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Molecular hydrogen as a control on organic matter
oxidation in anoxic sediments

Is C oxidation in anoxic sediments under thermodynamic
regulation?

(CH,0)n + nH,O -->nCO, +2nH,

2nH, +mX_, --> mX_4+ zH,0
(e.8. X, =5S0,% X oq=5?%)
Aern = AG(T)o +RT In ( {Xred}m/{xox}m (PHZ)zn)

and...

Pry = ({Xred}m/ Ko™ e(Aern—AG(t)O/RT))l/Zn
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Hoehler et al. (and others...) developed a headspace analysis
To measure hydrogen in cores. Cores were manipulated
By adding a TEA or AT, A pH, A[TEA], etc. and measured

Steady state concentration of hydrogen

PHZ — ({Xred}m/{xox}m e(Aern-AG(t)o/RT) ) 1/2n

NO;
Mn(IV)
Fe(III)
SO,*

Co,

AG (KJ/mol)
— N, -448
— Mn(II) -349
— Fe(II) -114
— S* =77
- CH, -58
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H, Concentration

Effect of TEA on H, concentrations
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Hydrogen Concentration (nM)

Effect of temperature on H, concentrations
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Dependence of [H,] on [SO, %]

2(CH,0) + 50,2 2CO, + 4H,0+ S*

PHZ = ({Xred}m/{xox}m e(AGrxn-AG(t)o/RT))l/2n
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Fig. 5. Respoase of hydrogen concantrations to variations in porewater sulfate coacentration. Frror bars represent one
standard deviation about the mean of triplicate sediment samples. A power finction £t to the data indicates that hydrogen
has an exponeatial dependence of —0.26 = 0.0]1 on sulfate (compare to theoretical vakue of —0.25). 19.7
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Effect of TEA on H, concentrations

H, Concentration
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Profiles of hydrogen and sulfate in CLB sediments
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Effect of sulfate on H, in CLB sediments
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Fig. 8. The dependence of hydrogen concentrations on sulfste coscentrations in the November core from Cape Lookout
Bight (Fig. Tb). (2) blow-up of the 12-16 cm depth interval. Note that sslfate concentrations only reach threshold values
below 16 cm; (b) plot of kydroges concentration vs. sulfale concentration over the 12-16 cm interval. A power fusction

fit o the data indicates that hydrogen has an exponeatial dependence of 030 = 0.04 on sulfste (compared 10 a lab value
of 0.26 = 0.0] and a theortical vakue of 0.25).
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Profiles of hydrogen and sulfate in CLB sediments
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Hydrogen as a control on organic matter oxidation
In anoxic sediments (fresh and marine)

Hydrogen is a by-product of fermentation and is essential
for sulfate reduction and methanogenesis.

Hydrogen concentrations respond to T, [X], pH.
laboratory changes correspond well to field observations.

Variations in H, suggest maintenance of constant
AG values of -10 to -15 kJ mol™* .

H, has a very short lifetime in sediments- makes an
excellent E regulator. Small changes in H, concentration

results in large changes in AG.

Intense competition by bacteria/archea regulate [H,]

19.15



It was also recognized very soon after sedimentary
methane profiles were compiled that methane consumption appeared
to be occurring in marine systems
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Anaerobic methane oxidation...where has all
the methane gone?

Oceans have a huge reservoir of methane in sediments, but
Contribute only 2% of the global atmospheric flux of methane.

CH,+50,27 ———p HCO, +HS +H,0 -25 ki/mol

CH, +2H,0 — HCO,™ + 4H,

SO, +4H, — HS + 2H,0

Energetically favorable, but depends critically on the
concentration of hydrogen. Only favorable in CLB
sediments when [H,] < 0.29 nM!

Anaerobic methane oxidation probably occurs
as a consortia between SRB and MO Archea
19.17
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Coupled methane oxidation and sulfate reduction in
CLB sediments
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Hydrogen concentrations are < nM
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Coupled methane oxidation and sulfate reduction in
CLB sediments

summertime
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Hydrogen concentrations are a few nM
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We can use molecular probes to identify sulfate
reducing baceria (green) and methane oxidizing
Archea (red) to visually examine the consortia

FIG. 5. Whole-cell fluorescent in situ hybridization of methane-oxidizing consortia found in Monterey Canyon seep sediments (A) and in
Monterey Canyon nonseep sediments after incubation on AMIS (B). Sediments were fixed in 4% formalin and transferred into a 1:1 ethanol-
phosphate-buffered saline solution for storage. Green-stained cells correspond to Desulfosarcina- Desulfococcus bacteria (DSS658), and red-stained
cells correspond to the archaeal ANME-2 group (EeIMSMX0932). Separate images were overlaid to represent the structure of the aggregate. Scale
bar, 10 pwm. No consortia were detectable in Monterey Canyon nonseep sediments before incubation on the AMIS.
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AOM consortia of different shapes

aggregate-structure "tissue" -structure

Archea

Y

AOM consortium above gas AOM consortium above gas
hydrates at Hydrate Ridge, seeps in the anoxic Black
Cascadia Margin. Sea.




The History of AOM

In 2001 Walter Michaelis et al.
found out, that such AOM-consortia
are able to build up a huge biomass
above methane seeps in the anoxic
part of the Black Sea. These reef-
like structures are up fo 1 min
diameter and 4 m high.

photos: GHOSTDABS, Jago-Team




Molecular identification reveal that a microbial
consortium is responsible for AOM in the reef

«cells stained blue

10 ym

fluoréscence in situ
hybridization (FISH). |

by K. Knittel & A. Gieseke




The AOM symbiosis

CH, + S0O,% + Ca’+ > CaCO; + H,S + H,0
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Depth (cm)

Methane production rate profiles

Rate (mM day1)
00 1.0 20 0 0.1 0.2 0.3
30 J
Date Temp Co, acetate total
7/21/83 26.5 0.70 0.18 0.88
8/7/83 27 1.02 0.33 1.35
8/29/83 27.5 1.10 0.46 1.56

sulfate reduction
methane from acetate
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Differences in carbon isotope fractionation between
freshwater and marine systems
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Differences in carbon isotope fractionation between
freshwater and marine systems
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8 13C of Carbon Dioxide (per mil)

Isotope fractionation and
methanogenesis
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Carbon isotope fractionation with methanogenesis

Freshwater
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Carbon and Hydrogen isotopes
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Production of methane from acetate and CO,
in CLB sediments. 14C tracer studies.

14C tracer rates
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Seasonal changes in 13C for methane and CO,

Table 1. Cape Lookour Bight sediment gas bubble composition and 8'*C dara. Values listed arc means
+ SD for the number of sample bortles listed. Superscripts indicate the number of samples for which
compositional data were obtained when different from the number of sample bottles listed.

e e e ———— e —

Methane Methane gi:gg(()iz Carbon
sample 8"’ C-CH, ' dioxide 8'3C-CO,
Date bottles content | sample content er mil
(%) (per mul) botrles onte (per mul)
(no.) (%)
(no.)
6 June 1983 5 97 £2 -645 =07 S 2.5 £ 0.1 -6.8 = 1.1
19 July 1983 6 954 -622x04 6 3402 -86=x12
3 August 1983 5 96 % -61.7 £ 0.9 5 24 =03 -88 = 1.0
19 August 1983 5 94 2 -575 %03 4 24 =02 -9.4 %03
15 Scptember 1983 5 97 +£2 -603 %04 5 25+ 0.1 -83 %05
16 October 1983 6 95 +*3 -600=x=05 5 24+05* -72=x06
20 November 1983 4 932 -622=x*04 4 24 +06 -80 0.2
~ 2 February 1984 4 98 3 -634=%06 4 1.6 £ 0.5° -60=12
7 April 1984 4 94 = 3 -638*0.2 1 1.0 +02 -51=x07
6 May 1984 4 90 +£6 -638 04 3 1.5 =02 ~3.0%038
31 May 1984 5 94 £5 -685x0.7 3 1.8 = 0.6 -70=20
14 June 1984 5 94 =3 -641x06 4 29 =10 -62 *+24
2 July 1984 4 97 £ 4* -594 % 1.2 2 2101 -100=07
18 July 1984 4 98 =2 -60.6 = 1.6 2 22+02 -106=%32
11 August 1984 5 98 = 3* -573 %056 5 23 *=0.2 -7.6 £ 1.2
30 August 1984 4 94 1 -579=*10 3 3.8 = 1.1 -89 *+ 1.1
22 September 1984 5 99 = 0> -58.0 £ 0.3 5 24 =13 -81*1.0



Changes in A3C in CLB methane
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Changes in A3C in CLB methane

3'3C-CO, {per mil)
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