) + ηl−1, l = 1...Nt, (1)

where xk,Nt = xk+1,0 := xk+1 and observations are avail-
able for xk, k = 1, . . . , Nobs. The ηj , whose dependence on
k is suppressed for notational convenience, are i.i.d. ran-
dom variables that represent the system noise and have a
distribution to be specified later. Further define Mstoch to
be the operator that takes xk,0 to xk,Nt . That is, Mstoch

includes the nonlinear convolution of the noise between ob-
servation times:

xk = Mstoch(xk−1, η0, . . . , ηNt−1). (2)

In particular, note that the model noise is not additive at
observation times when m is nonlinear. Next assume that
we have linear, noisy observations of the state given by

yk = Hxk + εk, (3)

where yk ∈ RNy is the observation of dimension Ny and
εk ∼ N (0,R) is the observation error. For the following
methods, we denote unweighted ensembles of size Ne as
{xi

k}
Ne
i=1, and weighted ensembles as {xi

k, w
i
k}. Finally,

yk1:k2
will denote the concatenation of the observations

from time tk1
to time tk2

.

b. Particle filter

The particle filter estimates the true Bayesian prob-
ability distributions using a weighted ensemble of states.
When an observation is available at time tk, we are inter-
ested in p(xk|y0:k) ≈

∑Ne

i=1 w
i
kδ(xk − xi

k). We will briefly
review the derivation of the weight update based on impor-
tance sampling (Doucet et al. 2000; Snyder 2012; Snyder
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and Bengtsson 2015), which more generally also includes
dependence on the state at the previous time: xk−1. To
this end, suppose we want to sample from the distribu-
tion p(xk,xk−1|y0:k), which is unknown. Instead we sam-
ple from a proposal distribution denoted π(xk,xk−1|y0:k),
which we can choose, and then assign weights to each mem-
ber of the sample. We will choose our proposal distribution
to be of the form of the product π(xk−1)π(xk|xk−1,yk),
which will allow for a recursive definition of the weights.
This weighted ensemble is then a sample from the correct
distribution, if the weights are given by

wi
k ∝

p(xi
k,x

i
k−1|y0:k)

π(xk,xk−1|y0:k)
(4)

and normalized to sum to 1. Since we will always be con-
ditioning on y0:k−1, we omit this term in what follows, and
consider only yk.

1) Standard proposal

The simplest choice for a proposal density is the stan-
dard proposal, in which π(xk|xk−1,yk) is chosen to be
p(xk|xk−1). Then, noting that
p(xk,xk−1|yk) ∝ p(yk|xk)p(xk|xk−1)p(xk−1),

wi
k ∝

p(yk|xi
k)p(xi

k|xi
k−1)

π(xi
k|xi

k−1,yk)
wi

k−1 (5)

∝ p(yk|xi
k)wi

k−1 (6)

where the constant of proportionality is determined so that
all weights sum to 1.

2) Optimal proposal

Doucet et al. (2000) discuss the so-called optimal pro-
posal, which includes information about the previous state
as well as the current observation: π(xk|xk−1,yk) =
p(xk|xk−1,yk). In this case, the weights are updated ac-
cording to:

wi
k = p(yk|xi

k−1)wi
k−1. (7)

Sampling from this proposal is discussed in more detail in
the appendix, but note that drawing from the optimal pro-
posal and updating the weights are both more complicated
in the case of the optimal proposal than the standard pro-
posal. Despite this added computational effort, there are
cases in which the optimal proposal has significant per-
formance gain over the standard proposal, with the same
number of particles (see Section 6 below.) Thus the opti-
mal proposal may be more computationally tractable than
the standard proposal in terms of the number of particles
needed for an acceptable error level.

c. Ensemble Kalman filter

Evensen (1994) introduced the ensemble Kalman filter
as an approximation of the Kalman filter which, like the
particle filter, uses an ensemble of realizations of the system
state to represent probability distributions. Unlike the par-
ticle filter, the ensemble Kalman filter uses an unweighted
(or equally weighted) ensemble of states. Suppose the en-

semble at time tk is given by {xf,i
k }

Ne
i=1, where f stands for

“forecast,” and a will represent “analysis.” If an observa-
tion is also available at time tk, each ensemble member is
updated according to

xa,i
k = xf,i

k −K(yk − xf,i
k + εik), (8)

K = PfHT (HPfHT + R)−1 (9)

where εik ∼ N (0,R) and Pf is the ensemble covariance of
the forecast:

Pf =
1

Ne − 1

Ne∑
i=1

(
xf,i
k − x̄f

k

)
, (10)

x̄f =
1

Ne

Ne∑
i=1

xf,i
k . (11)

This is the so-called perturbed-observation formulation of
the EnKF (Evensen 2003), in which each observation is
viewed as a random variable. In the update step, we replace
yk with yk + εk where εk has the same statistics as the
observation error noise. This formulation is shown to give
the correct posterior covariance; otherwise, the covariance
is overly tightened [see Burgers et al. (1998); Houtekamer
and Mitchell (1998)].

The EnKF is a linear method, and thus will be sub-
optimal for problems that are significantly non-Gaussian
even if Ne is large. However, for distributions which are
close to Gaussian, the EnKF works well with relatively few
ensemble members, though often it requires localization
and inflation [see Houtekamer and Mitchell (1998, 2001);
Anderson and Anderson (1999); Hamill et al. (2001)]. In
the experiments in this paper, we use the perturbed obser-
vation formulation of the EnKF with covariance localiza-
tion using the compactly supported correlation function of
Gaspari and Cohn (1999) and a small but fixed inflation.

d. Review of Previous Asymptotic Results

Snyder et al. (2008) prove, in certain regimes, an expo-
nential relationship between the variance of the observation
log-likelihood and the inverse of the maximum weight. In
the linear Gaussian case, this variance can be calculated as
a sum of eigenvalues of an explicit function of covariances.
First, we give some definitions.

Define the weight update factor in Equation (5) to be
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w̃i
k; that is,

w̃i
k =

p(yk|xi
k)p(xi

k|xi
k−1)

π(xi
k|xi

k−1,yk)
. (12)

Next define τ2 to be the variance of the log of these factors
conditioned on the observations:

τ2 = var(log(w̃i
k)|y). (13)

Let wmax denote the maximum weight over the ensemble.
Snyder et al. (2008) show that

E[1/wmax]− 1 ≈
√

2 logNe

τ
, (14)

under the following assumptions: first, that the observation
errors are spatially and temporally independent; second,
that Ny and Nx are large; third, that Ne and τ/

√
logNe

are large, in the sense that τ/
√

logNe → ∞ as Ne → ∞;
and finally, that the distribution of log(w̃i

k) over draws of xi

from the proposal is sufficiently close to Gaussian. The first
three assumptions are easily verified and generally hold in
the systems of interest to this work. The final assumption
is less obvious, and below we investigate situations in which
this assumption may not hold.

Snyder et al. (2008) apply these asymptotic results to
the particle filter with the standard proposal, where w̃i

k =
p(yk|xi

k). Snyder (2012); Snyder and Bengtsson (2015)
note that similar arguments apply to the optimal proposal,
where w̃i

k = p(yk|xi
k−1). Snyder and Bengtsson (2015) also

note that the asymptotic theory developed for the optimal
proposal provides bounds for the implicit particle filter, as
the implicit particle filter reduces to the optimal proposal
particle filter in the case where observations are linear and
taken every step (Morzfeld et al. 2012). Although we will
consider nonlinear, non-Gaussian systems, the asymptotics
developed in the linear, Gaussian case are of interest here
because they provide an explicit expression for τ2. Ad-
ditionally, in the linear, Gaussian case, the conditions for
log w̃i

k to be Gaussian (and thus for validity of the asymp-
totic theory) are straightforward.

We take the linear, Gaussian system to be

xk = Mxk−1 + γk, (15)

where γk ∼ N (0,Q) and the observations are as defined in
(3). Note that, for the linear Gaussian case, the dynamics
are only written for observation times tk, in contrast to (1).

With the standard proposal, we first need to calculate
the eigenvalues λ2

j of the matrix

Cs = R−1/2Hcov(xk)HTR−1/2. (16)

Snyder et al. (2008) and references therein derive the rela-
tion

E(τ2) =

Ny∑
j=1

λ2
j

(
1 +

3

2
λ2
j

)
, (17)

where the expectation is taken over yk. Moreover, Bickel
et al. (2008) show that log w̃i

k is asymptotically Gaussian
(over draws from the proposal), and the relation (14) is
valid, as long as no eigenvalue(s) dominate the sum of
squares above. In the case of the optimal proposal, the
same expression (17) and the same conditions for validity
hold, but using the eigenvalues of

Co = (R+HQHT )−1/2HMcov(xk−1)MTHT(R+HQHT)−1/2.
(18)

In a system where each degree of freedom is indepen-
dent and independently observed, these expressions sim-
plify and show that τ2 will be proportional to the number
of observations. A similar but more informal derivation of
this result also appears in Ades and van Leeuwen (2013).

3. Model and Experimental Setup

In all experiments in this paper, we will restrict our at-
tention to the nonlinear dynamical system of Lorenz (1996).
The deterministic form of these equations is given by:

dx(j)

dt
= (x(j+1) − x(j−2))x(j−1) − x(j) + F, (19)

for j = 1, . . . , Nx and F = 8 here. The subscripts (j)
indicate the spatial location in a one-dimensional, periodic
domain and should be understood mod Nx.

We solve a discrete-time, stochastic version of this equa-
tion, cast in the form (1). Fixing an integration time step
dt and an observation time step ∆t = Ntdt, we compute
m(xk,l−1) by integrating (19) over a single time step dt us-
ing a fourth-order Runge-Kutta scheme and draw ηl−1 from
N (0, dtσ2

sysI). Except where noted below, all results em-
ploy dt = 0.01. Alternatively, we could have started from a
continuous time stochastic differential equation by includ-
ing noise directly in Eqn. (19); this distinction is not crucial
to any of the results we present. The observing network
in the experiments will consist of full observations, so that
H = I, and the observation error covariance is R = σ2

obsI.
We will need an example ensemble DA scheme to calcu-

late the statistics necessary to test the asymptotic theory.
Since our goal is to demonstrate that these statistics may
be used in practice to determine the applicability of the
particle filter, we will use the EnKF, a common method
for high-dimensional problems, to calculate the statistics.
While the EnKF is suboptimal in the nonlinear case, we
wish to show that the method is reasonably effective across
a wide range of parameters for this system. The spread-
skill relation (Table 1) indicates that this is true. For this
experiment, we fix Nx = 100, let the system noise be fixed
with σsys = 0.01, and vary the observation error noise σ2

obs.
For each value of observation error, we run the EnKF for
200 sequential observations. Table 1 shows the forecast
mean squared error and forecast variance over the last 190
observations, for each value of observation error. For these
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results, ∆t = 0.1. As the results show, the EnKF is work-
ing well with the chosen values of inflation and localization,
since the forecast mean squared error (MSE) and variance
are comparable and neither blows up.

Table 1. Forecast error and variance of the working
EnKF, with varying values of observation noise.

σ2
obs forecast MSE avg forecast var

0.0001 0.0021 0.0011
0.0005 0.0024 0.0014
0.001 0.0027 0.0018
0.003 0.0037 0.0027
0.005 0.0044 0.0035
0.007 0.0052 0.0041
0.009 0.0057 0.0048
0.02 0.0082 0.0075
0.05 0.0145 0.0142
0.1 0.0236 0.0243
0.5 0.0736 0.0830
1 0.1448 0.1695

In Section 6, we will run a sequential particle filter for
many observations to compare the overall performance of
different proposal algorithms. In this case, we will need
to resample in order to prevent weight collapse: here, we
test two different resampling thresholds. The first is the re-
sampling threshold defined in Kong et al. (1994), in which
the filter is set to resample when the effective sample size
Neff = 1/

∑Ne

i=1(wi)2 falls below a fixed ensemble size Nt.
This is the threshold suggested by Arulampalam et al.
(2002). The second threshold is based on the maximum
weight, in which the filter resamples when wmax exceeds a
certain value (here we use 0.5.) We then use a Monte Carlo
Metropolis-Hastings resampling technique [see (Hastings
1970; Robert and Casella 2004) for an introduction and
(van Leeuwen 2009) for a description applied to particle
filters], followed by resetting the weights to be equal.

4. Extension to Nonlinear Case: Standard Pro-
posal

Our goal is to show how to use an existing DA en-
semble to determine whether it would be feasible to use a
particle filter for a given nonlinear system, and if so, how
many particles would be necessary to avoid filter collapse.
In the case of the standard proposal, it is straightforward
to directly calculate the weights without implementing the
particle filter and quantify the statistics of the maximum
weight directly. Alternatively, if we know R and cov(xk),
we could use Eqn. (17) to estimate τ2 and then predict
E(1/wmax) from Eqn. (14). This alternative approach to
predict the behavior of wmax is especially useful in the case

of the optimal proposal, where computing the weights di-
rectly requires sampling from the optimal proposal, which
can be difficult. Thus we first numerically demonstrate the
theory in the simpler case with the standard proposal, but
with a nonlinear model, before moving on to the optimal
proposal. Note that the asymptotics have been verified
numerically for linear, Gaussian systems in Snyder et al.
(2008).

We consider the Lorenz (1996) equations with Nx =
100, fix the system noise as σsys = 0.01, and vary the
observation error variance σ2

obs. The existing DA scheme
we use is the EnKF as described in Section 3.

First, to demonstrate the degree of nonlinearity in this
system of equations, we study the difference in perturba-
tions after evolving two initial points forward under the
fully nonlinear Lorenz equations as well as a linearized sys-
tem. Specifically, we choose a random observation time in
the EnKF experiment, choose two random ensemble mem-
bers as our initial perturbation, and linearize the system
about one of them. We evolve each ensemble member un-
der the linearized dynamics to get {xi

lin}i=1,2 and under
the full dynamics to get {xi

full}i=1,2; we then measure the
linearity of the system with

err =

∣∣∣|x1
full − x2

full| − |x1
lin − x2

lin|
∣∣∣

|x1
full − x2

full|
, (20)

where |x1 − x2| =

[∑Nx

j=1

(
x1

(j) − x
2
(j)

)2
]1/2

. This will be

close to 0 if the full system is close to linear. Addition-
ally, note that this traditional version of the Lorenz (1996)
equations with F = 8 has a doubling time of 2.1 days,
where one model time unit corresponds to 5 days; thus, the
doubling time is 0.42 model time units. Table 2 shows re-
sults with a fixed dt = 0.005, and variable integration time
∆t, averaged over 100 randomly chosen observation times.
Note that in the experiments in this paper, we vary the
time between observations as ∆t = 0.1 (standard proposal
experiment) or ∆t = 0.4 (optimal proposal experiment,
following section.)

The results in Table 2 show that the measure of non-
linearity is very close to 0 for a single integration step, but
quickly increases for longer time windows. This implies
that the system is well-approximated by a linear model af-
ter just one integration step, but the nonlinearity increases
as the length of integration increases. We have there-
fore chosen observation frequencies for the following ex-
periments which guarantee nonlinear behavior of the model
between observations in order to test the theory. Addition-
ally, note that although we are operating in a regime where
the system is fully observed, based on theory, we expect the
same results to hold in the more realistic situation of in-
homogeneous spatial observation coverage. In particular,
fewer observations will lead to more strongly non-Gaussian
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Table 2. Measure of nonlinearity of the Lorenz 96 system,
for varying lengths of time.

∆t 0.005 0.05 0.1 0.2 0.4 0.8 1.0
σ2
obs

5e-5 0.011 0.009 0.018 0.002 0.028 0.298 0.755
1e-4 0.006 0.012 0.011 0.003 0.009 0.346 0.336
5e-4 0.006 0.019 0.004 0.019 0.007 0.362 1.419
1e-3 0.001 0.001 0.006 0.025 0.012 0.305 0.526
3e-3 0.002 0.007 0.006 0.002 0.011 0.381 1.279
5e-3 0.003 0.001 0.011 0.013 0.067 0.433 0.815
7e-3 0.0002 0.005 0.009 0.0002 0.035 0.460 0.950
9e-3 0.003 0.011 0.007 0.003 0.044 0.469 0.812
0.02 0.001 0.005 0.001 0.012 0.070 0.442 1.305
0.05 0.001 0.004 0.001 0.023 0.103 0.656 1.244

probability distributions; however, we are testing the ef-
fects of non-Gaussian distributions by ensuring the time
between observations is long enough to display nonlinear
behavior.

Next, to test the asymptotic theory on the calcula-
tion of τ2 and its relationship to wmax, we run the EnKF
with a localization radius of 5 and a covariance inflation of
1.05 on the Lorenz equations with 100 variables for 3000
sequential observations; at each observation time, before
the EnKF analysis, we calculate what the true maximum
weight would be if we were implementing the particle fil-
ter. We also calculate τ2 using the approximation defined
in the linear case. In order to have an accurate estimation
of the covariance matrices, we run the EnKF with a large
number of ensemble members (Ne,cov = 1000) to estimate
the covariances, then draw a smaller ensemble (Ne = 100)
to calculate the weights directly. The ensemble size Ne is
then used in the term (2 log(Ne))

1/2/τ in the numerics. In
this experiment, we fix ∆t = 0.1, Nx = 100, and system
noise σsys = 0.01, and vary the observation error σ2

obs from
5 × 10−5 to 0.05. Note that varying the observation er-
ror leads to different values of τ , and thus different data
points, since the estimate of τ2 involves the eigenvalues of
a matrix proportional to R−1. Thus, small values of σ2

obs

lead to larger values of τ and will result in ensembles that
are close to collapse. Intuitively, this can be understood by
thinking about a one-dimensional case: if the variance of
the observation likelihood is very small, then the support
of the probability distribution is very narrow, and all par-
ticles except the one closest to the observation will have
very small weight.

Figure 1 shows the results of the asymptotic theory of
collapse, where each data point is averaged over the last
2990 steps of the filter and the error bars represent 95%
confidence intervals. Note that the observation error is
increasing as we move in the positive x-axis direction. Re-

sults using the full covariance to calculate the eigenvalues
are given in blue. They agree well with the theory in the
regime near the origin, where the theory is formally valid,
but deviations from the theory increase as (logNe)

1/2/τ
increases.

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(2log(Ne))1/2/τ

E
[1

/w
m

ax
]−

1

Standard Proposal

 

 
full covs
diag covs

Fig. 1. Numerical estimation of (2 log(Ne))
1/2/τ ver-

sus the time average and 95% confidence interval of
E[1/wmax]−1 calculated using the standard proposal. Blue
represents calculating τ from the true eigenvalues, and red
represents calculations based on the diagonal entries of the
matrix. The black line represents the theoretical relation-
ship between (2 log(Ne))

1/2/τ and E[1/wmax]− 1.

There are several additional reasons for deviation from
the theory within the asymptotic regime as well. In par-
ticular, the theory relies on the assumption that {log w̃i

k}
is an approximate sample from a Gaussian distribution.
This assumption is satisfied provided log w̃i

k is a sum of a
large number of sufficiently independent random variables.
However, evolving the ensemble under the state dynamics
generally concentrates the state variance into a few growing
structures, which increases spatial correlations and makes
observation-space quantities more dependent. This leads
to log w̃i

k effectively being a sum over fewer independent
random variables, which (all else being equal) in turn leads
to log w̃i

k being less Gaussian.
To test whether the non-Gaussian nature of log w̃i

k may
be a factor in the deviation of the numerics from the the-
ory, we also investigate the degree to which log w̃i

k may be
skewed in this system. In particular, we look at the skew-
ness of the ensembles of log w̃i

k for the standard proposal
experiment in this section; results are given in Table 3. If
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the skewness is far from 0, then the sample distribution is
far from Gaussian. The skewnesses are averaged over the
last 2990 observations. As the results in Table 3 show,
larger observation error generally leads to higher skew-
ness values; since large observation error corresponds to
larger 2 logNe/τ

2, this may explain why the data points
do not follow the theory as well further from the asymp-
totic regime. On the other hand, the observed increase in
skewness is not very strong, and thus may not be the only
cause of the deviation between numerics and theory. How-
ever, the frequent changes of variables needed to derive τ2

prevent a more detailed analysis of this deviation.

Table 3. Skewness of the ensembles of log w̃i
k after one

evolution under the Lorenz 96 model for varying magnitude
of observation error; standard proposal experiment. Mean
and 95% confidence intervals over final 2990 time steps.

σ2
obs mean skewness

5e-5 0.251± 0.009
1e-4 0.252± 0.009
5e-4 0.271± 0.009
1e-3 0.270± 0.009
3e-3 0.281± 0.009
5e-3 0.290± 0.009
7e-3 0.302± 0.009
9e-3 0.300± 0.009
0.02 0.320± 0.009

In practice, there are difficulties using Eqn. (17) to es-
timate τ2. First, computing a covariance matrix from a
small sample typically yields an eigenvalue spectrum that
is artificially steep, with too much variance in leading direc-
tions. The corresponding calculation of τ2 will then be too
large, since it is a sum of higher powers of the eigenvalues.
We have therefore chosen a large ensemble (Ne ≥ Nx) in
this experiment in order to estimate the covariances accu-
rately and avoid this effect. Second, for large numbers of
observations and large ensembles, calculating eigenvalues
of these matrices may be computationally prohibitive.

Thus, we also tested this theory using a computation-
ally feasible approximation for the eigenvalues of
R−1/2Hcov(xk)HTR−1/2: we assume R and Hcov(xk)HT

are diagonal, so that the eigenvalues are simply the prod-
uct of the corresponding diagonal elements of R−1 and
Hcov(xk)HT . Results with τ2 approximated in this way
are also shown in Fig. 1. The approximation systematically
underestimates τ2 data points with the approximation al-
ways lie to the right of those using eigenvalues of the full
matrix (16). 1 Nevertheless, using the approximation of

1Since τ2 is a sum of squares of the eigenvalues of (16) [see (17)]
and because the sum of the eigenvalues equals the sum of the diagonal

τ2 in the asymptotic relation gives reasonable predictions
of E(1/wmax), often better than with the unapproximated
τ2, because the underestimation by the diagonal approxi-
mation compensates for the overestimation of E(1/wmax)
that is, empirically, a property of the asymptotic relation
when (2 logNe)

1/2/τ is not small. It is not clear whether
this compensation will be equally effective in other prob-
lems.

5. Optimal Proposal

Next, we follow the approach of the previous section,
but apply the asymptotic theory to the optimal proposal.
Specifically, we wish to use an existing ensemble to eval-
uate the feasibility of a particle filter using the optimal
proposal. As in the case of the standard proposal above,
the evaluation will be limited by the fact that it applies
results from linear, Gaussian systems in a nonlinear, non-
Gaussian setting, and by sampling errors in estimating the
necessary covariance matrices from a finite ensemble. We
will check these limitations with numerical simulations us-
ing the Lorenz (1996) system. For the optimal proposal,
there is also an additional issue, in that some of the co-
variance matrices involved in the definition (18) of Co do
not appear explicitly in the nonlinear problem. We turn to
this issue first.

a. Model noise in nonlinear systems

The matrix Co, whose eigenvalues determine τ2 for the
optimal proposal via (17) in the linear, Gaussian case, in-
volves the covariance matrices HMcov(xk−1)MTHT and
HQHT . Since the equations (1)-(3) for the nonlinear sys-
tem do not specify these quantities, we take the approach
of defining them through more general expressions that re-
duce to the correct result for the linear, Gaussian case.

To compute the covariance involving the linear dynam-
ics M, we first define Mdet(x) = Mstoch(x, 0, . . . , 0) [re-
calling that Mstoch in (2) is a function of the state x as
well as the realizations of the noise at each integration step
η0, . . . , ηNt−1]. In the linear case, Mdet(x) = Mx and a
more general definition for the desired covariance is

HM cov(xk−1)MTHT = cov(HMdet(xk−1)). (21)

We estimate the right hand side for the nonlinear system by
evolving an ensemble of initial conditions from tk−1 using
Mdet, applying H and computing the sample covariance.

For the covariance HQHT , there are at least two possi-
ble definitions that generalize to the nonlinear system. The
first uses

HQHT = cov(Hxk|xk−1), (22)

elements, τ2 will be underestimated by the diagonal approximation
whenever the eigenvalue spectrum is steeper than the sorted list of di-
agonal elements. We expect this to be true in many problems involv-
ing spatial correlations, with spatially correlated but nearly spatially
homogeneous processes being a prime example.
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which is an identity in the linear case and gives a quantity
that, in the nonlinear case, will depend on xk−1. We can
estimate the covariance on the right hand side by starting
from a given xi

k−1 and computing an ensembleMstoch(xi
k−1,

η0, . . . , ηNt−1) over realizations η0, . . . , ηNt−1 of the system
noise. Let Qi be the state-space covariance estimated in
this way. (Recall from Section 3 that H = I in our ex-
periments.) A further step would be to compute Q̄ by
averaging the Qi over an ensemble of xi

k−1.
The second possible definition relies on

HQHT = cov(HMstoch(xk−1, η0, . . . , ηNt−1)−HMdet(xk−1)).
(23)

This expression is again an identity in the linear case – Q
can be written as the sum over contributions from the noise
in (1) at each of the Nt model time steps between tk−1 and
tk. Beginning from an ensemble of realizations of xk−1, we
estimate the covariance on the right hand side above by
evolving each member from tk−1 to tk with both Mdet and
Mstoch, with independent realizations of the system noise
in Mstoch, and then taking the sample covariance of the
differences in xk. We denote this estimate Q̃.

It is not immediately obvious whether one of these defi-
nitions is to be preferred. They will agree in the limit of lin-
ear dynamics and may differ as nonlinearity increases. We
have therefore explored the behavior of both approaches in
the case with Nx = 100, ∆t = 0.1, and with varying model
noise σsys and initial ensemble size σens. The test consists
of evolving the particles forward from time 0 to time ∆t
and estimating Q in the three ways described above. First,
we calculate Qi for each particle; second, we take the av-
erage Q̄ of these Qis; finally, we estimate Q̃ as above. We
found that the variations of Qi about Q̄ were negligible
relative to the magnitude of elements of Q̄. Similarly we
found good agreement between Q̄ and Q̃ in these cases.
Thus, the effects of nonlinearity in estimating the effective
model noise covariance are small in these experiments; in
particular, they are much smaller than sampling error in
estimates of Q with ensembles of size 100, which we use in
the following experiments.

The two definitions do, however, differ substantially in
their computational demands, as the computation of the Qi

and Q̄ requires an ensemble of integrations for each xi
k−1,

while a single integration for each xi
k−1 suffices for Q̃. In all

following experiments, we therefore use Q̃ to estimate the
model noise covariance, as it is the most computationally
efficient.

b. Numerical Results

Snyder and Bengtsson (2015) have rigorously shown
that the asymptotics developed in Bengtsson et al. (2008);
Snyder et al. (2008) also hold for the optimal proposal.
Here, we numerically show how these results extend to the
nonlinear system of Lorenz (1996). As in the experiment

with the standard proposal, we run the EnKF with a lo-
calization radius of 5 and a covariance inflation of 1.05
on the Lorenz equations with 100 variables for 3000 se-
quential observations. We fix ∆t = 0.4 and the system
noise σsys = 0.01, and vary the observation error σ2

obs from
5×10−3 to 1. In this experiment, we use the approximation
Q̃ described above when calculating both τ and the exact
weights. The size of the ensemble used to calculate Q̃ is
Ne,cov = 1000, but we take a subsample of size Ne = 100
when calculating the weights themselves (and, as above,
use Ne = 100 in the theoretical value (2 log(Ne))

1/2/τ.) We
approximate sampling from the optimal proposal by sam-
pling from the distribution derived for the linear, Gaussian
case given in Equation (A3), replacing all Q’s with Q̃.

The results are given in Figure 2. Clearly, the data
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Fig. 2. Numerical estimation of (2 log(Ne))
1/2/τ ver-

sus the time average and 95% confidence interval of
E[1/wmax]− 1 calculated using the optimal proposal, with
approximations as described in the text. Blue represents
calculating τ from the true eigenvalues, and red represents
calculations based on the diagonal entries of the matrix.
The black line represents the theoretical relationship be-
tween (2 log(Ne))

1/2/τ and E[1/wmax]− 1.

points do not agree with the theory as well as in the ex-
periment with the standard proposal. This is likely due
to the parameter choices in this experiment. When us-
ing the optimal proposal, we empirically found that we
needed to increase the time between observations in order
to satisfy the assumption that the filter is close to collapse
(that is, that 2 log(Ne)/τ

2 is close to 0.) However, as men-
tioned previously, this also leads to a steep spectrum of
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the covariance matrices, which in turn leads to violation
of the assumption that log w̃i

k is approximately Gaussian.
We again investigate the values of skewness for this exper-
iment; these results are given in Table 4. Note that the
longer observation time window in the optimal proposal
experiment here leads to higher values of skewness than
for the shorter time window standard proposal experiment
in the previous section.

Table 4. Skewness of the ensembles of log w̃i
k after one

evolution under the Lorenz 96 model for varying magnitude
of observation error; optimal proposal experiment. Mean
and 95% confidence intervals over final 2990 time steps.

σ2
obs mean skewness

5e-3 0.423± 0.010
0.01 0.485± 0.011
0.05 0.706± 0.014
0.1 0.781± 0.016
0.3 0.791± 0.016
0.5 0.718± 0.014
1 0.577± 0.013

Thus, we would expect worse agreement with the asymp-
totics in the optimal proposal experiments, because log w̃i

k

is less Gaussian than in the standard proposal experiments.
The data points for which the full covariances were used (in
blue) fall almost entirely above the theoretical line in solid
black. On the other hand, since approximating the eigen-
values by the diagonal elements leads to underestimating
τ , the data points for which this approximation was used
(in red) are much closer to the theoretical line. That is,
the underestimation of τ by the diagonal approximation
compensates for the overestimation of τ by the theory due
to the steep spectrum. But, as in the case of the stan-
dard proposal, these approximations are more accurate in
the asymptotic regime (close to the origin) while the data
deviates from the theory away from this regime.

6. Performance of Standard and Optimal Propos-
als

Recently, there has been a focus in the particle filter-
ing community on the optimal proposal as an improve-
ment over the standard proposal (Doucet et al. 2000; Aru-
lampalam et al. 2002; Bocquet et al. 2010; Snyder 2012;
Snyder and Bengtsson 2015). Intuitively, sampling from
a distribution conditioned on the new observations should
perform better than a distribution conditioned on the pre-
vious observations. The form of the weight update should
also provide intuition behind the performance gain: the
standard proposal weight update involves the distribution
of the observations conditioned on the state at the cur-

rent time p(yk|xk), whereas the optimal proposal weight
update is conditioned on the state at the previous time:
p(yk|xk−1). Since uncertainty generally increases with a
longer prediction window, the likelihood p(yk|xk−1) will
tend to be broader than p(yk|xk), and thus there will be
less variance across the weights for the optimal proposal
update.

In a review of non-Gaussian data assimilation methods,
Bocquet et al. (2010) performed a simple comparison be-
tween the standard and optimal proposal implementation
of the particle filter and found that the optimal proposal
results in lower mean squared errors for smaller ensem-
ble sizes, and has comparable performance to the standard
proposal for large ensemble sizes. Here, we perform exper-
iments which not only compare the mean squared errors of
these methods, but we also consider the frequency at which
resampling occurs as well as the maximum weight of each
method after a single step.

To test the usefulness of the optimal proposal, experi-
ments were run with the Lorenz (1996) system with 5, 10,
and 20 variables, with full observations once per time step
for 300 time steps, using both the standard and optimal
proposal distributions. The observation error variance, sys-
tem noise variance, and initial ensemble variance are fixed
at σ2

obs = 0.5, σ2
sys = 0.01, σ2

ens = 1.0, respectively. We
test two resampling thresholds: first, when the effective
sample size falls below 0.1Ne; and second, when the maxi-
mum weight exceeds 0.5. After resampling, the weights are
reset to 1/Ne and a small amount of jitter (with variance
0.01) is added to each particle. The errors are averaged
over the last 200 time steps, but the resample counts are
over the entire 300-step window.

Table 5. Number of times each method resampled in a
window of 300 assimilation steps, for varying ensemble sizes
and state dimensions. Top: resample when effective sam-
ple size (Neff) falls below 0.1Ne. Bottom: resample when
maximum weight (wmax) exceeds 0.5.

Ne Nx = 5 Nx = 5 Nx = 10 Nx = 10 Nx = 20 Nx = 20
(Neff) std opt std opt std opt

20 254 81 297 150 298 237
50 264 103 299 190 299 272
100 269 113 299 195 299 277
500 266 115 299 208 299 289
1000 276 127 299 209 299 287

(wmax)
20 272 112 297 197 297 197
50 239 85 297 154 297 154
100 202 76 291 129 291 129
500 127 49 284 98 284 98
1000 125 41 265 89 265 89

Figure 3 shows the root mean squared error of the pos-
terior mean as a function of ensemble size. For the system
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Fig. 3. Average errors for standard proposal (solid line)
and optimal proposal (dashed line), as a function of ensem-
ble size and for varying state dimensions: Nx = 5 (blue),
Nx = 10 (red) and Nx = 20 (black). Thick lines represent
the resampling threshold determined by effective ensemble
size (Neff < 0.1Ne) and thin lines represent the resampling
threshold determined by maximum weight wmax > 0.5).

with the smallest state dimension (Nx = 5) and increasing
ensemble size, results for the standard proposal converge
quickly toward those from the optimal proposal. When Nx

is larger, however, the results for the standard proposal
do not appear to converge over the range of ensemble sizes
considered, and the root mean squared errors remain much
larger than from the optimal proposal even at the largest
ensemble size. Note also that the standard proposal im-
proves slightly over the optimal proposal for Nx = 5 and
large ensembles. We believe this reflects the approxima-
tions in our implementation of the optimal proposal. Simi-
lar errors result from both resampling thresholds, with the
exception of small ensemble sizes for small state dimen-
sion (Nx = 5), in which case the threshold determined by
effective sample size results in smaller errors.

A further difference is that the filter using the stan-
dard proposal resamples much more often than that of the
optimal proposal, with both resampling thresholds. (See
Table 5.) This may help explain why the optimal proposal
has better error values: since resampling loses information
in some sense, resampling less frequently should be prefer-
able to resampling often.

Note that under the effective sampling size threshold,
the number of times the filter resampled increases with en-
semble size for a fixed state dimension. This may be due
to the dependence of the threshold on the ensemble size,
leading to increased resampling frequency with Ne. Alter-

natively, the optimal proposal density may be too narrow
in relation to the posterior density, resulting in particles in
the tail of the proposal with high posterior probability, and
thus a low effective sample size. To test this, we also tried
inflating the proposal variance as in Del Moral and Murray
(2015). For these results, the resampling frequency still in-
creased with increasing Ne, though not as drastically. Ad-
ditionally, the errors were not affected by inflation, and so
we have not included the results here. On the other hand,
the threshold determined by the maximum weight results
in decreasing resampling frequency as Ne grows for a fixed
Nx, without inflating the proposal variance. This would
suggest that even if the effective sample size is small, the
weights are well-distributed across these particles. Then,
even though the effective sample size may be increasing
at a slower rate than Ne, resulting in higher resampling
frequency with larger Ne, the weights are still distributed
across more particles. While resampling methods comprise
a rich area of research, they are not the focus of this work,
and will not be investigated further here.

In addition to having smaller errors over time, the op-
timal proposal is less likely to experience collapse than the
standard proposal. A hint to this behavior is given by the
lower number of necessary resampling steps for the opti-
mal proposal than the standard proposal; however, this
effect can be studied directly by comparing the maximum
weight after one step for each proposal. Results are shown
in Figure 4. All parameters are fixed at the same value
for each proposal, except the state dimension which varies
as shown. The ensemble size is fixed at Ne = 1000, the
data are averaged over 100 trials, and the error bars show
95% confidence intervals based on this sample. These re-
sults demonstrate that, for fixed ensemble size and state
dimension, the optimal proposal consistently provides a
lower maximum weight, and thus less variance across the
weights. In this experiment, the improvement is especially
clear in the regime where the state dimension is between
10 and 50.

The proposal density for the optimal proposal converges
to that of the standard proposal when system noise be-
comes negligible. Without system noise, xk becomes a de-
terministic function of xk−1 and both p(xk|xk−1,yk) and
p(xk|xk−1) are delta functions at Mdet(xk−1). This can
also be seen in the system (A1)-(A2) discussed in the ap-
pendix: when Q is very small, so is K in (A6) and the mean
and covariance of p(xk|xk−1,yk) approach Mdet(xk−1) and
Q, respectively, which are the same as the standard pro-
posal mean and covariance. Thus, the gain that the op-
timal proposal affords over the standard proposal will be
dependent on the size of the system noise. Table 6 includes
results for the Lorenz system with 5 variables and 500 par-
ticles, with varying system noise. The resampling thresh-
old is determined by the effective sample size (specifically,
when Neff falls below 0.1Ne.) The particle filter with each
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Fig. 4. Comparison of maximum weight after one assimi-
lation step as a function of state dimension, using the stan-
dard proposal (blue) and the optimal proposal (red).

proposal distribution was run over 300 time steps, with ob-
servations at each time step; the table includes the ratio of
the means of the errors over the last 200 time steps.

As Table 6 shows, the difference in errors between the
standard and optimal proposal increases as the system noise
increases. For the smallest system noise, the ratio of the
optimal error to the standard error is very close to 1, but
for larger noise, the optimal proposal yields a significant
decrease in error over the standard proposal. Since the op-
timal proposal requires more computational effort than the
standard proposal, if the problem of interest has very small
system noise, then the standard proposal should be used.
Lin et al. (2013) present the optimal proposal particle filter
as one method in a class of “lookahead” algorithms, and
investigate other such algorithms in the context of compu-
tational expense for various types of problems.

Table 6. Comparison of performance of standard and
optimal proposal for varying size of model system noise.

σsys (opt error)/ PF, std PF, opt
(std error) resamp. resamp.

1e-3 0.916 59 62
5e-3 0.6877 105 94
1e-2 0.630 93 69
5e-2 0.473 127 48
0.1 0.473 160 39
0.5 0.374 258 11

7. Discussion & Conclusions

In this work, we attempted to answer the question of
whether one could predict collapse of the optimal parti-
cle filter without building a scheme to sample from the
optimal proposal. We have shown that this is possible
in the Lorenz (1996) system, using results from Snyder
et al. (2008) and their extension to the optimal proposal
in Snyder and Bengtsson (2015). The results of the for-
mer demonstrate how to use eigenvalues of matrices from
a linear, Gaussian system to calculate the effective dimen-
sion τ2, which can then be used to assess the feasibility of
the particle filter in that system. One key issue is deter-
mining the extent to which these results are valid in more
general settings (e.g., nonlinear systems.) To this end, we
have shown that the asymptotic approximations and re-
sults found in Snyder et al. (2008); Snyder and Bengtsson
(2015) are useful also in the nonlinear regime with both
the standard proposal and the optimal proposal.

Another key issue regarding the extension to nonlin-
ear systems with the optimal proposal involves estimating
an “effective” system-noise covariance corresponding to the
additive Gaussian noise at observation times assumed in
Snyder et al. (2008); Snyder and Bengtsson (2015). We
have discussed several different approximations of this co-
variance, and shown that the asymptotic results are also
valid with the optimal proposal when these approximate
system-noise covariances are used.

Additionally, the eigenvalue decompositions necessary
to estimate the effective dimension will be costly for large
systems (and large ensembles.) Thus, in practice, we will
need to find computationally feasible approximations. In
this work, we have chosen to approximate the matrices as
diagonal to simplify these eigenvalue calculations. This ap-
proximation appears to be effective in the idealized system
considered here, though it also tends to overestimate the
degree of collapse. The margin of this overestimation de-
creases as the system gets closer to collapse.

Finally, motivated by the results of Snyder (2012) which
demonstrate the benefits of the optimal proposal imple-
mentation over the standard proposal in a simple example,
we investigated the performance gain of the optimal pro-
posal over the standard proposal in a nonlinear system.
We have shown that the optimal proposal not only col-
lapses less frequently than the standard proposal in the
same regimes, but also results in quicker error convergence
as a function of increasing particles. Thus, for systems
in which the particle filter may work, utilizing the optimal
proposal can provide increased performance with fewer par-
ticles than the standard proposal. The optimal proposal,
however, is not trivial to implement and its benefits disap-
pear in the limit of small system noise.

There are several remaining challenges regarding par-
ticle filters in nonlinear systems. Experiments still need
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to be done to determine how the filters behave when ap-
plied sequentially; all the experiments in this paper study
the degree of collapse after one assimilation step. However,
this does not preclude the possibility of the particle filter
collapsing after two or more steps. In addition, it could be
useful to know whether the numerical results in this paper
have an analytical analogue, as in the linear Gaussian case.
Finally, further work should be done to investigate the op-
timal proposal, particularly in regards to approximations
of the model noise covariance.

Acknowledgments.

Slivinski was supported by the NSF through grants
DMS-0907904 and DMS-1148284, and by NCAR’s Advanced
Study Program during a collaborative visit to NCAR.

APPENDIX

Sampling from Optimal Proposal

Recall that the optimal proposal requires conditioning
on the current observation: p(xk|xk−1,yk) (Doucet et al.
2000; Snyder 2012). Consider the case of additive Gaussian
noise and a linear observation operator, where the system
is given by

xk = M(xk−1) + ηk, (A1)

yk = Hxk + εk (A2)

with ηk ∼ N (0,Q) and εk ∼ N (0,R). Then

xk|xk−1,yk ∼ N (x̄k,P), (A3)

x̄k = (I − KH)M(xk−1) + Kyk, (A4)

P = (I − KH)Q, (A5)

K = QHT (HQHT + R)−1. (A6)

In this case, the weights have an analytic update expres-
sion, since

yk|xk−1 ∼ N (HM(xk−1),HQHT + R). (A7)

Thus, the particles at time tk are first sampled from (A3),
and then their weights are updated according to

wi
k ∝ exp

{
−1

2
J(xi

k−1,yk)

}
wi

k−1, (A8)

J(xi
k−1,yk) =

(
yk −HM(xi

k−1)
)T · (A9)(

HQHT + R
)−1 (

yk −HM(xi
k−1)

)
.
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