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Abstract A data assimilative ocean circulation model is used to hindcast the Gulf of Maine [GOM) circula-
tion in spring and summer 2010. Using the recently developed incremental strong constraint 4D Variational
data assimilation algorithm, the model assimilates satellite sea surface temperature and in situ temperature
and salinity profiles measured by expendable bathythermograph, Argo floats, and shipboard CTD casts. Vali-
dation against independent observations shows that the model skill is significantly improved after data
assimilation. The data-assimilative model hindcast reproduces the temporal and spatial evolution of the
ocean state, showing that a sea level depression southwest of the Scotian Shelf played a critical role in shap-
ing the gulf-wide circulation. Heat budget analysis further demonstrates that both advection and surface
heat flux contribute to temperature variability. The estimated time scale for coastal water to travel from the
Scotian Shelf to the Jordan Basin is around 60 days, which is consistent with previous estimates based on in
situ observations. Our study highlights the importance of resolving upstream and offshore forcing condi-
tions in predicting the coastal circulation in the GOM.

1. Introduction

The Gulf of Maine [GOM) encompasses a coastal area of northeastern North America between Nova Scotia
in the northeast and Cape Cod in the southwest [Figure 1). The region is dominated by a cyclonic circulation
[e.g., Bigelow, 1927; Beardsley et al., 1997] that is influenced by both local forcing such as wind, heat flux,
river discharge [Brown and Irish, 1992; Brooks, 1994; Keafer et al., 2005], tidal rectification [Lynch et al., 1996,
1997] and upstream and deep-ocean forcing [Smith,1983; Smith et al., 200l, 2012]. Cold and fresh Scotian
Shelf Waters (SSW) enter the gulf from the northeast with an annual mean transport of �0.14 Sv [e.g., Chap-
man and Beardsley, 1989; Smith, 1983], and warm slope waters can enter the GOM through the Northeast
Channel [e.g., Townsend et al., 2010; Pettigrew et al., 2011].

Numerical modeling has long been used to advance the understanding of the GOM circulation dynamics
and variability. Earlier modeling studies have focused on various aspects of GOM circulation, such as clima-
tological mean states [Lynch et al., 1997; Xue et al., 2000], or synoptic to seasonal scale hindcasts [Hetland
and Signell, 2005; He and McGillicuddy et al., 2008; Li et al., 2009]. In these studies, ocean models were solved
as initial and boundary-value problems (so called ‘‘forward’’ model), and additional observations were used
only for model validation.

A few inverse modeling studies used coastal sea level and velocity observations in the GOM and interior
regional seas [Signell et al. 1994; Lynch et al., 1998; Lynch and Hannah, 2001; He et al., 2005; Aretxabaleta
et al., 2009] to refine model open boundary conditions, which in turn help to improve predictive skill. In
these examples, both surface forcing and model initial conditions were known and assumed to be error
free; the open boundary condition was refined using local observations. Recent advancements in 4-
dimensional variational data assimilation (4D-Var) techniques [Powell et al., 2008; Broquet et al., 2009a,
2009b; Moore et al., 2011a, Arango et al., 2011; Matthews et al., 2012; Chen et al., 2014] provide a major step
forward. They allow observations to be used to constrain models by refining boundary conditions, initial
conditions, and surface forcing, and therefore hold a great promise in realistically simulating coastal ocean
state variables.
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In summer 2010, anomalous
hydrographic conditions
were noted in the Gulf of
Maine. Observational evi-
dence suggested more Sco-
tian Shelf Water (SSW) and
Slope Sea waters entered
the gulf [McGillicuddy et al.,
2011]. Changes in gulf-wide
hydrography were accompa-
nied by a weakened coastal
flow in the western GOM,
especially in the month of
June [Li et al., 2014a]. Model-
ing coastal circulation dur-
ing this particular time
period using the forward
regional ocean model is very
challenging because of defi-
ciencies in the initial condi-
tions, boundary conditions,
and surface forcing of the

model. Herein we utilize local observations, gulf-wide ship surveys, and satellite data in the 4D-
Varframework to perform a data assimilative (DA) model hindcast for spring and summer 2010. The skill of
DA hindcast in reproducing the anomalous water mass and coastal circulation is evaluated by comparing
independent observations that are not assimilated. The processes that lead to the anomalous water mass
and circulation are then diagnosed and quantified.

The remainder of the paper is organized as follows. Section 2 introduces our regional forward model, DA
system and observations being used. Section 3 presents DA hindcast results and its comparisons with inde-
pendent observations. In-depth discussions of coastal circulation dynamics and hydrographic evolution in
spring and summer 2010 are given in section 4, followed by a summary in section 5.

2. Data and Methods

2.1. Model Configuration
The GOM circulation hindcast was performed using the Regional Ocean Modeling System (ROMS) [Haidvo-
gel et al., 2008; Shchepetkin and McWilliams, 2005]. ROMS employs split-explicit separation of fast barotropic
and slow baroclinic modes, and is formulated in vertically stretched terrain-following coordinates. Details of
the GOM ROMS setup are given in He et al. [2008]. Briefly, for the hydrodynamic open boundary conditions
(OBCs), a multinested configuration was implemented to downscale global data assimilative Hybrid Coordi-
nate Ocean Model (HYCOM/NCODA, http://hycom.rsmas.miami.edu/dataserver) solutions to a shelf-scale
ROMS model [Chen et al., 2014; Chen and He, 2014] and subsequently to the GOM ROMS model via a one-
way nesting approach. The shelf-scale ROMS has a spatial resolution of 10 km (5 km) in the alongshore
(cross-shelf) direction, and 36 vertical levels that have higher resolution near the surface and bottom to bet-
ter resolve boundary layers. The method of Marchesiello et al. [2001] was applied to prescribe boundary val-
ues of tracers and baroclinic velocity. For the free surface and depth-averaged velocity boundary
conditions, the method of Flather [1976] was used with the external values provided by HYCOM. The Mellor
and Yamada [1982] closure scheme and the quadratic drag formulation were applied to compute the verti-
cal turbulent mixing and the bottom friction specification, respectively.

The GOM ROMS has a spatial resolution of 6 km (4 km) in the alongshore (cross-shelf) direction, and 36 ver-
tical levels. Because the current implementations of ROMS 4D-Var tangent-linear and adjoint models do not
allow for radiation boundary conditions, clamped boundary conditions (for 3D momentum and tracers)
were used with values defined by the shelf-wide ROMS model. We employed a 6-grid point sponge layer

Figure 1. Model bathymetry for the Gulf of Maine (GOM) 5 km model. Black dashed lines represent
the 200 m isobath. Important geographic locations are also labeled, including the Bay of Fundy
(BOF), and Northeast Channel (NEC). Black dots indicate the initial locations for particle release to
quantify the time scale for transport from the Scotian Shelf to Jordan Basin.
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(using viscosity values at the boundary that were five times higher than values in the model interior) at all
three open boundaries to alleviate any spurious wave reflections produced by the clamped conditions.
Within the sponge layers, nudging was applied to relax temperature, salinity to the shelf-scale ROMS solu-
tions over a time scale of 4 days. Along the open boundaries, we also superimposed M2 tidal sea level and
depth-averaged velocity fluctuations using harmonics derived from an ADCIRC simulation of the western
Atlantic [Luettich et al., 1992].

Surface atmospheric forcing, including cloud fraction, precipitation, surface pressure and humidity, air tem-
perature, surface wind, and shortwave radiation were obtained from the National Center for Environmental
Prediction (NCEP), North America Regional Reanalysis (NARR). Spatial and temporal resolution of these forc-
ing fields are 32 km and 3 h, respectively. They were applied in the standard bulk flux formulation [Fairall
et al., 1996, 2003] to derive wind stress and net surface heat flux. To further constrain the net surface heat
flux, we followed the same approach used in He and Weisberg [2003] to relax the modeled SST field to
NOAA Coast Watch daily, 1/108 cloud-free SST product with a time scale of 3 days. Fresh water runoff from
five major rivers was also prescribed. These include the U.S. portion of the St Johns River, the Penobscot
River, the Kennebec River, the Androscoggin River, and the Merrimack River. For each of them, United State
Geological Survey (USGS) real-time river runoff measurement was used to specify freshwater volume
transport.

The hindcast experiment focused on a three and a half month period from 1 April to 18 July 2010. The non-
data assimilative forward model simulation was run for six and half years from 1 February 2004 to 1 August
2010 to provide the background state for the DA experiment. The GOM forward solutions were compared
against coastal sea level observations, as well as moored T/S profiles and velocity measurements. The low
frequency circulation variability was generally well captured by the model, as demonstrated by earlier stud-
ies [e.g., He et al., 2008; Li et al., 2009; Li et al., 2014b]. However, the anomalous hydrographic conditions in
2010 [McGillicuddy et al., 2011] were not well simulated by the HYCOM model, nor by subsequent shelf-
scale ROMS and GOM ROMS simulations—thus the need for DA.

2.2. 4D Variational Data Assimilation System
The ROMS 4D-Var system includes the nonlinear forward model (NLROMS), the tangent linear model
(TLROMS) and its adjoint model (ADROMS). The system provides tools for conducting various types of
model prediction and analysis [Moore et al., 2004; Di Lorenzo et al., 2007; Powell et al., 2008; Broquet et al.,
2009a, 2009b; Moore et al., 2011b; Chen et al., 2014]. The ROMS incremental strong constraint 4D-Var
method is based on the incremental formulation described by Weaver et al. [2003]. A brief overview of this
method is given below to aid discussions in later sections. More details on its implementation in ROMS can
be found in Powell et al. [2008] and Moore et al. [2011a].

The ROMS prognostic variables are composed of: sea surface displacement g, potential temperature T,
salinity S, and horizontal velocity (u, v). When the primitive equations are discretized and arranged on
the ROMS grid, the individual grid point values at time ti define the components of a state vector x (ti)
5 (T, S, g, u, v)T, where superscript T denotes vector transpose. The state vector is propagated forward
in time by the discretized nonlinear model, subject to surface forcing conditions f ðtiÞ for momentum,
heat and freshwater fluxes, and lateral open boundary conditions bðtiÞ. The state vector evolves
according to

xðtiÞ5Mðti; ti21Þðxðti21Þ; f ðtiÞ; bðtiÞÞ (1)

where Mðti; ti21Þ represents NLROMS acting on xðti21Þ, subject to forcing f ðtiÞ and boundary conditions b
ðtiÞ during the time interval [ti; ti21].

The goal of 4D-Var is to compute the best estimate of the model state, also referred to as the analysis
or posterior, namely xa (t). It minimizes, in a least-squares sense, the difference between the model
and the observations. The solution x(ti) of NLROMS depends upon the choice of initial condition x(t0),
boundary conditions b(t) and surface forcing f (t), all of which are subject to errors and uncertainties.
As such, x(t0), b(t) and f (t) are referred to as control variables, and the problem of 4D-Var is reduced to
identifying the appropriate combination of adjustments to control variables that yield the best esti-
mate xa(t).
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According to Courtier [1997], the control variable increment is introduced as

dz5ðdxðtoÞT ; df T ðt1Þ; :::; df T ðtkÞ; ::; dbTðt1Þ; :::; dbT ðtkÞ; :::ÞT (2)

which describes the increments of all control variables. In the incremental 4D-Var approach, we seek to min-
imize the quadratic cost function J5Jb1Jo, given by

Jb5
1
2

dzT D21dz (3)

Jo5
1
2
ðGdz2dÞT R21ðGdz2dÞ (4)

where G is tangent linear model interpolated onto the observational space d5yo-HðxbðtÞÞ are the innova-
tion vectors of length Nobs, where yo are observations and H is an operator that samples the nonlinear
model trajectory at observational locations. D and R are the model background and observation error covar-
iance matrices that will be discussed later. We seek an optimal solution for the increment to the control vari-
able dz in equation (2), for which the total cost function J reaches a minimum value and the gradient of J
vanishes. The optimal increment, referred to here as dza, is computed iteratively by solving a sequence of
linear least squares minimizations (inner loops), repeated with periodic updates of G (outer loops). In ROMS
4D-Var a conjugate-gradient (CG) algorithm based on Fisher [1998] is used to achieve the minimization. The
minimization procedure is terminated when jjrJjj � e, where e is the user-defined standard threshold for
minimization. This typically requires a large number of iterations that are computationally prohibitive, so
the numbers of outer and inner loops are fixed to yield a good estimate of the minimum J [e.g., Broquet
et al., 2009a]. During each inner loop, TLROMS is used to propagate the increments forward in time to evalu-
ate (4), and ADROMS yields rJðdzÞ, which is used by the CG algorithm to identify the minimum of J. In this
study, the ROMS 4D-Var was allowed to adjust the initial conditions, boundary conditions, and surface
forcing.

Zavala-Garay et al. [2012] compared the differences of tangent linear model and nonlinear integrations for an
ensemble of slightly different initial condition to estimate the time over which tangent linear assumption is
valid. It was found that the tangent linear assumption can be valid over a range of window length (1–10 days),
a range that is confirmed by various other DA experiments [Matthews et al., 2012; Arango et al., 2011; Powell
et al., 2009]. For our experiment, we followed a similar DA set up of Chen et al. [2014] and used 3 day data
assimilation windows that sequentially span the entire analysis period. At the beginning of each assimilation
window, the initial condition derived from the last snapshot of previous DA window (or specified for the first
window) is used to compute a forecast with NLROMS. This forecast provides the background trajectory, the
DA ‘prior’. If observations are available in the current assimilation window, then the ROMS 4D-Var inner loop
starts with CG algorithm to yield an estimate of optimal increment dza, which is used to adjust control varia-
bles. The adjusted control variables are then used to compute the model trajectory after all outer and inner
loops are completed within the assimilation window, the DA ‘posterior’ trajectory. Previous results suggest
that the final cost function was similar irrespective of ways of combination of inner and outer loops [Powell
et al., 2008; Broquet et al., 2009b]. In our case, we chose 1 outer loop and 20 inner loops for each DA window.
We found that 20 loops are sufficient to yield a reasonable estimate of the minimum of J.

2.3. Assimilated Data
Various in situ and satellite-based observations were assimilated in this study, including:

2.3.1. NOAA CoastWatch Blended SST
The SST product (coastwatch.noaa.gov) is a blended product of SST observations from GEOS, AVHRR and
MODIS satellites. This product is available daily from July 2002 to present with a spatial resolution of 10 km.
As in Chen et al. [2014], an observational error of 0.48C was chosen in this study.

2.3.2. In Situ Temperature and Salinity Time Series
These hourly profile data were measured with sensors on moorings of the Gulf of Maine Ocean Observing
System (now part of the Northeast Coastal Ocean Observation System NERACOOS, http://www.neracoos.
org, e.g., Pettigrew et al. [2011]). Temperature and salinity profiles from buoys F, I, M and N (Figure 2) were
assimilated at 4 h intervals. Additional hydrographic data quality-controlled and archived by the UK Met
Office Hadley Center (http://hadobs.metoffice.com/en3/data/EN3_v2a/) [Ingleby and Huddleston, 2007] were
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assimilated. These observations are derived from a variety of instruments and platforms, including expend-
able bathythermographs (XBTs), Argo floats, opportunistic surface themistor temperature measurements,
and T/S profiles from the Global Temperature Salinity Profile Program (GTSPP). In this study, we used 0.18C
and 0.03 as the measurement errors for in situ temperature and salinity, respectively.

2.3.3. Shipboard CTD Data
CTD casts were collected during three GOMTOX surveys in 2010, including R/V Oceanus 465 (1–10 May), R/V
Endeavor 460 (27 May to 3 June), and R/V Oceanus 467 (30 June to 8 July). CTD profiles ranged from 2 to

Figure 2. Observations assimilated into the GOM 4DVAR system: (a) Blended SST for 1 April 2010; (b) NERACOOS temperature observations at 1 m at 0:00Z 1 April 2010; Shipboard CTD
observed (c) surface temperature for 1–10 May 2010, and (d) surface salinity for 28 May to 3 June 2010; (e and f) the locations for surface temperature and salinity observations collected
by UK Met Office during 1 April to 18 July 2010. All temperature observations are in 8C.
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200 m (or near the bottom for water depths less than 200 m), and we averaged all CTD data into 5 m bins.
As for other in situ profile data, we used 0.18C and 0.03 as the observational errors for temperature and
salinity, respectively.

All observations were combined and averaged respectively to form ‘‘super observations,’’ so that within
each model grid cell and at each model time step, each state variable has only one observational realiza-
tion. This procedure significantly reduces data redundancy, and the standard deviation of observations that
contribute to each ‘‘super observation’’ was used as a measure of the error of representativeness. Given the
uncertainties of altimetry data in coastal settings and the potential aliasing issue associated with the strong
tidal flow in the GOM, we did not assimilate SSH data into the model. Previous work by various colleagues
showed that the assimilation of along-track SSH is successful at various coastal seas, for example, off the
Oregon coast [Kurapov et al., 2011], for the Middle Atlantic Bight (http://marine.rutgers.edu/�wilkin/wip/
espresso/espresso.html). Assimilation of SSH in such a coastal region with high tides such as GOM and BOF
system remains a topic to be explored in the near future.

Example distributions of super observations of SST, UK MET office T/S profiles, NERACOOS buoy T/S, and
ship CTD observations are shown in Figure 2. SST on the first day of DA cycle (1 April 2010) is shown, along
with positions of all available in situ temperature and salinity profiles over the �110 day study period. The
temporal distribution of super observations (Figure 3) indicates that the majority of observations feeding
the DA system are satellite observed SST, which have a total of 2,83,050 data points. In situ NERACOOS
buoy T/S profiles contribute a total of 11,754 observations. Shipboard CTD casts have a total of 15,462
observations. While the T/S profile data are less in number, they provide vital subsurface information to con-
strain model hydrodynamics.

2.4. Data Assimilation Setup
The model background error covariance matrix B determines the way that observational information is
propagated to unobserved variables. Therefore proper definition of B has critical influence on the data assim-
ilation performance. B contains the initial condition background (or prior) error covariance matrix Bx, the
open boundary condition background error covariance matrix Bb, surface forcing background error covari-
ance matrix Bf. Each error covariance matrix can be expressed as B5

P
C
P

, where
P

is the diagonal matrix
of error standard deviations, and C is a univariate correlation matrix. The main source of background error is

Figure 3. Temporal evolution of observation counts within each 3 day data assimilation window during 1 April to 18 July 2010.

Journal of Geophysical Research: Oceans 10.1002/2014JC010492

LI ET AL. GULF OF MAINE DATA ASSIMILATION MODELING 6

http://marine.rutgers.edu/~wilkin/wip/espresso/espresso.html
http://marine.rutgers.edu/~wilkin/wip/espresso/espresso.html
http://marine.rutgers.edu/~wilkin/wip/espresso/espresso.html


the model bias and spatial mismatch
from observations. In this study, the
standard deviation

P
is computed on a

monthly. For each month,
P

is com-
puted based on the temporal standard
deviation of the corresponding detided
12 hourly GOM forward simulation solu-
tions over 7 year period (2004–2010)
during that specific month. The univari-
ate correlation matrix is further factor-
ized as C5KL1=2

v L1=2
h W21LT=2

v LT=2
h K,

where K is a matrix of normalization
coefficients, Lv (Lh) is the vertical (hori-
zontal) correlation functions, and W is
the diagonal matrix of grid volumes
[Moore et al., 2011a]. The correlation
matrices, Lv and Lh, with their associated
normalization factors K, were computed
as solutions of diffusion equations fol-
lowing Derber and Rosati [1989] and
Weaver and Courtier [2001]. The length
scales chosen for Lv and Lh represent
the decorrelation scales for a typical
increment, and are currently assumed to
be homogenous and isotropic. In our
setup, the decorrelation length scales
used to model the Bx were 50 km in the
horizontal and 30 m in the vertical for all
state variables. The correlation lengths
of state variables for Bb were chosen to
be 100 km in the horizontal and 30 m in
the vertical. The horizontal correlation
scales for Bf were set as 100 km for
background surface tracer and momen-
tum fluxes. Those values are comparable
with Moore et al. [2011b] and Chen et al.
[2014] and are reasonable since our
focus in on the gulf-wide coastal circula-
tion in the GOM.

3. Results

3.1. Cost Function Reduction
The performance of the GOM 4D-Var system can be first evaluated by the reduction of the cost function
(Figure 4). During the first assimilation window (1–4 April 2010), the total cost function is effectively reduced
in the first 7 inner loops, with reductions ranging from more than 30% to about 5%. After the 16 inner loops,
the reduction of cost function stays below 5% and approaches zero in the 20th loop, suggesting that 20
inner loops are sufficient to yield a good minimization of cost function. The theoretical minimum value Jmin

of total cost function J would have a mean of Nobs/2 [Weaver et al., 2003], in which Nobs is the number of
assimilated observations in each window. In our case, after 20 loops, the cost function is indeed asymptotic
near the theoretical value. The total cost function (Figure 4) in the last assimilation window (15–18 July
2010) is smaller than that in the first window. The final value of J also approaches the Jmin, indicating a
good fit to the observations. Overall, a reduction of �90% of the total cost function is achieved in window 1
and window 36, respectively. The fact that the final nonlinear cost function approximately coincides with J

Figure 4. 4DVAR cost function (J) as a function of number of iterations of
inner loops for (a) the first assimilation window (1–4 April 2010), and (b) last
assimilation window (15–18 July 2010). Solid line with open circles is the total
cost function (J), and dash dotted line is the background cost function (Jb).
Theoretical minimum cost function (Jmin5Nobs/2) is shown with a solid dashed
line, and the cross represents nonlinear model cost function (JNL) after data
assimilation.
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value indicates the choice of using 3 day as the assimilation window for tangent linear approximation is
reasonable.

The behavior of the cost function depends on both D and R (equations (3) and (4)). In our DA experiments,
the observational cost function Jo is much larger than the background cost function Jb (Jo � 10 Jb, Figure 5).
By the 20th iteration, both J and Jb approach asymptotic values, achieving a balance between departures
from the model background state and fitting the observations [e.g., Broquet et al., 2009a]. Sensitivity experi-
ments show that the termination of DA at 20th loop prevents excessive divergence of the model from the
basic state while still ensuring a good fit to observations. The overall performance of the cost function dur-
ing the hindcast period shows our choice of background error and observational errors are appropriate.

3.2. Effectiveness of the 4D-Var Algorithm
3.2.1. Surface Performance
The forward model contains large root mean square errors (RMSEs) in SST in regions near Nantucket Island,
Georges Bank, the eastern GOM, and the BOF where there is strong tidal mixing (Figure 5a). The RMSE is sig-
nificantly reduced after data assimilation (Figure 5b). The maximum RMSE value of the posterior solution is
less than 38C (as opposed to a maximum of 68C in the forward simulation). The performance of DA system
was also evaluated in time series of spatial RMSE, based on model realizations at all assimilated observation
locations. As shown in Figure 5c, the RMSE between the forward model and observations ranges from 1.58C

Figure 5. Spatial distribution of the temporal SST root mean square error (RMSE) between observations and (a) the forward model solution and (b) the DA posterior solution. Temporal
evolution of the SST RMSE (c) and bias (d) for the forward model, the prior, and DA posterior.
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to more than 38C. By assimilating surface SST data, the RMSE was effectively reduced throughout the region.
The DA prior RMSE is around 1.58C, and the DA posterior SST RMSE is less than 18C.

In addition to RMSE, we also computed the model-observation error bias to provide more specific informa-
tion on whether the model overestimates or underestimates observations. The forward simulation has
�1.58C bias, overestimating SST throughout the observational period (Figure 5d). This bias is reduced to
near zero in the DA posterior simulation. We note that in some cases, the DA posterior had worse RMSE/
bias than the prior. For instance, the posterior RMSE on 13 April and 13 July is slightly larger than the prior.
To understand why this can be the case, it is important to remember that 4D-Var is minimizing the overall
misfit between the model and observations. In some circumstances, the overall minimization can lead to
degradation of individual components of the fit. Such situations can be exacerbated by inconsistency
among assimilated data sets (satellite SST versus CTD-based temperature) and differences in observational
errors among state variables (temperature versus salinity). In addition, we used blended SST data to assimi-
late into the modeling system. Blending microwaved and infrared (IR) SST data enables greater coverage
and higher accuracy than IR only SSTs, but current objective-interpolated SST does not completely eliminate
cloud contamination inherent to IR SSTs. Therfore, it is possible that its observational error can be greater
than that is used in the DA (0.48C). Nevertheless, over the course of the simulation period, the DA posterior
solutions provide realizations of surface temperature that are much better overall than the forward model
and the DA prior.

3.2.2. Subsurface T/S Statistics
The effectiveness of 4D-Var data assimilation was further evaluated against subsurface hydrographic obser-
vations. Near the sea surface, the forward solution has a temperature bias of 28C (Figure 6a), which is
roughly one degree less than that for the surface based on satellite data. The temperature bias decreases
with depth and becomes negative around � 50 m. By 90 m, the temperature bias exceeds 228C. The verti-
cal distribution of temperature bias suggests the forward model overall overestimates (underestimates)
observed temperature in upper (lower) water column. Data assimilation significantly reduces these biases.

Figure 6. (top) Vertical profiles of (a) temperature and (b) salinity bias between assimilated observations, forward and DA posterior model solutions. (bottom) Temporal evolution of sub-
surface temperature and salinity RMSE and bias.
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The temperature bias in the DA prior simulation is �18C, which is further reduced to � 0.38C in the DA pos-
terior simulation.

Similar improvement is seen in salinity (Figure 6b). The forward simulation overestimates the upper water
column salinity by � 0.8 and underestimates the salinity at depth by � 0.8 or more. After data assimilation,
the upper water column salinity bias is reduced to � 0.1 or less and the subsurface bias is reduced to less
than 0.2.

Time series of spatial RMSE between model and observations (Figures 6c and 6e) showed the tempera-
ture (salinity) RMSE is reduced from 2–38C (0.5–1) to �18C (0.2), suggesting DA posterior produces more
accurate subsurface information. Time series of the spatial bias (Figures 6d and 6f) provides yet another
view of the performance of data assimilation. The temperature bias (Figure 6d) in the forward simula-
tion ranges from 21.88C at the beginning of the study period to 2.58C at the end of study period. This
bias in temperature is effectively reduced after data assimilation. Both the DA prior and posterior simu-
lations show that the temperature bias is reduced to a much smaller range, between 20.88C and 18C.
Similar improvement is evident also for salinity (Figure 6f). After data assimilation, the salinity bias is
reduced to close to zero over the entire assimilation period, as opposed to up to 0.8 in the forward
simulation.

Overall, our comparisons indicate the 4D-Var is effective in reducing the misfits between model and assimi-
lated observations. Although most of data being assimilated are satellite SST (Figure 3), our results show the
assimilation also improves the model’s fidelity in resolving subsurface hydrographic conditions.

3.3. Validation Against Independent Observations
A more rigorous evaluation of the data assimilative simulation can be achieved by comparing model
fields with independent observations (i.e., data that have not been assimilated). Spatial distributions of
these independent data are shown in Figure 7, including ocean velocity observations measured by NER-
ACOOS coastal buoys B (WGOM), and I (EGOM), and CTD temperature and salinity at 2 m, 20 m and
50 m at buoys A, B, and E in the WGOM. Temperature and salinity profiles from the NOAA Northeast
Fisheries Science Center (NEFSC, http://www.nefsc.noaa.gov/epd/ocean/MainPage/ioos.html) Ecosystem

Figure 7. Station locations of CTD casts from the Northeast Fisheries Science Center ECOMON ship survey data (circles color-coded by
date) within the model domain during 1 April to 18 July 2010. Also shown are the NERACOOS moorings used for independent compari-
sons. Specifically, buoys A, B, and E (black squares) are used for T/S comparisons, and buoys B and I are used for ocean current
comparisons.
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Monitoring (ECOMON) shelf surveys during 1 April to 18 July 2010 were also used to validate the DA
model solutions.

3.3.1. Comparisons With NERACOOS Buoy T/S
Direct point-by-point comparison was made to estimate the DA model skill in reproducing the hourly tem-
perature and salinity data at NERACCOS buoy A, B, and E (Figure 8). The forward model overestimates the
observed temperature (salinity) by 2.78C and 0.6, with an RMSE of 3.18C and 1.8, respectively. Compared to
the forward model, the DA posterior simulation provides better agreement for both temperature and salin-
ity. The model-data biases are reduced to 0.88C and 20.02 for temperature and salinity, respectively. For
temperature (salinity), RMSE between model and observations are reduced to 1.88C (0.7) after DA.

3.3.2. Comparisons With the NEFSC Data
The NEFSC data have wider range of spatial coverage, and in total, 399 temperature and salinity profiles
are available for comparison. We note that among these observations, 1–10 April, 1–15 June are two
periods when sampling occurred in water depths exceeding 200 m, where warm and salty slope waters
permeate the Northeast Channel (NEC), northern flank of Georges Bank, as well as Jordan and Wilkinson
Basins (Figure 9).

The initial NEFSC survey on 1–10 April (observation numbers 1–69) was conducted from the Great South
Channel to the NEC. CTD data show that the bottom waters (greater than 50 m) had temperature exceeding
�138C and salinity as high as 36. The forward model simulation tends to overestimate surface temperature
by over 18C but underestimates the subsurface temperature even more significantly. The bottom salinity is

Figure 8. Scatter plots of observed versus modeled (top) temperature and (bottom) salinity at buoys A, B, and E (forward model in the left
column, posterior in the right). The gray lines are linear fits for each scatter plot. Doublets in the brackets are model-data RMSE and bias,
respectively. The moored observations were not assimilated into the model, and are used only for model evaluation.
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also 1 unit fresher than the observations. After DA, simulated bottom water temperature and salinity com-
pare more favorably with in situ T/S data.

In near-coastal regions sampled from mid-April to May (observation numbers 70–209), NEFSC data show an
obviously freshening in the upper column. In the forward model, surface temperature is overestimated,
whereas bottom temperature is underestimated. DA solutions have much better agreement with observa-
tions. During the first 2 weeks of June (observations 210–343) stations were concentrated in the interior
GOM, including Jordan and Wilkinson Basins. The forward model simulation fails to capture the deep
(>100 m) warm and salty waters, and overestimates the surface layer (< 100 m) temperature by 18C. In late
June and early July (observation numbers 344–399), the forward model also fails to capture the warm and
salty water near Georges Bank. All of these deficiencies are corrected in the DA simulation. The aggregate
temperature and salinity RMSEs are reduced from 3.218C to 2.058C and from 0.90 to 0.64, respectively, repre-
senting a roughly 40% error reduction in the DA simulation.

Point-by-point comparisons along with linear fits show the DA model skill improvement in resolving
observed temperature and salinity characteristics (Figure 10). The DA posterior solutions show much better
agreements with observations than the forward model. The regression slopes for temperature and salinity
are closer to one, and the intercepts are smaller as well. All these results suggest that the DA model signifi-
cantly improved the subsurface ocean state estimation.

Coastal velocity time series comparisons also show significant skill improvement in the DA posterior. For exam-
ple, before DA the forward model simulated current at buoy B displays a strong and relatively persistent north-
ward current in April and early May that is not observed (Figure 11). The DA posterior fixes the issue, and also
improves some aspects of the temporal variation of the currents in the eastern GOM. The complex correlation
coefficients between observed and model velocity time series increase from 0.3 for the forward model simula-
tion to 0.8 for the DA posterior simulation. The average angular difference drops from 78 in the forward model
to 2.58 in the DA solution. Similar improvement is also found for buoys I in the eastern GOM.

In summary, model comparisons against independent hydrographic and velocity data show that the gulf-
wide ocean state is overall more accurate in the DA posterior solutions than both the forward model and
the DA prior.

4. Discussion

Assimilation of data allowed the model to capture an anomalous water mass that impacted both the
physics and biology of the Gulf of Maine in 2010 [McGillicuddy et al., 2011]. To better understand the source

Figure 9. Comparisons between (left column) NEFSC ECOMON temperature and (middle) salinity data and forward model and DA posterior counterparts. The X axis is observation identi-
fication number in chronological order. See Figure 7 for station positions.
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of that water mass anomaly, we undertake a detailed analysis of the heat budget for the DA posterior and
compare it to the forward model (section 4.1). We then diagnose its impact on the circulation (section 4.2),
and investigate the advective connection with one of the apparent source regions on the Scotian Shelf
(section 4.3).

4.1. Heat Budget Analysis
To analyze the relative contribution of surface heat flux and advection to the temperature variability in for-
ward and DA posterior solutions, we can diagnose the temperature equation following He and Weisberg
[2002]:
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where T is the temperature, u, v, w are the velocity, and KH the vertical diffusivity coefficient. AH is the hori-
zontal diffusivity coefficient. Term (a) represents the local time rate of change, (b) the advective rate of
change, and (c) the vertical diffusion. The horizontal diffusion terms (d)1(e) are an order of magnitude less
than the vertical diffusion and are therefore not considered. In the depth-averaged sense, (5) can be rewrit-
ten as:
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Figure 10. Scatter plots of simulated versus observed NEFSC ECOMON (top row) temperature and (bottom row) salinity, with the forward
model in the left column and posterior in the right. Gray lines show linear fits for each scatter plot (slope and intercepts indicated in
insets).
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where T is the depth-averaged temperature, Q is the net surface heat flux, H is the water depth, and q and
Cp are sea water density and specific heat capacity respectively.

We diagnosed the contributions of the advection term (b) and heat flux term (c) in determining tempera-
ture changes during summer 2010. To show the result, we averaged equation (6) in time from 1 April to 18
July 2010. In the forward model, the depth-averaged advection term (Figure 12a) is negative in the offshore
area near majority of the slope region and Scotian Shelf, and is largely negative near Cape Cod. The value is
positive in the EGOM, BOF and Jordan Basin, suggesting the contribution from advection is to increase the
water temperature in these regions. The DA posterior (Figure 12c) shows an overall similar spatial pattern,
but the positive values are confined to Jordan Basin, the slope sea, and the BOF. The difference between
posterior and forward terms (Figure 12e) reveals negative anomalies in the advection term in the WGOM,
Georges Bank and BOF. This suggests that the advective contribution in the posterior tends to decrease the
warming trend in these areas. In contrast, the advection term in Jordan Basin, the Scotian Shelf, and the
continental slope is positive, thus favoring an elevated rate of change. The magnitude of the heat flux term
(Figures 12b and 12d) is overall larger than the advection term in the shallow coastal region in water depths
less than 100 m, especially in the BOF and on Georges Bank where tidal mixing is strong. The difference
between the DA posterior and forward model solutions in heat flux term (Figure 12f) is positive on Georges
Bank and in the BOF. We also note negative values on the Scotian Shelf, suggesting there is a major adjust-
ment of the heat flux term near the eastern boundary. As such, we conclude that both advection and sur-
face heat flux play important roles in correcting the temperature bias in the forward model. Adjustment to
the advection term (Figure 12e) is larger than the heat flux adjustment (Figure 12f) in regions with strong
tidal mixing, such as Georges Bank and the BOF.

Figure 11. Comparisons of 2 m surface currents between observations and model forward and posterior solutions for buoy B in the western Gulf of Maine and buoy I in the eastern Gulf
of Maine. The sample frequency is 4 hourly, and all time series are 36 hourly low-pass filtered to extract the subtidal currents. Note the 1 month break in the time series dictated by data
availability.
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4.2. Evolution of the Hydrography and Coastal Circulation in the GOM
The DA model solutions enable us to analyze the hydrographic variability in the GOM in spring-summer
2010. Monthly mean surface temperature and salinity maps (Figure 13) show some noticeable differen-
ces between forward and DA posterior solutions. The surface temperature field produced by the DA sim-
ulation is �18C cooler than those produced by the forward simulation. Surface salinity fields produced
by the DA simulation are generally fresher than the forward model in the interior of the Gulf of Maine.
Salinity in the DA solution is also fresher in the Scotian Shelf inflow region, suggesting a correction to
the boundary salinity fluxes that in turn affects the interior salinity fields. Near the southeastern flank of
the open boundary on the continental slope, salinity in the DA posterior is higher than that of the for-
ward model in May–July, suggesting a possible intrusion of salty slope waters cross the model’s deep
ocean boundary. At the bottom of ocean (Figure 14), temperature in the NEC and in Jordan Basin is 0.68C
warmer after DA, due to the assimilation of buoy M and N temperature which is representative of slope
water (upper panel, Figure 14). Without DA, more saline water (salinity>35) [Smith et al., 2001] is only

Figure 12. Term-by-term diagnostics of depth-averaged temperature budget. (a and b) Advection and heat flux terms for forward model,
and (c and d) the DA posterior counterparts. (e and f) The differences between the DA posterior and forward model. Dotted gray lines are
the zero contours in each plot. Units for each plot is 8C d21.
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present in the slope region and southwestern portion of Wilkinson Basin. After the DA, salty slope water
is found in both Jordan and Wilkinson Basins. The warm and salty slope water is present from the onset
of model simulation (1 April) through July. Analysis of the observed T/S data from buoy M in Jordan
Basin suggests that the slope water intrusion was initiated in late fall 2009 [McGillicuddy et al., 2011],
long before the initialization date of the present model.

The impact of water mass change on the gulf-wide circulation is presented in Figure 15. Compared to
the surface circulation produced by the forward simulation, the DA solution presents a great portion of
the coastal currents veering offshore of Portland Harbor in April, resulting in a significant reduction in
the along-shelf transport in the WGOM (not shown). In May, the DA simulation shows that a semi-closed
gyre is present in Jordan Basin and the eastern GOM, connecting the eastern GOM coastal waters with
the Scotian Shelf and the Bay of Fundy. Such a current feature may facilitate the delivery of fresh water
from Scotian Shelf into the Gulf. Surface elevation offshore of Penobscot Bay increases compared to the
April condition (not shown). The resulting pressure gradient between Penobscot Bay and the Jordan
Basin increases, leading to a stronger cyclonic gyre that helps to move coastal water offshore. The
current in the western GOM becomes less organized in June (Figure 15) and July (not shown). This is
consistent with geostrophic transport calculation and ADCP observations reported in Li et al., [2014a].

Figure 13. Monthly averaged modeled surface temperature and salinity for both forward and DA posterior solutions.
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Apparently, the sea level depression southwest of Jordan Basin plays a critical role in modulating the
connectivity between western and eastern GOM coastal circulation.

4.3. Advection Time Scale From the Scotian Shelf to the Coastal GOM
Freshening of the Gulf of Maine in the DA posterior is apparently linked to the cold low-salinity water enter-
ing from the Scotian Shelf. Observations from Canadian Atlantic Zone Monitoring Program (AZMP) indicate
that the SSW was colder and fresher than usual in 2010 compared to other years. The onset of the anomaly
can be traced back to January 2010 at AZMP station 2 off Halifax [McGillicuddy et al., 2011]. Similar water
mass properties are also found in the upper 50 m of the NERACOOS buoy M in the Jordan Basin throughout
the spring and summer [Li et al., 2014a]. It is therefore of interest to investigate the advection time scale of
SSW transport to Jordan Basin. The transit time is estimated using passive particle releases initiated
throughout the water column from the Scotian Shelf using the space-time continuous DA model simulated
current field. In order to be representative of Scotian Shelf water properties, a rectangular area was selected
for release points (Figure 1, gray dots), and vertical depths are chosen between the ocean surface (0 m) and
200 m with a 10 m spacing. A total of No58111 particles are released from 1 April 2010, the starting date
for the model simulation, and are allowed to advect to the end of the simulation (18 July 2010). At each

Figure 14. Monthly averaged model trajectories for the bottom temperature and salinity for forward and posterior model solutions.
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time ti, we first count the number of particles inside each polygon (N) designated for Jordan Basin. The
advection time scale s can be estimated as:

s5ð
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No
Þ=ð
X1

i50

Ni

No
Þ (7)

where i is the index for each time level. Particles (not shown) started to enter Jordan Basin after 20 days,
and reached a peak in May to late June. There was a gradual decrease of the percentage as the season pro-
gresses. Applying equation (7) to Jordan Basin by integrating ti from zero to the available length of the sim-
ulation window (105 days) gives the mean advection time s of 59 days. The advection time scale is
consistent with estimates from in situ observations, although the onset of the water mass anomaly began
prior to the time period of the present simulation [McGillicuddy et al., 2011].

5. Summary and Future Work

In this study, the recently developed strong constraint ROMS 4D-Var system was applied to the 5 km resolu-
tion GOM model to hindcast the coastal hydrography and circulation in spring and summer 2010. Due the
the lack of accurate information in initial, lateral boundary and surface forcing conditions, the forward ocean
model failed to produce various important features in the GOM during 2010. By assimilating in situ observa-
tions into the model, the fidelity of the hindcast was improved.

SST error bias and RMSE were both reduced after data assimilation. Subsurface T/S was also improved in
terms of both vertical structure and temporal evolution. Both suggest the effectiveness of the 4D-Var algo-
rithm in fitting the observations. Independent hydrography from NEFSC surveys were compared with both

Figure 15. Monthly mean model trajectories for the surface currents for model forward and posterior model solutions in May and June. A current scale of 0.3 m s21 is also shown.
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forward and posterior model solutions. Results showed a better fit of model posterior to the T/S profiles
compared to forward run. Comparisons with coastal currents documented by NERACOOS buoys revealed
hindcast skill improvement by the DA system. We do note, however, that the modeled coastal currents can
be sensitive to the observational errors we chose for temperature and salinity.

Model fields from posterior solutions were used to understand the evolution of water masses during
summer 2010. A depression in sea level offshore in the eastern GOM is an important feature introduced by
the DA procedure. The resulting pressure gradient between the low pressure center and waters offshore of
Penobscot Bay produces a strong offshore transport in May and June, thereby reducing the coastal flow in
the western GOM. The decreased coastal flow was also documented by NERACOOS buoy B and ship-survey
data in June 2010 [Li et al., 2014a]. The along-shore coastal flow in the western GOM becomes more contin-
uous in July when the low level center weakened (not shown).

Model posterior solutions were also used to estimate advection timescale for waters from the open bound-
ary near the Scotian Shelf. The advection time scale for SSW to reach the JB is found to be 59 days. Our
results demonstrate the importance of upstream and offshore forcing in controlling large variability in
coastal circulation and water mass conditions in the gulf. Long-term measurements from the regional
observing network are crucial in identifying anomalies, as well as being used in a data assimilative modeling
framework to construct circulation hindcasts for those events. Future improvements include assimilating
other available observations (e.g., coastal sea level data and altimetry) into this regional circulation predic-
tion system, which can address a variety of marine environmental questions and problems, such as harmful
algal blooms and marine fisheries.
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