Natural iron fertilization above the Kerguelen Plateau (Southern Ocean): Impact on carbon remineralization by the microbial food web

Ingrid Obernosterer

Laboratoire d'Océanographie Microbienne Observatoire Océanologique de Banyuls CNRS UPMC France

Thanks to

Urania Christaki @ Université du Littoral Côte d'Opale, Wimereux

Andrea Malits @ Laboratoire d'Océanographie de Villefranche

Dominique Léfèvre @ Laboratoire de Microbiologie, Géologie et Ecologie Marine, Marseille

Philippe Catala @ Laboratoire d'Océanographie Microbienne, Banyuls

Questions adressed

How does natural iron fertilization affect different components of the microbial food web ?

What are the consequences on the transfer of carbon through the microbial food web ?

The natural iron fertilization experiment KEOPS (Kerguelen Ocean and Plateau compared Study)

The Kerguelen Bloom

Marked response of heterotrophic bacteria

Bloom

Obernosterer et al. (2008)

Marked response of heterotrophic bacteria

Bacterial Production (µmol C L ⁻¹ d ⁻¹)	0.25	0.042
Bacterial Respiration (µmol C L ⁻¹ d ⁻¹)	0.94	0.25
Bacterial Growth Efficiency (%)	21	14

All values are mean of upper 100 m.

Comparison among iron fertilization experiments in the Southern Ocean

	Bacterial heterotrophic production $(\mu g \ C \ L^{-1}d^{-1})$		
	HNLC	HNLC + Fe	
KEOPS	0.5	3	X 6
CROZEX Zubkov et al. (2007)	0.4	3.6	X 9
SOIREE, EisenEx, SOFEX	0.2-0.5	0.2-1.1	X 2-3
Hall and Safi (2001), Arrieta et al. (2004),			
Oliver et al. (2004)			

What stimulates bacterial heterotrophic activity?

Direct or indirect response to iron addition?

(_ not Fe, but organic carbon first limiting factor

Similar diatom biomass in Fe-fertilization studies

From Armand et al. (2008)

....but differences in the duration of the blooms : Mesoscale experiments: ≈ 1 to 40 days Kerguelen bloom : ≈ 60 to 80 days

The duration of the bloom and the mode of fertilization allows adaptation of the bacterial community.

Strikingly different bacterial diversity at the two stations

Distinct bacterial groups contribute to C-cycling within the Kerguelen bloom

Obernosterer et al. (in rev.)

Temporal changes of SAR92

Obernosterer et al. (in rev.)

Pronounced response of heterotrophic bacteria to natural iron fertilization, in terms of activity and community composition.

Does it matter for biogeochemical cycling of elements?

Transfer of carbon through the microbial food web

Heterotrophic nanoflagellates - the first trophic link

Viruses - a sink of bacterial heterotrophic production

Malits et al. (in prep.)

C

Christaki et al. (2008)

Carbon flow through the microbial food web

HNLC

Bloom

 CO_2 CO_2 Heterotrophic bacterial Heterotrophic bacterial Viral Viral **HNAN** loop loop carbon demand carbon demand Ciliates 40% 90% Meso 60% GCP GCP 10% zooplankton 40 mmol C m⁻² d⁻¹ 100 mmol C m⁻² d⁻¹ Sedimentation

Can the functioning of the microbial food web affect carbon export ?

Export efficiency*

 Bloom
 HNLC

 ≈ 28%
 ≈ 58%

*Export Production (²³⁴Thorium, POC, PON) : Primary production (C-and N-uptake rates)

Savoye et al. (2008)

Conclusions

-Pronounced response of heterotrophic bacteria to natural iron fertilization, in terms of activity and community composition.

- Rapid mineralization of organic carbon due to microbial food web processes.

Merci de votre attention!

Banyuls sur mer, March 2010