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a b s t r a c t

Fine- and microstructure observations indicate bottom-intensified turbulent dissipation above rough
bathymetry associated with internal wave breaking. Simple analytic representations for the depth profile
of turbulent dissipation are proposed here under the assumption that the near bottom wavefield is dom-
inated by a baroclinic tide. This scheme is intended for use in numerical models and thus captures only
the gross features of detailed solutions to the energy balance of the internal wavefield. The possible sen-
sitivity of the magnitude and vertical variability of the dissipation rate profile to various environmental
parameters is discussed. An expression for the diapycnal buoyancy flux is presented that explicitly treats
the difference between the height of an isopycnal above the mean bottom and the actual bottom. This
returns a diapycnal velocity estimate that is consistent with both tracer observations of downwelling
and a basin scale mass budget that requires upwelling.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The rate of diapycnal mixing relates through the buoyancy equa-
tion (McDougall, 1991) and vorticity dynamics (Stommel and
Aarons, 1960) to the intensity of upwelling and horizontal circula-
tion in the abyssal ocean. Similarly, the intensity of diapycnal mixing
relates to the ability of the abyssal ocean to store heat and carbon.
Mixing associated with internal wave breaking is an important,
and perhaps even dominant, part of the diapycnal transformation
for deep and bottom waters (Polzin et al., 1997; Ledwell et al.,
2000). Parameterization of this mixing is therefore a key ingredient
to understanding the centennial to millennial time scale variability
of the oceans and may play a role on shorter times scales as well.

The observed dramatic enhancement with depth/abrupt decay
of turbulent dissipation with height above bottom in vertical pro-
file data obtained during the Brazil Basin Tracer Release Experi-
ment (BBTRE) is linked to a similar enhancement/decay of a
bandwidth limited shear spectrum (Polzin, 2004b). The observed
near boundary shear spectrum is peaked at vertical wavelengths
of about 100 m. Internal waves of this scale do not propagate
quickly (the internal wave group velocity is roughly a wavelength
in a wave period). Thus the energy of these waves is dissipated
near the boundary, reducing the amplitude of the shear spectrum
and thereby resulting in a spatial decay of the turbulent dissipa-
ll rights reserved.
tion. The abrupt decay of dissipation is simply a signature of the
spatial scale of the peak in the shear spectrum. The intent of this
work is to turn that insight into a dynamically based parameteriza-
tion, in contrast to ad hoc parameterizations used in Simmons et al.
(2004), Saenko and Merryfield (2005) and Jayne (2009), for exam-
ple. The key issue is treatment of nonlinearity in the internal
wavefield.

There are three distinct regimes in which nonlinearity plays a
role in the energy balance of the internal tide. The first dynamical
regime is a boundary layer of O(10)’s of meters high in which the
nonlinear response includes nonhydrostatic effects (Gemmrich
and van Haren, 2001; Aucan et al., 2006). The characterization of
this boundary layer as an ‘‘internal swash zone” may be an apt
metaphor and nonhydrostatic effects could be significant above
this boundary layer (Legg and Klymak, 2008). The internal swash
zone is not well sampled in the Brazil Basin data set as the free-fall
instrumentation was unable to reliably get closer than 50 m from
the bottom. The second dynamical regime is a near boundary re-
gion of O(500) m extent characterized by overturning directly
associated with velocity and density gradients in the semidiurnal
tide and hence relatively strong wave–wave interactions. In Polzin
(2004b) this near boundary regime was addressed using a local (in
vertical wavenumber) flux characterization for nonlinear transfers
in a quadratically nonlinear system. Finally, the farfield will be
characterized by weak wave–wave interactions. The parametric
subharmonic instability is especially pertinent to far field
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dynamics as the semidiurnal lunar ðM2Þ tide can decay into near-
inertial products equatorward of 28.9� latitude (MacKinnon and
Winters, 2005; Hibiya et al., 2002). Near-inertial shear will impact
the dissipation profile directly through increased shear variance
leading to shear instability and indirectly as increased shear
variance leading to changes in the decay scale within the strongly
nonlinear near boundary region.

Here I follow the lead of Polzin (2004b) and interpret the abrupt
decay of the dissipation profile as a strongly nonlinear process in
the near-boundary regime. Internal swash zone and weakly non-
linear far field dynamics are both neglected. The rational for doing
so is that the strongly nonlinear closure formulated in Polzin
(2004a) permits analytic solutions characterizing the interplay of
wave propagation and wave dissipation. The resulting solutions
are discussed below (Sections 2.1 and 2.2), extended to include ef-
fects associated with wave propagation in non-uniform buoyancy
profiles (Section 2.3) and related to external environmental param-
eters such as the barotopic tidal velocity and topographic charac-
teristics (Section 2.4). A full depth specification for the buoyancy
flux associated with wave breaking is presented in Section 3.2.
Transferring this profile to a model representation that does not
fully resolve the bottom topography is addressed in Sections 3.4
and 3.5. A Discussion focuses upon issues of buoyancy forcing
and the abyssal Brazil Basin mass budget (Section 4.1) and a possi-
ble climate change scenario (Section 4.2). A summary concludes.
Fig. 1. Dissipation vs. height-above-bottom over rough bathymetry in the Brazil
Basin. The dissipation data (thick line) represent an average over the 30 stations
which appear in Fig. 3 and east of 18� W in Fig. 2 of Polzin et al. (1997). The thin line
represents a fit to the data. See also Figs. 3 and 5.
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Fig. 2. Bell’s model (the fundamental tone and harmonics are shown as thin lines,
their sum is denoted by the thick solid line) and the idealized solution spectra. Note
the dominance of the fundamental tide ðM2Þ in Bell’s model. Both sum ½sðmÞ ¼
EþðmÞ þ E�ðmÞ� and difference ½dðmÞEþðmÞ � E�ðmÞ� idealized solution spectra are
represented as thick dashed lines. The difference spectrum serves as the bottom
boundary condition and thus is to be directly compared to Bell’s model, which
serves as the source. The sum spectrum (2) is used to set the dissipation profile. The
amplitude of the sum spectrum and low wavenumber limit mo of the idealized
solution are indicated in the figure.
2. Ingredients

The key to producing a dynamically based parameterization of
the dissipation profile associated with internal wavebreaking is
to link the dissipation profile to the finescale internal wave shear
producing that dissipation. This is done in Polzin (2004b) by iden-
tifying analytic solutions to a radiation balance equation. Those
solutions relate a dissipation profile �ðzÞ given by

�ðzÞ ¼ �0

ð1þ z=z0Þ2
; ð1Þ

having magnitude �0 and scale height z0 (Fig. 1) to a bandwidth lim-
ited vertical wavenumber ðmÞ energy spectrum ½EðmÞ� given by

EðmÞ ¼ bm2
0

m2 1�m2
0

m2

� �
; ð2Þ

Fig. 2. The analytic expression (1) depicts the turbulent decay of a
bandwidth limited finescale internal wavefield (2) propagating
away from the bottom boundary. The decrease in dissipation with
height above bottom is directly related to the decrease in wave
amplitude associated with the dissipation. Given this formulation,
a parameterization can be formulated by relating the spectral
amplitude b and bandwidth m0 to variability in stratification, topog-
raphy and tide through models of internal tide generation and wave
scattering. A list of these ingredients is provided as Table 1.

2.1. The basic dissipation profile

Despite the idealized nature of the analysis presented in Polzin
(2004b), quantitative agreement can be found between a theoreti-
cal prediction for the near-bottom profile of turbulent dissipation
and dissipation data presented in Polzin et al. (1997) (Fig. 1). A rea-
sonable fit of (1) to the dissipation data can be obtained for
�0 ¼ 1� 10�8 W=kg and z0 ¼ 150 m, Fig. 1. The variable z in (1)
represents a height above boundary (hab) coordinate system of a
single profile and Fig. 1 presents an average dissipation profile in
this coordinate system. This differs from averaging in a depth or
isopycnal coordinate system and this distinction is crucial when
attempting a closure for general circulation models. The distinction
will be addressed in Section 3.4.

Eqs. (1) and (2) represent a nonlinear propagation model and
the effort presented here differs substantially from other use of
these data. St. Laurent et al. (2002) fit exponentials to turbulent
dissipation data from the BBTRE. They then attempt to extrapolate



Table 1
List of ingredients.

P ð1� Rf Þ�ij-total Total buoyancy flux (27)
�ij-total �ij þ

DN2
ijR Hij

0
N2

ij dz

Total dissipation (26)

Pij q
1�Rf

RHij

0 �ij-total dz Total power input (13)

D 1�Rf

q Pij � �oijzoij
Residual dissipation (25)

�ðzÞ �o

ð1þz=zoÞ2
Basic � profile (1)

�ðz�Þ �oN2ðzÞ=N2
o

ð1þz�=zoÞ2
N-scaled � profile (6) and (11)

�ðHabÞ �o z2
o

ðzoþHabÞ2�3h2
o

Hab >
ffiffiffi
3
p

ho
�ij depth profile (30)

�ðHabÞ �o zoðHabþ
ffiffi
3
p

hoÞ
2
ffiffi
3
p

hoðzoþHabþ
ffiffi
3
p

hoÞ
0 < Hab <

ffiffiffi
3
p

ho
�ij depth profile (30)

z Depth
z� R z

0
N2

ij ðz0 Þ
N2

oij
dz0 Buoyancy scaled depth (5) and (12)

h h ¼ Hab� hab Topographic height –
hab h ¼ Hab� hab Height above local bottom –
Hab h ¼ Hab� hab Height above mean bottom –

�oij �o
Noij

No

h i4 Voij

Vo

h i4m�2 loijhoij

loho

h i4 ijth bottom dissipation (14)

zoij zo
Noij

No

h i�3 Voij

Vo

h i3�2m loij hoij

lo ho

h i�2 ijth dissipation scale height (15)

Pij Po
Noij

No

h i
Voij

Vo

h i2 hoij

ho

h i2 loij

lo

h i ijth power input (16)

Po 3.7 mW/m2 Reference power input (17)
�o 1:0� 10�8 W=kg Reference dissipation (18)

zo 150 m Reference dissipation scale height (3) and (19)
No 9:6� 10�4 s�1 Reference stratification (20)

ðUo;VoÞ (0.021,0.025) m/s Reference barotropic tidal velocities (21)
Hðk; lÞ Hðho; ko; lo; mÞ Topographic spectrum (8)
ðko; loÞ ð2:2� 10�4;1:0� 10�3Þm�1 Reference topographic scales (23)

ho 110 m Reference rms topographic height (22)
m 0.9 Topographic power law (8)

mo ffi 2pNo=Vo Characteristic vertical wavenumber (3), (4) and (10)
x 1:4025� 10�4 s�1 Wave frequency

bm2
o

Amplitude of gradient spectrum (3) and (4)

1 There is a typographical error in Polzin et al. (1995) that leads to A being quoted
s 0.1 in Polzin (2004a).
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those curve fits using ideas grounded in linear wave dynamics
with no consideration of the nonlinear aspects of the problem. A
second point of departure from St. Laurent et al. (2002) is the
interpretation of the Brazil Basin data set itself. The average profile
defined in Fig. 1 is intended to characterize dissipation above
abyssal hills external to deep canyons. This profile differs signifi-
cantly from the corresponding profile in St. Laurent et al. (2001),
their Fig. 3, left most panel. In short, the difference results from
St. Laurent et al.’s (2001) use of the Smith–Sandwell bathymetry
to characterize the geographic location of the vertical profile
(dissipation) data. The Smith–Sandwell data were not adequate
for this application and the results were not ground truthed with
center-beam data. A detailed discussion is provided in Polzin
(2008).

2.2. The relation of the dissipation profile to the finescale internal
wavefield

The turbulent dissipation profile (1), Fig. 1, represents the spa-
tial decay of wave energy in a bandwidth-limited finescale internal
wavefield (2), Fig. 2, propagating away from the bottom boundary.
The analysis presented in Polzin (2004b) relates the spectrum and
the dissipation profile as:

z�1
o ¼ 2AabðxÞN�2bm4

0; ð3Þ
�0 ¼ ð1� Rf ÞA/ðxÞN�1b2m4

0; ð4Þ

where the flux Richardson number ðRf ffi 0:2Þ expresses the parti-
tioning of turbulent production into potential energy fluxes and dis-
sipation; a is a nondimensional, O(1) constant which is estimated
numerically to be a = 2.31; A = 0.20 is a nondimensional constant
expressing the strength of the wave–wave interactions1 and the fac-
tors bðxÞ and /ðxÞ are spectrally weighted versions of

/ðxÞ ¼ ðx2 þ f 2Þ ðx2 � f 2ÞðN2 �x2Þ
h i1=2

�
x2ðN2 � f 2Þ
h i

and

bðxÞ ¼ ðx2 þ f 2ÞN x ðx2 � f 2Þ N2 �x2
� �h i1=2

� ��
:

See Polzin (2004b) for further discussion of the frequency domain.
The fit parameters in (1) correspond to a spectral level of

bm2
0 ¼ 2:1� 10�5 s�2=m�1 and vertical wavelength 2p=m0¼375m

for x ¼ 1:4025� 10�4 s�1 (an M2 semi-diurnal internal tide),
Rf ¼ 0:2; A ¼ 0:20; N ¼ 1� 10�3 s�1 and f ¼ 0:53� 10�4 s�1. Ob-
served shear spectra are in reasonable agreement with these spec-
tral parameters (Polzin, 2004b). The issue of specifying the vertical
profile of turbulent dissipation has thus been cast into a problem of
specifying the internal wave spectral parameters at the bottom
boundary using models of wave generation and scattering. Before
doing so, the issue of wave propagation in non-uniform stratifica-
tion is addressed.

2.3. Buoyancy scaling of the dissipation profile

Variable stratification adds an additional complication. Buoy-
ancy scaling under the Wentzel–Kramers–Brillouin (WKB) approx-
imation returns the result that the vertical wavenumber of a wave
packet varies in proportion to N, which in turn implies an
a
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additional transport of energy to smaller scales, Appendix B. Such
effects can be described by buoyancy scaling the vertical coordi-
nate in (1) as:

z� ¼
Z z

0

N2ðz0Þ
N2ðz0 ¼ 0Þ

dz0 ð5Þ

and invoking the hydrostatic versions of /ðxÞ and bðxÞ to obtain

� ¼ �0N2ðzÞ=N2ðz ¼ 0Þ
ð1þ z�=z0Þ2

: ð6Þ

The variability of NðzÞ is sufficiently small in the bottom most
1500 m that the fit parameters are not affected ðzo ¼ 150 m; �o ¼
1� 10�8 W=kgÞ. At shallower depths, however, increasing stratifica-
tion coupled to nonlinearity serves to transport the remaining en-
ergy efficiently to small scales, Appendix B.

2.4. A generation model and topography

A linear model of internal tide generation using continuous
topography will return the result that the internal tide energy den-
sity is proportional to the topographic slope variance. This is prob-
lematic given the topological character of mid-ocean ridge
bathymetry. It can be described as fractal2 (Goff and Jordan,
1988), which implies the topographic slope variance is unbounded
as smaller and smaller scales are included in the slope estimate.
Using a linear model and a continuous representation of mid-ocean
ridge bathymetry, the predicted internal wavefield will have infinite
energy density and infinite shear. This is aphysical as either adiabatic
or diabatic nonlinearity will serve to damp the smallest-scale re-
sponse. This issue, and its resolution, are discussed in greater detail
in Polzin (2004b).

The resolution defined in Polzin (2004b) is to use a quasi-linear
spectral model of internal tide generation that incorporates hori-
zontal advection of the barotropic tide into the momentum equa-
tions (Bell, 1975):

Efluxðk; l;xn;z¼0;tÞ¼ nx1

2p2 N2�n2x2
1

� �
n2x2

1� f 2
 �h i1=2
½k2þ l2��1=2

�Hðk; lÞJ2
n k2U2

oþ l2V2
o

� �
=x2

1

h i1=2
� �

ð7Þ

Here Efluxðk; l;xÞ is the horizontal wavenumber-frequency spectrum
for the vertical energy flux, x1 is the fundamental frequency of the
barotropic tide ðM2Þ;n an integer such that nx1 < N and xn ¼ nx1

represents the nth harmonic. The function Jn is a Bessel function of
order n and the factors Uo and Vo in its argument represent the
amplitude of the barotropic tide. The function Jn represents the ef-
fects of horizontal advection by the barotropic tide. It serves as a
smoothing function at high wavenumber and thereby avoids the
problems of infinite energy and shear. The topographic spectrum
Hðk; lÞ can expressed in terms of Goff and Jordan’s (1988) aniso-
tropic parametric representation:

Hðk; lÞ ¼ 4pmh2
o

loko
k2

k2
o
þ l2

l2o
þ 1:0

� �ðmþ1Þ ; ð8Þ

where ko and lo are roll-off wavenumbers, m prescribes a high wave-
number power law, and ho is the rms height. This parametric repre-
sentation seeks to capture variability associated with abyssal hills
created by faulting and volcanism at mid-ocean ridge spreading cen-
ters. It does not seek to describe larger scale offset fractures such as
the canyon in the BBTRE or isolated seamounts. Abyssal hill morphol-
ogy is believed to exhibit a regional statistical homogeneity related to
2 For this discussion the fractal designation implies a high wavenumber power-law
of k�2

h to k�3
h for the 1-D bathymetric spectrum.
spreading rates, the visco-elastic properties of magma at the spread-
ing center, etc. The parameter m exhibits little variability in compar-
ison to ho and ðko; loÞ. The method used to estimate m employs an
objective estimate of noise. See Goff (1991) for further discussion.

In previous work (Polzin, 2004b) I used values for the Mid-Atlan-
tic Ridge at 26�S from tables in Goff (1991). Use of those parameters
with TPXO (Egbert et al., 1994) derived estimates of the barotropic
tide ½ðUo;VoÞ ¼ ð2:1;2:5Þ cm=s� returned a 7.6 mW m�2 estimate of
the total energy flux using (7). Swath bathymetry was obtained on
the last of four BBTRE cruises in April–May of 2000. Analysis of these
multibeam data returns parameter estimates of (ko ¼ 2:2�
10�4 m�1; lo ¼ 1:0� 10�3 m�1;ho ¼ 110 m, and m ¼ 0:90; John Goff,
personal communication, 2002; see also Appendix A). These values
return an energy flux estimate of 3.8 mW m�2, indistinguishable
from the depth integrated dissipation data, 3.7 mW m�2.

Finally, (7) can be converted to a 1-D horizontal spectrum by
integrating over the orientation of the horizontal wavevector and
then converted to a vertical wavenumber frequency spectrum by
invoking a linear dispersion relation, Fig. 2. The shear spectrum
rolls off at a vertical wavelength of about 100 m and it is this high
wavenumber peak that is to be associated with the parameters
�o and mo in (3) and (4).

Identification of the advective roll-off in Bell’s model with the ide-
alized solution is the crux of this parameterization scheme.
3. The recipe

The recipe presented below documents a dynamically consistent
extrapolation of the BBTRE data. There are three basic parameters in
specifying the dissipation profile: (i) the bottom dissipation �o, (ii)
the scale height zo and (iii) the depth integrated dissipation rate.
That process is conducted in five stages: (i) mapping the generation
model (7) onto the finescale radiation balance equation solutions
(2), (ii) transferring those scalings onto the dissipation profile (1),
(iii) accounting for an energy flux residual, (iv) transferring from
an observational coordinate system into a model coordinate system
to obtain a mean buoyancy flux profile, and (v) treating the residual
flows implied by the buoyancy flux divergence.

3.1. Mapping the generation model onto the nonlinear propagation
model

Identification of m0 as the roll-off N=Vo in Bell’s model and bm2
0

as the shear spectral density at that roll-off, the following func-
tional dependencies result:

bm2
0 / V2m�1

o l2
oh2

oN3; ð9Þ
m0 / N=Vo; ð10Þ

where m is the high wavenumber power law of the topographic
spectrum and loho is proportional to the rms topographic slope at
the energy-containing scales of the topography. The factor koUo

does not appear in the parameterization scheme. The energy flux
is dominated by larger scales than either the energy or shear, but
the energy flux in the minor axis coordinate still dominates the
major axis coordinate unless Uo � Vo. The roll-off m0 results from
the advective smoothing in the generation model (7) that decreases
the high wavenumber internal wave shear in the topographic minor
axis coordinate. The use of Vo in the numerator of (10) appears
robust apart from the perverse instance in which Vo ¼ 0.

3.2. Transfer the spectral domain scalings onto the dissipation profile

Let subscripts of ij denote values at a particular x–y grid point.
The near-boundary dissipation profile is specified as,
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Fig. 3. Dissipation vs. height-above-bottom over rough bathymetry in the Brazil
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�ijðzÞ ¼
�oijN

2
ijðzÞ=N2

oij

ð1þ z�=zoijÞ2
; ð11Þ

in which z� is a scaled height coordinate,

z� ¼
Z z

0

N2
ijðz0Þ
N2

oij

dz0 ð12Þ

and z0 increases from the bottom. The zoij parameter is a scale
height, �oij is the dissipation rate at the bottom and Noij is the strat-
ification at the bottom for the ijth grid point.

Following Polzin (2004b), the total dissipation ð�ij-totalÞ is as-
sumed to be locally in balance with the rate energy is converted
from the barotropic tide to internal waves, Pij:

Pij ¼
q

1� Rf

Z Hij

0
�ij-total dz; ð13Þ

where Rf is the flux Richardson and I have assumed Rf ¼ 0:20. The
assumption of a vertically 1-D balance is supported by scaling argu-
ments (Polzin, 2004b) and the Oð1Þ efficiency of the wave scattering
process above the Mid-Atlantic Ridge (Polzin, manuscript in prepa-
ration-b). This assumption will need to be reassessed for faster
spreading mid-ocean ridges that are not as rough as the Mid-Atlan-
tic Ridge.

The parameterization proceeds as follows. Let Po; �o; No; ðUo;

VoÞ and ðko; loÞ represent reference values for the various parame-
ters. The dissipation profile (11) can be expressed in terms of:

�oij ¼ �o
Noij

No

� �4 Voij

Vo

� �4m�2 loijhoij

loho

� �4

; ð14Þ

zoij ¼ zo
Noij

No

� ��3 Voij

Vo

� �3�2m loijhoij

loho

� ��2

; ð15Þ

Pij ¼ Po
Noij

No

� �
Voij

Vo

� �2 hoij

ho

� �2 loij

lo

� �
; ð16Þ

where the parameterization is normalized to the Brazil Basin
observations:

Po ¼ 3:7 mW=m2; ð17Þ
�o ¼ 1:0� 10�8 W=kg; ð18Þ
zo ¼ 150 m; ð19Þ
No ¼ 9:6� 10�4 s�1; ð20Þ
ðUo;VoÞ ¼ ð0:021;0:025Þm=s; ð21Þ
ho ¼ 110 m; ð22Þ
ðko; loÞ ¼ ð2:2� 10�4;1:0� 10�3Þm�1; ð23Þ
m ¼ 0:9: ð24Þ

The functional dependence of �o and zo upon N;ho; ðko; loÞ and
ðUo;VoÞ in (14) and (15) comes directly from (9) and (10), and
(16) results from (7).

3.3. Account for a residual dissipation

The difference between the power input and the depth inte-
grated dissipation in the profile (11) is given by a residual D:

D ¼ 1� Rf

q
Pij �

Z 1

0

�oij dz

ð1þ z=zoijÞ2
ffi 1� Rf

q
Pij � �oijzoij: ð25Þ

I simply assume that the residual is distributed with depth as a con-
stant diffusivity:

�ij-total ¼ �ij þ
DN2

ijR Hij
0 N2

ij dz
: ð26Þ
This gives a reasonable approximation to the observed dissipation
profile over the entire water column, Fig. 3. The total turbulent
buoyancy flux profile P is thus:

P ¼ � g
qo

Rf

1� Rf
�ij-total: ð27Þ

The dissipation profile resulting from (26) is quite similar to that
resulting from much more complicated numerical solutions (Polzin,
manuscript in preparation-a) to the nonlinear propagation model
defined in (34) and (35). The standard invocation of a flux-gradient
relation in (27) leads to P ¼ �KqN2. The closure (27) is intended to
be implemented as a flux P, rather than an eddy diffusivity Kq.

An insight is that weakly nonlinear processes will tend to result
in � / N2 and near-boundary dissipation will be dominated by tidal
and Lee wave processes rather than the scattering of the back-
ground wavefield. Thus (26) hides many sins.

3.4. Transfer the recipe to a mean coordinate system

The preceding analysis assumes a height above bottom coordi-
nate system (z ¼ hab, say), in which the bottom is the actual bot-
tom, rather than a highly smoothed version used by general
circulation models (to be denoted by z ¼ Hab) (Fig. 4). The issue
is that �ðz ¼ hab ¼ HabÞ can be a poor approximation of
�ðz ¼ habÞ, in which a horizontal or isopycnal average is denoted
with the overbar. Let pðhabjHabÞ represent the probability that
the actual bottom is at z ¼ hab given that the height above the
mean bottom is Hab. Then the average buoyancy flux across the
mean surface (horizontal or isopycnal) is � g

qo

Rf

1�Rf
�ðHabÞ with:

�ðHabÞ ¼
Z 1

0
�ðhabÞpðhabjHabÞdhab: ð28Þ
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Implicit in this expression is that �ðhabÞ ¼ 0 if the topography
intrudes across the mean surface. An analytic estimate of �ðHabÞ
is given below so that the method can be copied.

A convenient representation is to assume the bathymetry to be
a succession of triangular planforms (a sawtooth profile) with
height h ¼ Hab� hab probability distribution:

pðhÞ ¼ 1
2
ffiffiffi
3
p

ho

jhj 6
ffiffiffi
3
p

ho;

pðhÞ ¼ 0 jhjP
ffiffiffi
3
p

ho;

ð29Þ

in which h is the topographic height about Hab having a variance of
h2

o . This can easily be translated into an expression for pðhabjHabÞ
given pðhabjHabÞdhab ¼ pðhÞdh with the restriction that hab > 0.
Given (29), the depth profile of dissipation (28) becomes:

�ðHabÞ ¼ �oz2
o

ðzo þ HabÞ2 � 3h2
o

Hab >
ffiffiffi
3
p

ho;

�ðHabÞ ¼
�ozo Habþ

ffiffiffi
3
p

ho

� �
2
ffiffiffi
3
p

ho zo þ Habþ
ffiffiffi
3
p

ho

� � 0 < Hab <
ffiffiffi
3
p

ho:

ð30Þ

The resulting dissipation profile is nearly uniform near the
boundary Hab <

ffiffiffi
3
p

ho

� �
. Values of (30) larger than (1) are noted

at greater distances. The two solutions become similar in the limit
that Hab� ho, Fig. 5. The resulting �ðHabÞ profile is sensitive to the
height variance h2

o and care must be exercised to use fully resolved
estimates of the topographic variance.

Despite the idealized representation of the statistical distribu-
tion of topographic heights, the gross features of the resulting dis-
sipation profile (30) appear robust. For example, the assumption of
Gaussian statistics for h does not substantively alter the near-bot-
tom Hab decrease in dissipation, Figs. 5 and 6.
3.5. Diapycnal advection

Complete the transfer from a rough basin to a smooth dish with
a porous bottom by specifying a diapycnal velocity at the bottom
boundary.
There is a very serious consideration which, at this point, does
not have a good resolution. If implemented as a buoyancy flux,
the parameterization culminating in (26) will produce downwel-
ling over the tops of the topographic roughness. This is easily seen
from the diapycnal advection–diffusion balance in the density
equation:

w�N2 ¼ oðPÞ=oz�: ð31Þ

Here w� is the diapycnal velocity and z� is the diapycnal coordinate.
This equation, apart from nonlinearities in the equation of state
(McDougall, 1991), is exact. Thus the sign of w� is determined by
the sign of oðPÞ=oz�, which is in the downwelling sense in the hab
coordinate, Fig. 6 (P is monotonically decreasing). This implies
the production of dense water. Analysis of tracer observations imply
a diapycnal velocity of about �3� 10�7 > w� > �5� 10�7 m s�1 be-
low the tracer injection level (Ledwell et al., 2000), which was esti-
mated to be 500 m above abyssal hill summits immediately to the
north and south of the injection site [See Ledwell et al. (2000) for
caveats about particulate scavenging of the tracer. Note also that
the tracer estimate of diapycnal velocity uses the function form
(1) and so is not entirely independent of the analysis presented
here.]. The diapycnal velocity profile resulting from (31) using
either the Gaussian or sawtooth topographic probability distribu-
tion returns estimates of w� in a Hab coordinate that are consistent
with the tracer estimate. Both analytic estimates feature deep
upwelling near the mean depth Hab ¼ 0.

Specification of this deep diapycnal velocity needs to be
consistent with mass conservation. This requires either explicit



−5 −4 −3 −2 −1 0 1 2

x 10
−6

0

500

1000

1500

2000

2500

3000

3500

4000

diapycnal velocity (m/s)

he
ig

ht
 a

bo
ve

 b
ot

to
m

 (
m

)

w*(hab)

w*(Hab)

gaussian

tracer

Fig. 6. Diapycnal velocity profiles in both local (hab) and mean (Hab) coordinates.
The top of the box at Hab = 560 m represents the height of the injection surface
above mean depth of sample boxes 2.1–5.3 (Fig. 9). The width of the box represents
the range of the tracer based estimate of diapycnal velocity below the injection
surface. The line coding is as in Fig. 5.

304 K.L. Polzin / Ocean Modelling 30 (2009) 298–309
representation of horizontal conduits (canyons) and horizontal
fluxes or specification of the diapycnal velocity at the bottom face
of a grid cell and nonlocal accounting of the mass budget. Guidance
is provided in Section 4.1.

3.6. Further caveats

� The prescription is for the buoyancy flux, not the mass diffusivity:

The equations of motion are forced by the divergence of
momentum and bouyancy fluxes. This work represents a param-
eterization of the buoyancy flux. It is not necessary, and quite
insensible, to invoke a flux gradient relationship and implement
the buoyancy flux in terms of a diffusivity.

� The prescription is only for the vertical faces of a grid cell: Before
implementing this scheme, the entire buoyancy budget of a grid
cell requires further consideration. The answer is likely to
depend quite significantly upon model resolution.

� Bathymetry: Goff’s parametric representation (8) does not cap-
ture low wavenumber variance associated with offset fractures.
This can lead to an underestimate of the corresponding low
vertical wavenumber internal wavefield and associated energy
flux. Applying a two dimensional Fourier transform to the local
swath bathymetry returns estimates of the energy flux that are
20–40% larger than using (8). This ‘‘missing” energy flux is
accounted for in this local balance by normalizing the parame-
terization to the BBTRE observations.
Given that mid-ocean ridge roughness exhibits at least a regio-
nal statistical homogeneity (Goff, 1991) and the information
required to account for variability of topographic roughness
in (14)–(16) and transformation to a Hab coordinate system
requires fully resolved (e.g. center- or multi-beam) bathymetry
which is generally not available, I suggest accounting for vari-
ability in hoðko; loÞ on a regional or ridge-wise basis. See Goff
and Arbic (submitted for publication) for a description of such
variability.
When the topography is smooth, the choice of a constant back-
ground diffusivity is not unreasonable in light of the observa-
tions (Polzin et al., 1997).

� The energy spectrum of the nonlinear propagation model (2) has
been identified with one aspect of the generation model (7). The
reader should be cognizant of the following:
First, the idealized solutions are not a complete description of the
generation and scattering processes: they are too bandwidth-lim-
ited and, as a consequence, do not capture the entire energy flux
associated with the generation process. The observed spectra, as
well, exhibit significantly more energy at low wavenumber (Pol-
zin, 2004b). The neglected energy is likely to be dissipated in or
near the thermocline where the observations indicate
K ffi ð0:1—0:2Þ � 10�4 m2 s�1. The missing energy flux is added
to the dissipation profile as a constant diffusivity.
Second, (7) describes only the generation process, not the scatter-
ing process. Arguably (Polzin, 2004b, manuscript in preparation-
b) the roll-off in the spectrum at m0 / N=Vo might be better
described as a smoothing operation with vertical scale given by
m0 / N=Urms, in which Urms represents the root-mean-square
tidal velocity along the topographic minor axis and the spectral
level b interpreted as being the sum of both generation and scat-
tering processes. This roll-off should be a generic feature of both
barotropic and baroclinic flow over topographic roughness for
baroclinic waves of large vertical wavelength, ðm�1 � hoÞ (Polzin,
2004b, manuscript in preparation-b).
Third, and finally, Bell’s (1975) model has an infinitesimal ampli-
tude bottom boundary condition which assumes ray trajectories
are more steeply sloped than the topography, loho 	 x1=N. The
use of such a bottom boundary condition requires further justifi-
cation that is beyond the scope of this paper. The infinitesimal
amplitude bottom boundary condition assumes that internal
wave ray trajectories are more steeply sloped than the bottom
topography. This is clearly not true here, see Polzin (2004b),
Fig. 8. However, as noted in Polzin (2004b), enhanced shear antic-
ipated with finite amplitude effects is not apparent in the obser-
vations. A possible resolution is that the topography is two
dimensional and anisotropic, so that rather than being con-
strained to go up and over supercritical topography in one dimen-
sion, water parcels may be ‘blocked’ in that direction and forced
across topography in the subcritical direction. A suitable finite
amplitude bottom boundary condition for anisotropic, two-
dimensional bathymetry has not been defined. The energy flux
associated with finite amplitude bathymetry tends to saturate
at a constant value when the slope of internal wave ray trajecto-
ries equals that of the topographic slope (Garrett and Kunze,
2007) and this is approximately the case for the abyssal hills here
as loho 
 x1=N.
4. Discussion

4.1. The Mid-Atlantic Ridge as a lung

The initial (Polzin et al., 1997) BBTRE investigation raised a very
interesting question about the mass budget of the abyssal Brazil
Basin. In a diapycnal advection–diffusion balance (31) the sign of
the diapycnal velocity w� is given by the sign of oz�� if the mixing
efficiency Rf

1�Rf
is assumed to be constant. The dramatic enhance-

ment of � above rough topography implies downwelling and we
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The canyon axis is significantly smoother than the adjacent ridge, but is occasionally cut by abyssal hills extending from the ridge. These features form sills that block deep
flow up the canyon axis.
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hypothesized that the mass budget would be closed by upwelling
within the canyons rather than above rough topography or over
the much smoother western half of the basin. We forwarded the con-
jecture that, on a broad scale, the Mid-Atlantic Ridge could be
viewed as a permeable, sloping boundary with sinks for the densest
waters in the Brazil Basin at the depths of the canyon mouths and
sources of water at depths about the canyon heads. Unstated was
a back of the envelope calculation implying substantial flow up
the offset fractures: the requirement of laundering 2� 106 m3 s�1

of dense Antarctic Bottom Water through some 30 canyons in the
abyssal Brazil Basin having a characteristic cross-sectional area
1
2 HW with height H = 700 m and width W = 20,000 m returns an
average velocity of 0.02 m s�1. Additional funding was obtained to
deploy a mooring in the offset fracture with the primary goal of doc-
umenting such a mean flow and the secondary goal of documenting
temporal characteristics of the internal wavefield. The back-of-the-
envelope calculation is in remarkable agreement with two-year
averaged estimates of flow in the canyon (Thurnherr et al., 2005).

This scheme is quantified in the streamfunction determined
from an inverse model [ St. Laurent et al., 2001, see also Fig. 7].
In the St. Laurent et al. (2001) work, the Smith–Sandwell bathym-
etry is used to characterize the geographic location of vertical
profile (dissipation) data. Their binning structure emphasized can-
yon sidewalls as the locus of maximum dissipation (Thurnherr
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et al., 2005). This is an artifact of using the Smith–Sandwell
bathymetry: the loci of maximum dissipation are abyssal hill re-
gions external to the canyons, Polzin (2008). In St. Laurent et al.
(2001), upwelling is regarded as occurring within canyons in con-
cert with small mixing efficiencies Rf

1�Rf
	 0:2

� �
over the bottom

most 300 m, in which the small mixing efficiencies are optimally
determined from an inverse model. The resulting overturning
streamfunction represents only 20% of the anticipated basin
average. Here upwelling is diagnosed from (31) in a Hab coordi-
nate system and may be significantly larger. Accurate estimates
of the height variance are required to obtain a representative
upwelling profile: The Smith–Sandwell bathymetry product is
not sufficient.

The buoyancy budget within the fracture zone valleys of some
0.02 m s�1 up-canyon flow demands significant diapycnal transfor-
mations in combination with net upwelling. This constraint leads
(Thurnherr et al., 2005) to conjecture that the diapycnal transfor-
mations may very well be associated with sill processes rather
than the tidal generation scheme proposed here. In a related work
(Polzin, 2008) I examine the circumstantial evidence presented by
Thurnherr et al. (2005) in support of the sill process interpretation
and find that, apart from isopycnals dipping at sills cutting across
the fracture zone valleys, the evidence does not support that
interpretation.

The conundrum I posed by the inference of downwelling above
rough topography, averaging dissipation profiles in a height-
above-bottom (hab) coordinate system and equating that coordi-
nate in the context of a diapycnal advection–diffusion balance (6)
is probably misleading. Averaging in a height above the mean
boundary (Hab) coordinate system returns a positive diapycnal
velocity estimate as an isopycnal encounters the tops of the abyssal
hills. The resolution with St. Laurent et al. (2001) is the recognition
that the Smith–Sandwell product is not adequate to provide a bin-
ning structure for vertical profile data and it does not resolve the
height variance required to infer upwelling rates from (31).

A schematic of a circulation scheme that does not require signif-
icant upwelling in association with sills is rendered in Fig. 8. Here a
sill is simply depicted as blocking the deepest flow and the deep up
canyon flow is balanced by diapycnal upwelling off the canyon
axis. This contrasts with inferences one might be tempted to draw
about deep up canyon flow and the nearly vertical 0.8 �C isotherm
in Fig. 7.

The total upwelling in this regime can figure significantly in the
abyssal Brazil Basin mass budget. Taking a characteristic upwelling
rate of 1:5� 10�6 m s�1 over the bottom most 300 Hab (Note that
Fig. 6 does not extend to negative Habs included in this 300 m),
the zonal extent of the upwelling regime can be estimated as this
height scale divided by the mean slope of the Mid-Atlantic Ridge
ðffi 7� 10�4Þ and the meridional extent estimated as the length
of the Brazil Basin, 3� 106 m. The back-of-the-envelope budget re-
turns some 2 Sv of upwelling. This is the correct order of magni-
tude to balance the input of dense water through the Vema
Channel and additional inputs associated with downwelling.

In this scenario, canyons are simply conduits for deep flow
rather than the locus of upwelling. These canyon flows supply
water to be upwelled in the smaller spaces in between individual
abyssal hlls, Fig. 8. Net upwelling appears only in the Hab coordi-
nate and after due consideration of fully resolved bathymetry.
Abyssal hills play a critical role in the ventilation (aspiration) of
the abyss. An analogy to the functioning of a lung may be useful.

4.2. Climate implications

It is fairly well established that the meridional overturning cir-
culation is particularly sensitive to diapycnal mixing and freshwa-
ter forcing in the North Atlantic and wind stress in the Southern
Ocean (Bugnion et al., 2006). Of particular concern here is the po-
tential shutdown of Deep Water production in the North Atlantic
with either increasing hydrologic forcing or decreasing diapycnal
mixing, e.g. Zhang et al. (1999), which has been investigated under
both ‘constant diffusivity’ and ‘constant available energy’ scenarios
(Nilsson and Walin, 2001). A significant caveat is that the upper
limb of the meridional overturning circulation responds most di-
rectly to mixing in the thermocline, Jayne (2009).

The analysis presented here returns a dramatic dependence of
�oij / N4 and zoij / N�3 on buoyancy frequency, though as a mea-
sure of the depth integrated dissipation, their product is sensibly
�oijzoij / N. The proposed parameterization scheme does not fit
nicely into either the ‘constant diffusivity’ or ‘constant available
energy’ scenarios: The major feature of abyssal stratification in
the Atlantic Ocean is the Antarctic Bottom Water/North Atlantic
Deep Water interface. If an increase in freshwater forcing were
to shut down the production of North Atlantic Deep Water, that
interface may intrude much further into the North Atlantic and
potentially result in a dramatic change in the distribution of
diapycnal mixing. I do not believe the linkages and consequences
under the proposed parameterization can be understood without
further investigation.
5. A summary of half-baked ideas

A dynamically based parameterization for the dissipation pro-
file has been presented and appropriately modified for inclusion
in general circulation models. There are a great number of caveats
associated with this process and so substantive improvements to
the parameterization scheme over time are likely. Thus the ideas
presented here should be considered as half-baked. Being dynam-
ically based, though, the scheme can be tested and modifications
pursued in a rigorous fashion.

That parameterization identifies a functional form for the near-
boundary dissipation profile (11), dynamically extrapolates that
profile to account for geographic variability in tides, topography
and stratification (14)–(16), closes the internal wave energy bud-
get by assuming generation balances dissipation as a local process
(26), and then modifies that result for inclusion in general circula-
tion models that do not fully resolve topographic variability (28)
and (31).

The premise of this paper is that the energetics of the finescale
internal wavefield above rough topography is dominated by tidal
frequencies and that this is a local process. These assumptions
are open to question and documenting the oceanic wavefield to
test these hypotheses is a matter of ongoing research. My perspec-
tive is that topographic roughness renders the internal wave en-
ergy balance to be essentially one-dimensional. This is a
fundamental departure from the established nonlocal paradigm.
A significant part of past research on internal waves involves the
search for energy sources in the context of the Garrett and Munk
spectrum. These sources have been extremely difficult to identify,
in part because simple model estimates tend to indicate most
sources to be of similar order of magnitude. There are many candi-
dates for sources of energy for the oceanic internal wavefield. The
problem is discriminating between them. Sources have not been
obvious, in part because the energy input at each event tends to
be a relatively small fraction of the total energy flux resident in
the background internal wavefield. Several analogies likening this
process to small impulses acting on a massive flywheel, random
sources of heat within a efficiently conducting thermal block, or
the scattering of light by a fog bank have been invoked. My per-
sonal experience is that it is easy to over- or misrepresent the
strength of individual sources on the basis of simple model calcu-
lations which are unconstrained by sufficient observations. Here,
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however, I through caution to the wind and include only tides in
this recipe.

Altering this recipe to account for different sources through
�o; zo and Pij could be an easy matter if those other sources are
identified. The most pressing issues are the generation/decay of
quasi-stationary Lee waves (Nikurashin and Ferrari, submitted
for publication) and subsequent momentum transfer.
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Appendix A. Multibeam statistics

Multibeam bathymetry data were obtained on the fourth and
final Brazil Basin Tracer Release Experiment cruise in April–May
of 2000 from the R/V Knorr, Fig. 9. The data were processed by
Peter Lemmond (Woods Hole Oceanographic Institution) and John
Goff (personal communication, 2002) provided estimates for his
parametric spectral representation (8) based upon those data,
Table 2. The data were divided into an 8 row by 3 column matrix
of sample boxes for this analysis. Parameter values quoted in
Section 2.4 represent averages over rows 2–5, i.e. sample boxes
2.1–5.3.

Appendix B. Idealized solutions to a radiation balance equation

The analytic expression (1) and the parametric specifications of
�0 and z0 in terms of m0 and b result from a coupled system of par-
tial differential equations which govern the vertical evolution of
the vertical wavenumber spectrum (Polzin, 2004a,b). These equa-
tions are of the form:

� o

oz
CgzE� þ oF�

om
¼ S�o � S�i ð32Þ

in which�CgzE
� represents the vertical flux of energy (Cgz is taken to

be positive definite) and the energy spectra of the upward and down-
ward propagating wavefield are denoted as EþðmÞ and E�ðmÞ,
respectively. The factor F� similarly represents the transport of
energy through the vertical wavenumber domain for the upward +
and downward � propagating wavefields. The transport F� associ-
ated with internal wave–wave interactions is a quadratic function
of the spectral level, and so (32) represents a nonlinear propagation
model. The dissipation rate is estimated as:

� ¼ ð1� Rf Þ½Fþ þ F�� ð33Þ

in the limit as m!1. The right-hand-side of (32) represents
explicit sources and sinks in the spectrum, e.g. transfers between
discrete wavenumbers and frequency associated with reso-
nant interactions. The representation forwarded in Polzin (2004b)
is:

oEþðmÞ
oz

þ Am

N2

o½bðxÞm4EþðmÞðEþðmÞ þ E�ðmÞÞ�
om

¼ AbðxÞm4

2N2 ½E�ðmÞ � EþðmÞ�½EþðmÞ þ E�ðmÞ� ð34Þ
and

� oE�ðmÞ
oz

þ Am

N2

o½bðxÞm4E�ðmÞðEþðmÞ þ E�ðmÞÞ�
om

¼ AbðxÞm4

2N2 ½EþðmÞ � E�ðmÞ�½EþðmÞ þ E�ðmÞ�: ð35Þ

The stratification has explicitly been assumed constant here. These
equations represent a balance between the vertical propagation of
wave energy oð�CgzE�Þ=oz and the downscale transport of energy
oF�=om in which the right-hand side serves to conserve wave
momentum. The right-hand side will tend to make the wavefield
vertically isotropic at small scales, thereby creating a downward
propagating wavefield from a source at the bottom boundary. Thus
the upward and downward propagating wavefields are explicitly
coupled by nonlinearity. The bottom-boundary condition is a unidi-
rectional source at the bottom with planar reflection from a flat bot-
tom for the downward propagating wavefield. An approximate
solution to (34) and (35) is

Eþ þ E� ¼ 1

1þ 2AabðxÞN�2
0 bm4

0z

bm2
0

m2 1�m2
0

m2

� �
; ð36Þ

with corresponding dissipation rate

�ðzÞ ¼ ð1� Rf ÞA/ðxÞN�1b2m4
0

1þ 2AabðxÞN�2
0 bm4

0z
h i2 : ð37Þ

The solution is approximate because the spectral shape needs to be
determined numerically. It happens that this shape is quite well de-

scribed by bm2
0

m2 1� m2
0

m2

� �
with a ¼ 2:31 (Polzin, 2004b).

Buoyancy scaling under the WKB approximation gives the
change with N of vertical wavenumber for a single internal wave
as (Leaman and Sanford, 1975):

m ffi m̂N=bN; ð38Þ

where m̂ and bN are reference values of m and NðzÞ. The relation
(38) assumes the hydrostatic approximation, in which case the
group velocity ðCgzÞ is independent of NðzÞ at constant m. The
change of vertical wavenumber implies a transport of energy
through the vertical wavenumber spectrum which needs to be ac-
counted for in (34) and (35). The transport rate is:

F ¼ E
dm
dz

dz
dt
¼ Em̂

dN
dz
bN�1Cgz ¼

x2 � f 2

x
E

dN
dz

N�1; ð39Þ

where the direction of upward energy propagation has been chosen.
With this flux law, the hydrostatic versions of (34) and (35)
become:

oEþðmÞ
oz

þm
o½EþðmÞNzN�1þAbðxÞN�2m4EþðmÞðEþðmÞþE�ðmÞÞ�

om

¼AbðxÞm4

2N2 ½E�ðmÞ�EþðmÞ�½EþðmÞþE�ðmÞ� ð40Þ

and

�oE�ðmÞ
oz

þm
o½�E�ðmÞNzN�1þAbðxÞN�2m4E�ðmÞðEþðmÞþE�ðmÞÞ�

om

¼AbðxÞm4

2N2 ½EþðmÞ�E�ðmÞ�½EþðmÞþE�ðmÞ�: ð41Þ

Analytic progress can be made by forsaking momentum conserva-
tion, in which case the explicit coupling on the right-hand side of
(40) and (41) vanishes and, for a unidirectional source, (40) becomes

oEþðmÞ
oz

þm
oðEþðmÞNzN

�1 þ AbðxÞm4N�2EþðmÞ2Þ
om

¼ 0: ð42Þ
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Fig. 9. Multi-beam bathymetric map with HRP station positions posted as white filled circles for profiles contributing to the average profile in Fig. 1. Another four stations in
this average are located atop the ridge flank to the northeast. Black filled circles represent the mooring position to the east and the injection site to the west. The data were
divided into 24 separate sample boxes for analysis. See Table 2 for results of the parametric fits. The sample box key in column one of Table 2 is the row.column of the grid
overlaid on the bathymetry.

Table 2
Fits to multibeam data for Goffian statistics (Goff, 1991). The estimates presented here were provided by John Goff (personal communication, 2002). Values quoted in Section 2
are averages over sample boxes 2.1–5.3. The tracer was injected on an isopynal at a mean depth of 4010 m. The mean depth of sample boxes 2.1–5.3 is 4570 m. The power law m
was fixed as m ¼ 0:90 in this analysis. The parameters kn and ks correspond approximately half a horizontal wavelength in the along strike ðksÞ and across strike ðknÞ directions.

Sample box # Depth ho (m) Azimuth kn (km) ks (km) Anisotropy

1.1 4567 112� 11 �7:8� 3:1 2:6� 0:6 11:3� 3:9 4:3� 1:4
1.2 4568 94� 21 �8:4� 4:3 6:1� 2:3 31:2� 27:5 5:1� 4:2
1.3 4635 115� 15 �10:8� 3:0 3:1� 0:8 15:4� 6:8 5:0� 2:1
2.1 4699 128� 10 1:7� 4:0 2:7� 0:5 8:6� 2:4 3:2� 0:9
2.2 4401 114� 15 �7:2� 3:4 3:8� 1:1 18:2� 9:5 4:7� 2:3
2.3 4509 89� 11 �10:1� 2:8 3:2� 0:9 20:0� 10:1 6:2� 2:9
3.1 4708 103� 9:6 3:4� 4:2 3:1� 0:7 10:3� 3:3 3:3� 1:0
3.2 4485 98� 16 �1:6� 5:9 5:2� 1:6 17:2� 8:9 3:3� 1:6
3.3 4274 145� 19 �2:2� 3:1 3:7� 1:0 20:1� 10:4 5:5� 2:7
4.1 4504 86� 10 �10:1� 3:0 3:3� 0:9 17:7� 8:3 5:4� 2:4
4.2 4574 147� 25 0:9� 4:1 5:3� 1:7 24:7� 15:7 4:7� 2:8
4.3 4539 100� 19 �14:9� 3:6 5:5� 1:9 32:1� 26:0 5:8� 4:4
5.1 4719 87� 7 �2:9� 1:7 1:9� 0:4 14:0� 5:0 7:3� 2:5
5.2 4732 112� 9 �5:1� 3:2 2:3� 0:5 9:1� 2:7 3:9� 1:2
5.3 4690 92� 8 �8:6� 1:8 2:0� 0:4 15:0� 9:8 7:7� 2:8
6.1 4870 153� 24 �8:8� 2:6 4:2� 1:3 29:2� 20:1 7:0� 4:5
6.2 4603 142� 19 �5:4� 2:2 3:3� 1:0 25:7� 19:6 7:7� 4:4
6.3 4593 150� 22 �13:3� 4:2 4:4� 1:3 18:9� 9:9 4:3� 2:1
7.1 4669 150� 31 �6:4� 2:7 5:6� 2:0 47� 92 8:4� 8:6
7.2 4613 148� 22 �4:3� 5:9 4:9� 1:5 16:1� 7:9 3:3� 1:6
7.3 4489 149� 22 �13:1� 6:0 4:6� 1:4 15:1� 7:1 3:2� 1:9
8.1 4706 111� 21 �6:0� 2:5 4:7� 1:6 43� 46 9:0� 9:1
8.2 4699 175� 24 �24� 6:8 4:1� 1:2 11:9� 9:4 2:9� 1:3
8.3 4686 153� 24 �10:8� 3:7 4:1� 1:3 22:2� 14:2 5:4� 3:2
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Solutions to (40) are no longer separable. A solution to (40) is:

Eþ ¼ 1

1þ 2AabðxÞN�4
0 bm4

0

R z
0 N2ðz0Þdz0

bm2
0N2

m2N2
0

1�m2
0N2

m2N2
0

 !
; ð43Þ

with a ¼ 2:0 and dissipation rate
�ðzÞ ¼ ð1� Rf ÞA/ðxÞN�1b2m4
0N4N�4

0

1þ 2AabðxÞN�4
0 bm4

0

R z
0 N2ðz0Þdz0

h i2 ; ð44Þ

which is similar to the solution for the case of constant stratification
(36) and (37), but with N-scaled vertical wavenumber and vertical
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coordinate. The effect of scaling the vertical wavenumber in propor-
tion to N amounts to an increase of high wavenumber spectral den-
sity (which depends on vertical wavenumber as m�2) in proportion
to N2. This implies a simple shift of the abscissa in Fig. 2. In contrast,
energy transport to higher wavenumber associated with wave–
wave interactions affects a decrease in the amplitude of the spec-
trum, or shift in the ordinate. The increase in the high wavenumber
portion of the spectrum associated with buoyancy scaling implies
an increase in the energy transport to smaller scales via wave–wave
interactions. The influence of buoyancy scaling is to increase spec-
tral levels, which in turn makes wave–wave interactions more effi-
cient and implies an increase in turbulent dissipation. Internal wave
energy is thereby dissipated closer to the bottom boundary by
wave–wave interactions in the presence of vertical stratification
which increases with height above the bottom.

Implications of increasing stratification for the vertical diffusiv-
ity can be succinctly summarized. In the limit of large wavenum-
ber, F=N2 depends on N only through the vertical coordinate, i.e.

jq ffi
F

N2 ffi 1þ 2AabðxÞbN�4
0 m4

0

Z z

0
N2ðz0Þdz0

� ��2

: ð45Þ

The effect of increasing stratification is to decrease the scale height
over which the diffusivity decays. The coupling of increasing strat-
ification and wave–wave interactions inhibits the flux of energy
from the abyss to the main thermocline. Energy generation into
small vertical scales at the bottom boundary has little effect on
main thermocline spectral levels and thus the diffusivity there.

Given that there is little difference between the two solutions at
constant N, it seems to make sense to implement the buoyancy
scaling and accounting for the effects of momentum conservation
in an ad hoc manner by retaining a ¼ 2:31 rather than a ¼ 2:0. This
ad hoc approach adds little complexity to the closures (1)–(4).

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ocemod.2009.07.006.
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