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rrence varies by many orders of magnitude in a given region due to variations in
the stress state of the crust. Our focus here is on variations in seismicity rate triggered by transient aseismic
processes such as fluid flow, fault creep or magma intrusion. While these processes have been shown to
trigger earthquakes, converting observed seismicity variations into estimates of stress rate variations has
been challenging. Essentially aftershock sequences often obscure changes in the background seismicity rate
resulting from aseismic processes. Two common approaches for estimating the time dependence of the
underlying driving mechanisms are the stochastic Epidemic Type Aftershock Sequence model (ETAS)
[Ogata, Y., (1988), Statistical models for earthquake occurrences and residual analysis for point processes,
J. Am. Stat. Assoc., 83, 9–27.] and a physical approach based on the rate- and state-model of fault friction
[Dieterich, J., (1994), A constitutive law for rate of earthquake production and its application to earthquake
clustering, J. Geophys. Res., 99, 2601–2618.]. The models have different strengths that could be combined to
allow more quantitative studies of earthquake triggering. To accomplish this, we identify the parameters that
relate to one another in the two models and examine their dependence on stressing rate. A particular conflict
arises because the rate–state model predicts that aftershock productivity scales with stressing rate while the
ETAS model assumes that it is time independent. To resolve this issue, we estimate triggering parameters for
4 earthquake swarms contemporaneous with geodetically observed deformation transients in various
tectonic environments. We find that stressing rate transients increase the background seismicity rate without
affecting aftershock productivity. We then specify a combined model for seismicity rate variations that will
allow future studies to invert seismicity catalogs for variations in aseismic stressing rates.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Earthquake swarms are time periods of elevated seismicity rate
that lack an obvious mainshock, and they are one of the clearest
signals that many processes in the crust have variations on time scales
of hours to days. The most common time periods of increased
seismicity rate are the aftershock sequences that follow all large
crustal earthquakes and generally decay away according to Omori's
empirical law (Utsu, 1961). The term swarm has been used
qualitatively by seismologists for nearly a century to describe
temporal clusters of earthquakes that are not well described by
Omori's law (Richter, 1958). Swarms are common in volcanic regions
and have been explained as resulting from the stress perturbations
during magma intrusions (e.g., Einarsson and Brandsdóttir, 1980;
Dieterich et al., 2000; Smith et al., 2004) as well as from the
movements of volatiles such as CO2 (e.g., Prejean et al., 2003; Hainzl
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and Ogata, 2005). Similarly, earthquake swarms are common in
regions of aqueous fluid flow such as geothermal areas (Hill et al.,
1975) and during hydrofracture experiments (Audigane et al., 2002;
Shapiro et al., 2005; Bourouis and Bernard, 2007). Thus, a clear
intuition has developed that swarms are driven by aseismic events
that temporarily modify the stress state within the crust. Toda et al.
(2002) recently formalized this hypothesis for a swarm of ~7000
earthquakes in the Izu islands that was associated with a large dike
intrusion. They demonstrated that the seismicity rate varied spatially
in proportion to the variations in the stress rate increase caused by the
magmatic intrusion.

Recently a number of earthquake swarms have been found in
association with times when a fault undergoes a large amount of slip
without radiating seismic waves. These events are often termed slow
earthquakes, silent earthquakes or creep events and require high
quality geodetic data to detect owing to their lack of seismic radiation.
Swarms triggered by such aseismic fault slip have been found in a
number of tectonic regions. Ozawa et al. (2007) found swarms
coincident with repeating slow earthquakes on the subduction zone
thrust interface offshore of central Honshu. In these cases the slow
event typically has a moment magnitude of Mw~6.5 while the largest
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earthquakes in the swarm areMw~4, indicating that the vast majority
of fault motion happens aseismically and only a few small patches fail
seismically. A similar behavior was observed for a continental strike-
slip fault by Lohman and McGuire (2007) in the Salton Trough region
of California, where a swarm of ~1000 Mwb5.1 earthquakes was
triggered by aMw 5.7 slow event. Wolfe et al. (2007) found swarms of
~10–50 earthquakes associated with slow events on a detachment
fault beneath Kilauea's south flank. Similarly a swarm of ~1700
earthquakes in a volcanic region in Japan was also found to be
associated with a much larger aseismic slip transient on reverse faults
(Takada and Furuya, in review). Collectively these studies indicate that
relatively modest earthquake swarms with events in the magnitude
4–5 range often result from much larger aseismic slip transients that
generate microseismicity by loading neighboring regions of a fault
system. Additionally, surveys of seismicity catalogs by Vidale et al.
(2006) and Vidale and Shearer (2006) have found that swarms are
widespread phenomena in California and Japan and often cover an
unusually large area for their cumulative seismic moment, a property
that corresponds well with the low stress drops observed for shallow
aseismic creep events (Brodsky and Mori, 2007).

It is difficult to untangle the contribution of any time-dependent
driving process from an earthquake catalog because of the preponder-
ance of standard earthquake–earthquake triggering (e.g., aftershock
sequences). Given a triggering model that utilizes an aftershock
triggering exponent α, the Gutenberg–Richter parameter b, and an
offsetΔMafter describing themagnitude differencebetween amainshock
and its largest probable aftershock, the branching ration=10−αΔMafterb/
(b−α) describes the average fraction of a catalog consisting of triggered
earthquakes (Helmstetter and Sornette, 2002; Boettcher and Jordan,
2004).Usingvalues ofα≈0.8,b≈1 andΔMafter≈0.9 that are consistent
with southern California seismicity data (Helmstetter, 2003; Helmstetter
and Sornette, 2003), up to roughly 90% of earthquakes in this region are
triggered by other earthquakes. This number, however, is highly
dependent on the value for α, which is likely between 0.8 and 1, and the
parameter ΔMafter can also range from 0.9 to 1.2 (Helmstetter, 2003;
Helmstetter and Sornette, 2003). Yet even with these ranges of values,
around 60–90% of earthquakes in the catalog are aftershocks. Thus, even
when some aseismic process is triggering an elevated rate of seismicity,
that seismicity will generate its own aftershock sequences, which will
ultimately comprise a significant fraction of the earthquake catalog. There
are currently twomain approaches to analyzing seismicity rate variations:
stochasticmodels such as the Epidemic Type Aftershock Sequence (ETAS)
model (Ogata, 1988), and physical models such as the rate- and state-
dependent friction model (Dieterich, 1994).

The ETAS stochastic model is an effective way to detect anomalous
seismicity rates. By modeling earthquake occurrence as a point
process described by just a few optimizable parameters, the model
can detect time periods that are not well described by a stationary
stochastic process (McGuire et al., 2005). Recently, studies have
utilized a space–time version of ETAS to relate non-stationary
seismicity rates to regional stress changes (Ogata, 1998, 2004,
2005). The difficulty with this approach is that it lacks a quantitative
relationship between seismicity rate variations and stress/stressing-
rate variations. However, it has been used to resolve time dependence
of the background triggering rate by binning unusually large earth-
quake swarms into smaller (moving window) time periods that are
assumed to have a stationary background rate within the time
window (Hainzl and Ogata, 2005).

An alternative approach that is being utilized to map seismicity
rate variations directly into stressing rate variations is a physical
model based on rate- and state-dependent friction (Dieterich, 1994;
Dieterich et al., 2000). This model incorporates several properties of
laboratory frictionmeasurements including an Omori-like response to
a step change in stress-level. It has had several successful applications
including retrieving the magnitude of stress steps using laboratory
derived friction parameters (Dieterich et al., 2000) and predicting the
spatial distribution of seismicity rate changes and aftershock sequence
durations based on a geodetically derived model of stressing rate
transients (Toda et al., 2002). However, both these applications
occurred in volcanic regions where aftershock sequences are often
subdued due to high geothermal gradients (Kisslinger and Jones,1991;
Ben-Zion and Lyakhovsky, 2006). In contrast, Toda and Matsumura
(2006) used this method to estimate spatio-temporal stress changes
from seismicity rate changes during a Mw 7.0 slow subduction zone
earthquake in Tokai, Japan. Despite the extremely large magnitude of
the slow event, the stressing rate changes retrieved by the rate–state
inversionwere not clearly distinguishable from other variations in the
area. Some of this lack of resolution likely results from the
contamination of moderate aftershock sequences in the stress vs.
time curves produced by the rate–state inversion algorithm.

We seek to combine the strengths of the ETAS and rate–state
approaches to develop an effective tool to detect anomalous seismicity
rates and relate them to changes in stressing rates caused by physical
processes. There have been recent attempts to combine the two
models of seismicity rate for different purposes. For example, Console
et al. (2006, 2007) combine the twomodels in order to produce a new
model of earthquake clustering that incorporates physical constraints
with a minimum number of free parameters. However, a combined
ETAS/rate–state model that can be used in a single algorithm to detect
anomalous stressing rates from seismicity rates has not been
developed yet. Ogata (2005) demonstrated that even small changes
in stress can cause anomalies in seismicity rate, and so a combined
ETAS/rate–state model of seismicity rate has the potential to be a
highly sensitive detector of transient deformation.

To develop such a combined model of seismicity rate, we first
identify parameters that are related between the two models and
examine their dependence on stressing rate. To clarify the stressing
rate dependence of the aftershock parameters, we analyze data from 4
different earthquake swarms in various tectonic settings. We then
specify a functional form for the seismicity rate in a combined ETAS/
rate–state model, in which aseismically-triggered and coseismically-
triggered components of seismicity rate are independent of one
another. This suggests that an aseismically-triggered seismicity rate
can be isolated from a catalog and used to directly estimate stressing
rate changes associated with transient deformation.

2. Models

In general, the seismicity rate R in a catalog is a function of the
stressing rate S

.
acting on a fault (Dieterich, 1994). Earthquake catalogs

contain seismicity triggered by different underlying mechanisms,
such as earthquake–earthquake interactions, aseismic deformation, or
background plate tectonic motion. Therefore, in our model, we
consider three primary contributions to R:

R x; tð Þ = f ð
:
S Þ = f RA;RC;RTð Þ

where RA represents the seismicity rate triggered by aseismic
processes such as slow slip or dike intrusion, RC reflects seismicity
triggered by other earthquakes (e.g., aftershock sequences), and RT is
triggered by long-term tectonic loading. Because the tectonic
component RT is presumably small if aseismic processes are occurring,
we simply combine it with RA, so that R x; tð Þ≈f RA;RCð Þ.

In order to develop a model that can quantitatively relate
stressing rates to seismicity rates, we need to know the stressing
rate dependence of each of the components of R. Toda et al. (2002)
and Lohman and McGuire (2007) showed that seismicity rates
clearly increase during periods of increased stressing rate caused by
aseismic processes. Both studies found that the increase in earth-
quake rate was approximately equal to the increase in stressing rate
so RA likely scales linearly with stressing rate as predicted by the
rate–state model.



Fig. 1. Calculation of seismicity rates using forward simulation of rate–state model equations for two different stress histories, with Aσ=0.1 MPa. a) Stress histories for two cases:
i) increase in stressing rate by 2 orders of magnitude (blue), and ii) increase in stressing rate by 2 orders of magnitude plus sudden stress changes (earthquakes) (red). b) Stressing
rate histories for both cases. c) Evolution of γ from using Eqs. (3) and (4). d) Seismicity rate estimates obtained from stressing rates using Eq. (2).
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The stressing rate dependence of RC is less certain. The two main
approaches to modeling the change in seismicity rate following an
earthquake (i.e., RC) are the stochastic Epidemic Type Aftershock
Sequence (ETAS) model (Ogata, 1988), which is based on Omori's law
(Omori, 1894), and the physically based rate–state friction model,
which reproduces Omori's law following a sudden stress change
(Dieterich, 1994). In this section we summarize the two models and
compare how they predict RC changes with stressing rate.

2.1. ETAS model

The ETAS model is a point process model that generalizes the
modified Omori law (Omori, 1894; Utsu, 1961; Ogata, 1988). In this
model, every aftershock has some probability of generating its own
aftershocks. Therefore, the seismicity rate at some time t can be obtained
by summing the aftershock sequences produced by each event that has
occurred prior to time t plus a background seismicity rate µ:

R tð Þ = μ +
X
ti V t

Keα Mi −Mcð Þ

t−ti + cð Þp ð1Þ

where c and p are the Omori decay parameters, α is related to the
efficiencyof anearthquakeofagivenmagnitudeatgeneratingaftershocks,
and K reflects the aftershock productivity of a mainshock. These
parameters are generally obtained using maximum likelihood estimation
from the observed times ti andmagnitudesMi of earthquakes in a catalog,
given themagnitude of completenessMc of the catalog (Ogata,1988). The
summation in Eq. (1) is essentially the coseismic component of seismicity
rate (RC), as it contains all the aftershock sequences in the catalog. Because
the ETAS parameters are not explicitly related to stressing rate, RC also is
independent of stressing rate in the ETAS model.

2.2. Rate- and state-dependent friction model

In the rate–statemodel, the seismicity rate R for a givenmagnitude
interval observed on a population of faults governed by rate- and
state-dependent friction can be linked to a stressing rate S
.
through the

following equations that assume normal stress is constant (Dieterich,
1994):

R =
r

γ
:
Sr

ð2Þ

dγ =
dt
Aσ

1 − γ
:
S

� �
ð3Þ

where r is the steady-state seismicity rate for the same magnitude
interval associated with a reference stressing rate S

.
r, S is a modified

Coulomb stress function, γ is a state variable, and A is a fault
constitutive parameter. We assume that the normal stress σ remains
constant, and as a result treat Aσ as a constant frictional parameter
and S

.
as a shear stressing rate.

Using this formulation, given some knowledge of regional back-
ground seismicity and Aσ, the stressing rate can be obtained from an
observed seismicity rate simply by integrating Eqs. (2) and (3)
(Dieterich et al., 2000). Fig. 1 illustrates the relationship between
stressing rate and seismicity rate in the rate–state model. Given a
stress history that involves a change in stressing rate by two orders of
magnitude (Fig. 1a–b, blue), Eq. (3) can be used to calculate the
related change in γ (Fig. 1c, blue), which can then be used in Eq. (2) to
obtain the change in seismicity rate. Fig. 1d demonstrates that
following a change in stressing rate by a factor of 100, a similar
change in seismicity rate occurs after a time lag that is related to the
parameter Aσ.

Now consider a stress history that includes the same change in
stressing rate as well as earthquakes (sudden stress steps) (Fig. 1a–b,
red). Dieterich (1994) derived a solution for γ given a sudden stress
change (Eq. B11 in the 1994 paper):

γ = γ0 exp
−ΔS
Aσ

� �
ð4Þ
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Using both Eqs. (3) and (4), the evolution of γ associated with this
stress history can also be determined (Fig. 1c, red) and Eq. (2) used to
obtain the seismicity rate (Fig. 1d, red).

This simple case shows that the rate–state model predicts that
certain parameters describing aftershock decay change with stressing
rate. For example, consider two of the sudden stress steps (earth-
quakes) shown in Fig. 1b, the first (at time t=100) which occurs prior
to the stressing rate change and the third (at time t=1150) which
occurs well after the stressing rate change. The seismicity rate
following the first earthquake, which occurs during low stressing
rates, takes longer to decay to the background rate than that following
the second earthquake, which occurs during high stressing rates
(Fig. 1d); thus, this characteristic relaxation time, ta, depends on
stressing rate as seen in the Miyake–Jima swarm (Toda et al., 2002).

This case also demonstrates that the change in seismicity rate
immediately following the stress step also varies with stressing rate.
Although the first and second earthquakes both had the same stress
change, the peak seismicity rate is higher for the second earthquake
than for the first. Because the change in seismicity rate ΔR due to the
stress change depends on the change in γ, this is a direct consequence
of Eq. (4). If we define Δγ to be the change in γ due to the stress step
(i.e.,Δγ=γ−γ0), it is easy to see from Eq. (4) thatΔγwill be a function
of γ0 (i.e., the value of γ prior to the stress step). Since the second
earthquake occurs during the higher stressing rate, it has a lower γ0,
and therefore a smaller Δγ and a larger ΔR than the first earthquake
(Fig. 1c). Thus the seismicity rate immediately following a stress step
depends on the stressing rate.

This prediction of the rate–state model can also be shown with a
second simulation. Assuming a constant stressing rate following a stress
step and steady-state seismicity rate prior to a stress step, Dieterich
(1994) used Eqs. (2)–(4) to express the seismicity rate following a
stress step as:

R tð Þ =
r

:
S:
Sr

:
S:
Sr
exp −ΔS

Aσ

� �
− 1

� �
exp −t

ta

h i
+ 1

;
:
S ≠ 0 ð5Þ

where

ta = Aσ =
:
S ð6Þ

is the characteristic relaxation time related to the time it takes for the
seismicity rate to return to background levels. This takes the form of
Omori's law for tb ta.

Eq. (5) can be used to compare the seismicity rate change due to a
uniform stress step during different magnitudes of stressing rate.
Because Eq. (5) is only valid when the seismicity rate prior to the stress
step is at steady-state, we assume that the reference seismicity rate r
(i.e., the seismicity rate prior to the stress step) has already achieved a
steady-state value at each of the stressing rate levels. Therefore, r will
have a different value at each stressing rate (Fig. 2a, dashed lines),
because as Eqs. (2) and (3) demonstrate, the steady-state seismicity
rate scales with stressing rate (Fig. 1). Furthermore, we assume that the
stressing rate before and after the stress step remains constant (i.e.,
S
.
r=S

.
). Given these assumptions, we can use Eq. (5) to predict the
Fig. 2. a) Seismicity rate R calculated with Eq. (5) at different magnitudes of stressing
rate S

.
relative to a background stressing rate S

.
b=0.1 MPa/yr (solid lines), using

ΔS=0.1 MPa and Aσ=0.01 MPa. Colors indicate the stressing rate. Steady-state
seismicity rate r for each stressing rate is also shown (dashed lines). As stressing rate
increases, R increases while ta decreases. b) Cumulative number of events over time
obtained by integrating curves in Fig. 2a. The difference between solid and dashed lines
of similar color represents aftershocks due to the sudden stress change that is present in
the solid curves. c) Number of aftershocks N produced by the uniform stress change at
each of the relative stressing rate values S

.
/S
.
b, relative to number Nb produced at the

background stressing rate. The least-squares fit shows that as stressing rate increases,
the number of aftershocks also increases, indicating that the parameter K is dependent
on stressing rate.
seismicity rate R following a uniform stress step at different magnitudes
of stressing rate relative to some background stressing rate S

.
b, ranging

from 1 to 1000 (Fig. 2a, solid lines). In agreement with the first
simulation, the results show that as the stressing rate increases, the
seismicity rate increases, while ta decreases.
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2.3. Combining the ETAS and rate–state models

To combine the ETAS and rate–state models into a single model
appropriately, we now examine the relationships between parameters
of both models and their dependence on stressing rate. The
parameters we will consider are the ETAS parameters α, p, c, K, and
µ. The dependence of these parameters on stressing rate will
determine the dependence of RC on stressing rate, which in turn will
determine the functional form of R that we seek to establish.

The ETAS parameter α describes the efficiency of an earthquake of
a given magnitude at generating aftershocks. It has no direct
equivalent in the rate–state model, which incorporates no magnitude
dependence in its equations. However, there is an implicit magnitude
dependence in the rate–state model, in that larger earthquakes
increase the stress-levels in a greater volume of the crust than small
ones. Therefore, we assume that α is related to the spatial extent of a
stress step and independent of stressing rate.

Simulations using Eq. (5) show that the ETAS parameter p is
essentially 1 and independent of stressing rate in the rate–state
model. Both theoretical and observational studies also suggest that
this Omori decay parameter is more influenced by factors that are
relatively stressing rate independent, such as heterogeneity in
temperature/heat flow or structure (e.g., Mogi, 1962, 1967;
Kisslinger and Jones, 1991; Utsu et al., 1995). Recently, Helmstetter
and Shaw (2006) have also shown that p can be related to the rate–
Fig. 3.Maps of seismicity used in analysis. a)M≥1.9 events in the Obsidian Buttes region fro
Kilauea region from 2001–2007. Events in the 2005 swarm are shown in magenta. c) M≥2
magenta, events in the 2007 swarm are shown in cyan.
state parameter Aσ and the spatial distribution of the stress field on
a fault. Therefore, as p seems to be more sensitive to longer-term
heterogeneities on a fault, in our model we consider p independent
of stressing rate.

In the rate–state model, the ETAS parameter c can be analytically
related to rate–state parameters and stressing rate (Dieterich, 1994).
In reality, it is difficult to obtain an accuratemeasurement of c because
of the incomplete detection of early aftershocks (Utsu et al., 1995).
Therefore, any dependence that cmay have on stressing rate will most
likely be obscured by this effect, and so we consider c independent of
stressing rate.

The last two ETAS parameters (K and µ) do not have as
straightforward a relationship with stressing rate. The rate–state
model predicts that background seismicity rate (i.e., seismicity not
triggered by an earthquake) depends on stressing rate. As the
stressing rate increases, so does the background seismicity rate
(blue lines in Fig. 1, dashed lines in Fig. 2). The ETAS model on the
other hand assumes that background seismicity rate µ is constant in a
particular time interval.

The ETAS model also assumes that aftershock productivity K is
independent of stressing rate. On the other hand, the rate–state model
predicts that K increases with stressing rate. Therefore, an earthquake
with a given stress drop that occurs during a time of lower stressing
rate will produce fewer aftershocks than if it had occurred during a
time of higher stressing rate.
m1985–2005. Events in the 2005 swarm are shown in magenta. b)M≥1.5 events in the
events in the Boso region from 1992 to 2007. Events in the 2002 swarm are shown in
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The simulations using Eq. (5) demonstrate this behavior. The
seismicity rates associated with the five different stressing rates in
Fig. 2a are integrated to determine the cumulative number of events
for each stressing rate (Fig. 2b). When comparing the case with a
stress step (solid lines) to the case with no stress step (dashed lines),
the difference between the two curves at a given stressing rate is due
to the aftershocks produced by the stress step. We can then compare
the number of aftershocks N produced by uniform stress changes at
the five different stressing rates to the number of aftershocks Nb

produced by the same stress change at the background stressing rate
(Fig. 2c). As the stressing rate increases, the number of aftershocks
produced also increases. For example, an earthquake that occurs at a
stressing rate 1000 times higher than the background stressing rate
produces ~700 times more aftershocks than a similar sized earth-
quake occurring at the background stressing rate when
Aσ=0.01 MPa. The ratio N/Nb thus reflects the increase in aftershock
productivity K predicted by the rate–state model due to the increase
in stressing rate unlike the ETAS model, in which K is not related to
stressing rate. Therefore, the main issues that need to be resolved in
order to build a consistent combined model of seismicity rate involves
ascertaining the dependence of K and background seismicity rate µ on
stressing rate.

3. Data analysis

Many studies suggest that swarms are a response to geodetically
observed increases in stressing rate (e.g., Lohman and McGuire, 2007;
Ozawa et al., 2007). Therefore, by analyzing swarms, we can establish
whether the ETAS parameters K and µ change during periods of high
stressing rates. We use three types of analyses: first, we fit the ETAS
model to a catalog containing a swarm to determine if the triggering
behavior is non-stationary during swarms. Second, we divide the
catalog into pre-swarm and swarm portions, fit the ETAS model to
each and compare the parameter estimates to determine how they
change during swarms. Finally, we compare aftershock counts of a
moderate-sized earthquake that occurred during a stressing rate
Fig. 4. Results of optimization of the ETAS model for the 2005 Obsidian Buttes catalog, compa
of events). The observed data are shown in blue and the ETAS prediction in red. Bottom pan
just prior to the swarm and extrapolated for the remainder of the catalog. Black lines signif
occurs near the beginning of the swarm. (for interpretation of the references to colour in th
transient to aftershock counts of other earthquakes in the catalog to
test the rate–state model prediction that aftershock productivity K
scales with stressing rate.

We examine 4 earthquake swarms that geodetic studies have
linked to changes in stressing rate: the 2005 Obsidian Buttes swarm
(Lohman and McGuire, 2007), the 2005 Kilauea swarm (Wolfe et al.,
2007), and the 2002 and 2007 Boso swarms (Ozawa et al., 2003,
2007). Catalogs for these swarms were obtained from the Southern
California Earthquake Data Center, the Advanced National Seismic
System, and the Japan Meteorological Agency respectively.

3.1. Detection of anomalous seismicity rates

The ETAS model when used as a diagnostic tool can identify time
periods when seismicity rates do not behave as typical aftershock
sequences (Ogata, 1988; McGuire et al., 2005). We apply the method
described in Ogata (2005) by fitting the ETAS model to a catalog that
includes a swarm. We then employ a transformation described in
Ogata (1988) which utilizes the following theoretical cumulative
function:

Λ tð Þ =
Z t

0
R sð Þds ð7Þ

where R is the seismicity rate predicted by the ETAS model (Eq. (1)).
The occurrence times ti in the catalog are transformed into τi=Λ(ti). If
the earthquakes in the catalog are described well by the ETAS model,
then ti will be distributed according to a stationary Poisson process,
and a plot of the actual cumulative number of events vs. the
theoretical number of events (i.e., the transformed time τ) will be
linear. Anomalous seismicity that the ETAS model cannot explain will
appear as deviations from this trend.

3.1.1. 2005 Obsidian Buttes swarm
In August 2005, an earthquake swarm occurred over the course of

two weeks on a continental strike-slip fault in the Salton Trough in
ring the cumulative number of events to the transformed time (ETAS predicted number
els show the magnitudes of the events in the swarm. The ETAS model is optimized until
y the 2σ bounds of the extrapolation. A significant deviation from the ETAS prediction
is figure legend, the reader is referred to the web version of this article.)



Fig. 5. Results of ETAS model optimization for the 2005 Kilauea catalog. See Fig. 4 for
symbol explanation. The ETAS model ceases to adequately fit the catalog early in the
swarm.
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southern California. Lohman and McGuire (2007) concluded that the
swarm was triggered primarily by aseismic fault creep that released
moment equivalent to a Mw 5.7 earthquake and increased the
stressing rate (and seismicity rate) by about a factor of 1000.
Fig. 6. Results of ETAS model optimization for the 2002 and 2007 Boso swarms. See Fig. 4 for
of seismicity that occurs during the swarms, indicating that the ETAS parameters that best
The earthquake catalog used in our analysis consists of events from
1985–2005, with a magnitude of completeness Mc=1.9 (Fig. 3a). The
ETASmodel was optimized through 2005 until just prior to the swarm
and then extrapolated until 2006. The transformed time plot shows
that a significant deviation from the ETAS predicted trend occurs at
the time of the swarm (Fig. 4). More events occurred during the
swarm than the ETASmodel can explainwith the parameters that best
fit the preceding catalog. This suggests that at least one of the ETAS
parameters changes during periods of high stressing rate.

3.1.2. 2005 Kilauea swarm
Slow earthquakes that trigger microseismicity periodically occur

on the south flank of Kilauea Volcano in Hawaii (Cervelli et al., 2002;
Brooks et al., 2006; Segall et al., 2006;Wolfe et al., 2007). In this study,
we focus on a slow earthquake that occurred on 26 January 2005 and
released moment equivalent to a Mw 5.8 earthquake over the course
of hours to days (Brooks et al., 2006; Wolfe et al., 2007).

The catalog we analyze consists of events occurring from 2001–
2007, with a catalog completeness of Mc=1.5 (Fig. 3b). We optimize
the ETAS model from 2001–2005 and extrapolate through the
remainder of the catalog. Again, the results show that a significant
deviation from typical aftershock behavior occurs at the time of the
swarm (blue curve above the black confidence limits in Fig. 5),
suggesting a stressing rate dependence of one or more parameters.

3.1.3. 2002 and 2007 Boso swarms
The Boso peninsula in central Japan has been the site of recurring

slow slip events on the subduction thrust interface in 1996, 2002 and
2007 (Ozawa et al., 2003; Sagiya, 2004; Ozawa et al., 2007). These
events, detected by GPS instruments, lasted on the order of aweek and
were accompanied by earthquake swarm activity. Ozawa et al. (2007)
suggest that the slow slip events are the primary driving process
symbol explanation. For both swarms, the ETAS model again fails to explain the amount
fit the catalog prior to the swarms no longer fit during the swarms.



Table 1
Comparison of maximum likelihood estimates of ETAS parameters before and during
each swarm.

Swarm Pre-swarm MLE (K, µ, α, p, c) Swarm MLE (K, µ, α, p, c)

2002 Boso 0.13, 0.022, 0.56, 1.11, 0.096 0.07, 2.09, 0.09, 1.0, 0.0005
2005 Kilauea 0.28, 0.16, 1.24, 1.21, 0.002 0.96, 0.89, 0.61, 0.92, 0.003
2005 Obsidian Buttes 0.61, 0.031, 0.88, 1.1, 0.001 1.4, 225, 1.05, 1.0, 0.001
2007 Boso 0.20, 0.013, 0.55, 0.88, 0.0004 0.61, 2.4, 1.37, 1.0, 0.0008
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triggering the swarms, similar to the Obsidian Buttes swarm (Lohman
and McGuire, 2007).

Our catalog consists of M≥2 events from 1992 to 2007 (Fig. 3c). To
obtain thebest-fittingparameter estimates for the catalog as awhole, the
Fig. 7. Results of applying the ETAS model only on swarm seismicity from a) the 2005 Obsidia
Boso catalog. In all 4 cases, the ETAS model requires increases in K and µ compared to pre-
ETAS model is optimized from 1992 to February 2007 and extrapolated
through 2008. Due to the short duration of the 2002 swarm, it should
have very little effect on the parameter estimates. The results indicate
that anomalous seismicity rates occurduring the slowslip events in 2002
and2007 that cannot be explained by the ETASmodel (Fig. 6). Again, this
suggests that at least one ETAS parameter depends on stressing rate.

3.2. Fitting ETAS to earthquake swarms

One way to determine which ETAS parameters change during
swarms (i.e., high stressing rate periods) is to fit the ETASmodel to the
pre-swarm portion of the catalog and compare it to ETAS fit to the
swarm alone. Table 1 shows the pre-swarm and swarm estimates of
n Buttes catalog, b) the 2005 Kilauea catalog, c) the 2002 Boso catalog, and d) the 2007
swarm estimates in order to adequately fit the data during the swarm.
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the ETAS parameters for each swarm. In most cases, in order for the
model to converge, pwas held fixed at 1.0. The observed and predicted
cumulative numbers of events for each swarm are shown in Fig. 7a–d.
The poorer quality of the fits could suggest that a time-dependent µ
may be necessary tomore accurately fit the data. For all of the swarms,
the ETAS model finds changes in K by factors of 2–4. However, the
parameter µ increases by 1–3 orders of magnitude during the swarms.
Therefore, with the ETAS model, stressing rate transients appear to
primarily increase the background seismicity rate without increasing
aftershock productivity substantially.

3.3. Comparison of rate–state predictions with observations

A final way to test the stressing rate dependence of K is to look at
moderate sized earthquakes that occur during a swarm. By counting
the number of aftershocks following these earthquakes (in narrow
space–time windows) and comparing to the number of aftershocks
produced by other earthquakes in the catalog (during low stressing
rate periods), we can test the hypothesis that K is stressing rate
dependent. Assuming that the ETAS parameters α, p, and c remain
constant over time, the average number of aftershocks following an
earthquake of magnitude M can be expressed as:

N =
K

1− n
10α M−Mcð Þ ð8Þ

where the branching ratio n=Kb/(b−α) (Helmstetter and Sornette,
2003; McGuire et al., 2005). Therefore, if the ETAS and Gutenberg–
Richter parameters are assumed to remain constant throughout the
catalog, N is primarily a function of the difference between mainshock
magnitude M and catalog completeness threshold Mc, and a plot of the
logarithmof aftershock counts ofmainshocks in the catalogwill be linear
with respect to the mainshock magnitudes (McGuire et al., 2005). In
contrast, the rate–state equations predict a greater productivity (larger
K) during the transient and Eq. (8) will not describe the data well.

Fig. 8 shows the aftershock productivity for the Obsidian Buttes
catalog. Aftershocks in a 1-day time window were counted for
Fig. 8. Aftershocks per mainshock vs. difference between mainshock magnitude and
magnitude of completeness Mc=1.9 for events of Mmain≥4 in the Obsidian Buttes
catalog from 1985–2005 (circles). Aftershocks for each event were counted within a
1 day window. Lines depict lines of constant aftershock parameters, where number of
aftershocks depends on Mmain−Mc. Solid line shows least-squares fit to data; dashed
line shows increase in aftershock productivity predicted by rate–state model for a
stressing rate of 1000 times background stressing rate. The actual number of
aftershocks following the M5.1 mainshock (star) is much less than the number
predicted by the rate–state model (square) and falls on a line consistent with other
mainshocks in the catalog, suggesting that K (i.e., aftershock productivity) is not
stressing rate dependent.
mainshocks with M≥4, occurring sufficiently apart in time so as not
to interact with one another. During the swarm, Lohman and McGuire
(2007) estimated that a stressing rate transient of ~1000 times the
background stressing rate occurred. Therefore, the rate–state model
equations predict that the M5.1 earthquake that occurred during the
swarm should produce almost 1000 times more aftershocks than a
similar sized earthquake occurring at typical stressing rates (Fig. 2c).
However, the actual number of aftershocks observed following the
earthquake was not that large (star in Fig. 8). The aftershock count for
this event in fact plots on the same constant line as the other events in
the catalog, suggesting that K is independent of stressing rate. A
concern is that the lack of increase in K could be due to the incomplete
detection of early aftershocks. However, we have carefully taken the
magnitude of completenessMc into account for each of the catalogs in
our analysis. Moreover, the rate–state model equations and thus
predictions are defined for a givenmagnitude interval that we assume
to be M≥Mc (Dieterich, 1994). Therefore, undetected aftershocks are
unlikely to be the primary reason for the lack of an increase in K.

3.4. Summary

We have analyzed 4 different earthquake swarms to examine the
dependence of the ETAS parameters K and µ on stressing rate. The
ETAS model identified the swarms as anomalous seismicity that
cannot be fit with the same parameters as the rest of the catalog,
suggesting that at least one of the parameters changes with stressing
rate. However, when the ETAS model was fit to the swarms alone,
estimates for K changed very little compared to the pre-swarm fit
while the estimates for µ increased by several orders of magnitude.
Finally, the aftershock count following the M5.1 Obsidian Buttes
earthquake revealed no substantial increase in K during the
heightened stressing rate associated with the swarm. Together these
results suggest that stressing rate transients increase the background
seismicity rate µ without causing a substantial increase in aftershock
productivity K.

4. Discussion and conclusion

The primary conflict between the ETAS and rate–state models of
seismicity rate lies in the dependence of aftershock productivity on
stressing rate. Our results suggest that, contrary to rate–state model
predictions, the aftershock productivity is unaffected during stressing
rate transients, which instead increase the background seismicity rate.
The key to this discrepancy lies in the evolution of the rate–state
variable γ. In the rate–state model, an increase in seismicity rate
implies that γ has evolved to a new steady-state value (Eq. (2)). Our
simulations show that with this increase in seismicity rate comes an
increase in aftershock productivity (Fig. 2). Therefore, the lack of an
increase in productivity suggests that the state variable γ has not
evolved. Thus, there is a fundamental conflict between the heightened
seismicity rate and the unchanged aftershock productivity we have
observed in our analysis of swarms.

An additional complication is that the evolution of γ also depends
on the frictional parameter Aσ (see Eq. (3)). This parameter controls
how quickly γ evolves in response to changes in stressing rate, and
therefore ultimately affects the aftershock productivity of a stress step.
We can again use Eqs. (2)–(4) to explore in detail how the change in
aftershock productivity with stressing rate varies with Aσ. We
compare two stress histories, one in which an earthquake
(ΔS=1 MPa) occurs during a background stressing rate of 0.2 MPa/
yr, and one in which a similar stress step occurs three days after a
stressing rate transient begins. We use Eqs. (3) and (4) to calculate γ
for each stress history and Eq. (2) to obtain seismicity rates that can
then be integrated to estimate the number of aftershocks produced by
each earthquake. Fig. 9 compares the number of aftershocks N2

produced by an earthquake that occurs three days after a stressing rate



Fig. 9. Change in aftershock productivity N2/N1 vs. Aσ following various magnitudes of
stressing rate jumps relative to the background stressing rate of 0.2 MPa/yr (symbols),
for an earthquakewithΔS=1MPa. The ratio predicted by the ETAS fits in Table 1 for the
Obsidian Buttes swarm is indicated. Values for Aσ are also shown, given laboratory
values of A for quartz (Chester and Higgs, 1992) and granite (Blanpied et al., 1998) in
hydrostatic conditions at a depth of 4 km for temperatures ranging from 300 °C to
600 °C. For any given range of Aσ, the rate–state model cannot satisfy both the increase
in seismicity/stressing rate and the lack of change in aftershock productivity observed
during the Obsidian Buttes swarm.
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transient begins to the number of aftershocks N1 produced by an
earthquake that occurs during the background stressing rate, using
different values of Aσ ranging from 10−3 to 3 MPa. The ratio N2/N1

essentially gives the expected increase in aftershock productivity K
during a stressing rate transient. Fig. 9 demonstrates that the
predicted change in aftershock productivity is highly dependent on
the value of Aσ used in the rate–state equations.

Catalli et al. (2008) recently examined the role of Aσ in modeling
seismicity rate variations and found that it controlled the total number
of aftershocks triggered by an earthquake primarily in twoways. First,
Aσ controls the instantaneous change in γ (and therefore seismicity
rate) due to a sudden stress step (Eq. (4)), so that as Aσ increases, the
instantaneous change in seismicity rate decreases. Second, the
duration of aftershock sequences, ta, also depends on Aσ; as Aσ
increases, ta increases (Eq. (6)). The simulations in this study demon-
strate that these two effects are also dependent on stressing rate
(Figs. 1–2). As stressing rate increases, the change in seismicity rate
due to a stress step increases, but the aftershock duration ta decreases.
Therefore, the range of aftershock productivity behavior seen in Fig. 9
reflects the tradeoffs in how these two effects are controlled by both
Aσ and stressing rate.

To compare this predicted behavior with a real-life example, for
the 2005 Obsidian ButtesM5.1 earthquake, which occurred three days
after an increase in stressing rate of almost three orders of magnitude,
we found N2/N1~1 from aftershock counts (Fig. 8). Additionally, the
ETAS model fitting resulted in an increase in background seismicity
rate by over three orders of magnitude (Table 1), which agrees with
the observed increase in seismicity rate. Fig. 9 shows that the rate–
state model cannot satisfy all of these observations in a small range of
Aσ. Typical estimates of Aσ from earthquake catalogs range from 10−3

to 10−1 MPa (e. g., Gross and Kisslinger, 1997; Harris and Simpson,
1998; Toda et al., 1998; Belardinelli et al., 1999; Console et al., 2007). In
this range of Aσ, γ evolves quickly, so that jumps in stressing rate
cause jumps in seismicity rate, but also cause jumps in N2/N1 (i.e.,
aftershock productivity). Laboratory measurements of A for quartz
and granite (Chester and Higgs, 1992; Blanpied et al., 1998) result in
higher values of Aσ (10−1 to 1 MPa) for faults under hydrostatic pore
pressure at a depth of 4 km. At these values of Aσ, although aftershock
productivity does not change with the jump in stressing rate, neither
does the seismicity rate, because γ has not evolved to any great extent.
We find that the increase in seismicity rate and the lack of change in
aftershock productivity observed in the Obsidian Buttes swarm cannot
both be satisfied simultaneously using the rate–state model, because
the two observations imply fundamentally different things about
whether γ has evolved or not. Therefore, some caution is necessary
when applying the rate–state inversion algorithm to obtain stressing-
rate changes from earthquake catalogs.

Given our observations of the dependence of the ETAS parameters
on stressing rate, we can now specify a combined ETAS/rate–state
model of seismicity rate to detect stressing rate transients from
earthquake catalogs. As described earlier, the seismicity rate R in a
catalog is a function of an aseismically-triggered component RA and an
earthquake–earthquake triggered component RC. While RA is clearly
related to stressing rate, the relationship between RC and stressing
ratewas unclear. Our results suggest that K is independent of stressing
rate for a particular region, and so RC is independent of stressing rate.
R can then essentially be separated into the aseismic component RA
and the coseismic component RC (represented by the ETAS model):

R = RA + RC = RA +
X
ti V t

Keα Mi −Mcð Þ

t−ti + cð Þp ð9Þ

Then RA is effectively a time dependent version of the ETAS
parameter µ (see Eq. (1)), and to obtain it, one can simply subtract the
ETAS-predicted RC from the observed rate R. The residual RA can then
be directly related to a stressing rate S

.
A caused by aseismic

deformation through the rate–state model equations:

RA = R − RC = R −
X
ti V t

Keα Mi −Mcð Þ

t−ti + cð Þp =
r
:
Srγ

ð10Þ

dγ =
dt
Aσ

1− γ
:
SA +

:
Sb

� �h i
ð11Þ

where S
.
b is the background tectonic stressing rate. The use of the ETAS

model to estimate RC reduces the impact of aftershock sequences on
the estimation of the aseismically-triggered seismicity rate, while the
rate–state model establishes the relationship between aseismically-
triggered seismicity rates and stressing rates.

There are a number of caveats to keep in mind about this model.
First, a fundamental assumption this model makes is that the ETAS
parameters K, α, c and p are constant in space and time and can
describe all coseismically-triggered seismicity in a catalog completely.
These parameters can in fact vary from sequence to sequence, as well
as place to place (Ogata, 1998). However, our data analysis suggests
that at least within relatively small and homogeneous regions, these
parameters will remain constant, and therefore changes in the
observed seismicity rate will be primarily mapped into changes in
RA. Second, practical applications of this model will have to be careful
about catalog completeness, to ensure that undetected events such as
early aftershocks do not affect the results. An additional point to bear
in mind is the need to smooth the seismicity rates over some time
window. Currently there is no way to estimate RA at arbitrarily fine
time scales, so algorithms will need to be developed to smooth these
estimates in an optimal way. These issues will need to be considered
when this model is implemented in an algorithm to invert for
stressing rate variations, but the studies of Toda et al. (2002) and
Lohman andMcGuire (2007) suggest that our model is correct at least
at the order of magnitude level. To verify the rate–state equations for
background rate at a higher level of precision would require high
sample-rate geodetic measurements (e.g., strain- or tiltmeters).
However, to first order, our model provides a simple and direct way
to quantitatively relate aseismic stressing rate transients to seismicity
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data and will allow future studies to invert seismicity catalogs to
detect stressing rate variations caused by transient aseismic processes.
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