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ABSTRACT

The calibration and validation of a novel approach to remotely sense surface winds using land-based high-

frequency (HF) radar systems are described. Potentially available on time scales of tens of minutes and spatial

scales of 2–3 km for wide swaths of the coastal ocean, HF radar–based surface wind observations would

greatly aid coastal ocean planners, researchers, and operational stakeholders by providing detailed real-time

estimates and climatologies of coastal winds, as well as enabling higher-quality short-term forecasts of the

spatially dependent wind field. Such observations are particularly critical for the developing offshore wind

energy community. An autonomous surface vehicle was deployed within the Massachusetts Wind Energy

Area, located south of Martha’s Vineyard, Massachusetts, for one month, collecting wind observations that

were used to testmodels of wind-wave spreading andHF radar energy loss, thereby empirically relating radar-

measured power to surface winds. HF radar–based extractions of the remote wind speed had accuracies of

1.4m s21 for winds less than 7m s21, within the optimal range of the radar frequency used. Accuracies de-

graded at higher winds due to low signal-to-noise ratios in the returned power and poor resolution of the

model. Pairing radar systems with a range of transmit frequencies with adjustments of the extraction model

for additional power and environmental factors would resolve many of the errors observed.

1. Introduction

Land-based high-frequency (HF) coastal ocean radar

systems have proven to be highly effective at measuring

ocean surface currents on an operational basis. At

present, over 130 systems operate within the coastal

waters of the United States, providing detailed maps of

real-time currents at resolutions of 2–8 km and offshore

distances up to 150km. However, these instruments also

have the potential to provide estimates of the spatially

variable surface wind field (Barrick 1972), likely at

ranges up to 100km offshore. This work seeks to exploit

variations in the power of the radar’s return due to short

ocean waves to estimate winds via direct calibration.

The use of empirical approaches such as this are now

possible due to new technology enabling mobile in situ

wind observations that drastically lower the cost of ob-

taining the calibration data required to validate models

relating the power of the HF radar return to the wind

speed. Thus, this work would enable a feature of radar

returns that has been known formore than 50 years to be

exploited for operational use.

While the surface wind field over the coastal ocean has

potentially large spatial scales over time scales of tens of

hours, on time scales of tens of minutes, spatial scales

can be much shorter due to the passage of fronts and/or

low-level jets (e.g., Edson et al. 2007). Knowledge of

winds on these time and space scales is of particular

interest to newer coastal ocean stakeholders, such as the

developers and operators of offshore wind energy fa-

cilities. Wind energy developers require potentially

dense ‘‘hub height’’ observations in order to obtain the

financial backing necessary for projects to move for-

ward. This requirement presents a difficult hurdle for

offshore wind energy projects to overcome, as the costs

associated with in situ observations at hub height (i.e.,

erecting multiple towers or fixed platforms in the coastal

ocean) solely for resource characterization can be pro-

hibitively high. Recent work (see Beaucage et al. 2012)

has shown that atmospheric models can produce a state

estimate of the atmospheric boundary layer capable of

accurately modeling hub-height wind power levels. Yet,

the ability of this type of state estimate to accurately
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forecast or hindcast the wind field is a function of the

amount and quality of wind and temperature data being

used to guide the model solution. Second, both wind

farm and grid operators require short-term forecasts of

the power output of an operating wind farm to balance

loading of the electrical grid and minimize uncertainty.

The potential spatially and temporally dense estimates

of surface winds that a calibrated HF radar system could

provide to a data-assimilating nested atmosphericmodel

might be sufficient to constrain the hub-height pre-

dictions to the accuracies required for both near-term

forecasts and resource characterization. Additionally,

the direct observations of surface winds themselves

would be operationally useful for informing construc-

tion and maintenance activities.

The dependence of HF radar backscatter power on

wind speed and direction has been known for some time

(Barrick 1972; Barrick and Weber 1977; Heron and

Rose 1986; Harlan and Georges 1994; Wyatt 2012;

among others). A changing wind direction alters the

relative power returned fromwaves directed toward and

away from the radar, thus knowledge of this difference

and a wind-wave spreading model has been used to

predict wind direction (Heron and Rose 1986; Harlan

and Georges 1994; Paduan et al. 1999). In contrast, the

dependence of power on wind speed has traditionally

been thought to be both spatially and temporally vari-

able, as well as dependent on unknown radar-specific

parameters. However, Shen et al. (2012) and Kirincich

(2013) recently illustrated that in situ wind data can be

used to calibrate the backscatter power of individual

radar sensors, enabling estimates of wind speed via

empirical calibration. While these efforts documented

the short spatial scale of the calibration’s validity, they

also demonstrated that, to the accuracy of the radar

observations themselves, only small amounts of in situ

observations were needed to produce a sufficient cali-

bration. Thus calibrations via newly available mobile

platforms represent a potentially cost-effective way to

empirically link the locally relevant changes in radar

power with wind speed over the broad spatial area ob-

served by a radar system.

The goal of this study was to collect in situ surface

wind observations over the southern New England

continental shelf in order to calibrate and validate the

ability of land-based HF radars to observe spatially

variable surface winds over the coastal ocean. Specifi-

cally, this project aimed to produce radar-based esti-

mates of wind speed and direction, with documented

errors, over the domain of an HF radar system using

mobile autonomous surface vehicles (ASV). The study

area south ofMartha’s Vineyard,Massachusetts (Fig. 1),

is observed by the high-resolution radar systems

operated by theWoods Hole Oceanographic Institution

(WHOI) (Kirincich et al. 2012, 2013) and is an area of

interest for wind power development. This work was

timed to leverage a temporary expansion of the system’s

footprint that would maximize overlap with the Massa-

chusetts Wind Energy Area. The manuscript is orga-

nized as follows: More information on radar sensing of

the sea surface is given next, followed by the datasets,

their processing, and details of the model formulation

used here and its justification. The calibration and vali-

dation of the model and the empirical coefficients spe-

cific to the WHOI radar system are then presented,

followed by an analysis of the results and a discussion of

the successes, failures, and potential future relevance of

the technique.

2. Background

This study seeks to develop and test empirical transfer

functions to predict the real-time spatial structure of

near-surface winds over the coastal ocean using HF ra-

dar backscatter power. This work focuses on the in-

formation contained in the strongest portion of the radar

return from the sea surface, the first-order region

(Barrick 1972). Returns within this first-order region are

solely the result of ‘‘Bragg scattering’’ off surface gravity

waves with a wavelength one-half the radar transmit

wavelength as opposed to weaker power returns that

flank the first-order region—that is, the ‘‘second order’’

region—due to double scattering or nonlinearities in the

wave field. For the transmission frequencies used by the

FIG. 1. Plan view of the amount and locations of independent

wind samples (colored circles) collected at grid points of theWHOI

radar system, shown at the spatial resolution of the WHOI system.

Radar site locations 1–3 (black) are numbered from east to west.

The ASV track line is shown in blue. Bathymetry is shown in 10-m

increments.
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WHOI system, 25MHz, this corresponds to a ‘‘Bragg

wave’’ with a wavelength of 6m and a period of 2 s. In

typical coastal environments, the Bragg waves associ-

ated with HF radar systems are directly forced by the

local winds. For the WHOI systems in particular, the

Bragg waves and their energy follow the wind speed and

direction closely for wind speeds of 2–9ms21 for most

fetch and/or wave age conditions (see Shen et al. 2012).

Thus, this work assumes a direct relationship between

the speed and direction of the wind and the direction

and energy level of the Bragg waves observed by

the radar.

Relating the wind vector field to the power of the first-

order backscatter spectra due to Bragg waves is pref-

erable to, for example, relating either winds to the

measured currents or the full directional wave spectrum

itself. The relationship between winds and surface cur-

rents is complex due to the effects of rotation and

stratification, as well as the myriad of other forcings that

can drive currents in the coastal ocean. Additionally,

currents respond much more slowly to the wind than

short waves. Second, HF radar–based extractions of the

winds are possible via inversions of the second-order

backscatter power (Barrick and Weber 1977; Lipa 1978;

Lipa and Barrick 1986; Wyatt 2000; Wyatt et al. 2003;

Hisaki 2004; Green andWyatt 2006) to first estimate the

full directional wave spectrum. The energy levels of

waves forced directly by the local winds are likely to be

wind speed dependent in typical coastal environments,

and these waves include, and can be longer than, the

Bragg waves. Hence, if the high-frequency part of the

ocean long-wave spectrum can be recovered from an

inverse, then the wind speed and direction can be esti-

mated directly via wind-wave spreading models. How-

ever, full inversions such as this are more limited in

range due to signal-to-noise issues and can only be used

by a small subset of the operational HF radar systems.

More importantly, spectral noise is a critical issue in this

calculation, and it has generally thwarted efforts to

perform more complex extractions at time scales less

than a few hours (Wyatt 2000;Wyatt et al. 2011). Finally,

the potential role of bimodal wave distributions in

influencing a full inversion for waves was addressed by

Heron (2004), suggesting that even if the directional

spectrum can be resolved, extracting the wind field from

the spectral rolloff can be challenging.

The products possible from the first-order region and

the low-order inverses are focused on exclusively here,

as the longer time scales and reduced ranges over which

full spectral extractions using the second-order portion

of the spectrum or transformations from currents are not

operationally useful. Thus, this work attempts to em-

pirically determine the relationship between radar

power in the first-order region and wind speed and di-

rection. Encompassing scattering purely from the Bragg

waves, the link between first-order energy and wind in-

put energy is more simplistic (Shen et al. 2012). How-

ever, extrapolating the power of the Bragg waves to

estimate the surface wind relies on the use of a model of

wind-wave directional spreading as a basis function. A

number of works (e.g., Heron and Rose 1986; Paduan

et al. 1999; Shen et al. 2012; Wyatt 2012) have reviewed

the development of models that explain the directional

spreading of wind-driven waves away from peak power

downwind. While the shape of the distribution can vary

among the methods, generally all have assumed that the

ratio of the energy in the Bragg waves traveling directly

toward and directly away from the radar is a function

only of the angle between the direction to the radar and

the direction to the wind. Field results matching the

spreading patterns and amplitudes observed by the ra-

dars themselves to models have somewhat mixed results

(Wyatt 2012; Kirincich 2013), suggesting that additional

model validation for the spreading model itself appears

necessary.

3. Data and methods

During the 6-month period spanning from June to

December 2014, three 25-MHz Codar Seasonde–type

HF radar systems owned by WHOI were operated in an

expanded domain from that described in Kirincich et al.

(2012), collecting surface current observations up to

40 km offshore at resolutions ranging from 400m on-

shore to 800m at ranges of 15–40 km offshore (Fig. 1).

Data from the WHOI radar system were processed

following the advanced methods described in Kirincich

et al. (2012). Specific to the present study, the raw HF

radar backscatter returns were processed to yield the

range and bearing of each significant return located

within the Bragg (or first order) region using the multi-

ple signal classification (MUSIC) direction-finding al-

gorithm (Schmidt 1986) and a standard set of MUSIC

parameters for Seasonde systems (Lipa et al. 2006).

Time series of MUSIC-estimated signal power (see

Kirincich et al. 2012 for details) for both incoming and

outgoing waves at each location on a 2km 3 2 km grid

were found by averaging all results within a 2-km radius

for nonoverlapping 15-min periods. The resulting spatial

coverage andmean power distributions from each of the

three radar sites are shown in Fig. 2.

To document the relationship between radar back-

scatter power and surface winds within the northern

extent of the Massachusetts Wind Energy Area, gener-

ally located offshore of the 30-m isobath (Fig. 1), the

project deployed a Liquid Robotics Wave Glider ASV
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during a 35-day period spanning 30 October–4 Decem-

ber 2014. The ASV was outfitted with an Airmar two-

axis sonic anemometer measuring 10-min averages of

wind speed and direction 1m above the level of the

vehicle. The ASV followed a predetermined path con-

sisting of a series of 14 waypoints designed to cover the

outer half of the existing radar coverage area with as

many independent estimates of the wind speed and di-

rection as possible. At average speeds of 1kt (0.51ms21),

the full pattern was occupied in less than 9 days and was

repeated almost 4 times during the project period

(Fig. 1). The ASV updated its position, vehicle health

information, and recent science observations every

10–20min via Iridium communications.

Despite the rough weather conditions present during

the deployment period, ASV operation was mostly au-

tonomous, requiring the attention of an operator for, on

average, less than 20minday21. Deployment and re-

covery was made via the R/V Tioga, WHOI’s 60-ft

coastal research vessel, although a mid-deployment re-

pair of the meteorological sensor was made using a

smaller 25-ft vessel. Thus, despite some complications,

the ASV deployment was successful, in that it 1) col-

lected between 15 and 30 statistically independent

samples of the near-surface wind conditions in each of

the 106 project-defined grid cells spanning a combined

870-km2 area (Fig. 1) over the course of a relatively short

deployment period and 2) and utilized minimal re-

sources beyond the acquisition of the vehicle itself.

Data from the ASV-based mobile wind sensor was

augmented by wind observations collected by fixed

meteorological stations at two of the land-based radar

sites and the Martha’s Vineyard Coastal Observatory’s

(MVCO) offshore tower (Fig. 1), all located inshore of

the ASV-occupied area. All wind data were processed

using standard quality assurance–quality control

(QAQC) techniques to eliminate low-quality data and

convert observations, made at heights ranging from 1 to

18m to standardized 10-m reference height winds as-

suming neutral stability (Large and Pond 1981). For

the ASV winds, much of the ‘‘low quality’’ wind data

from the ASV resulted from either 1) times when the

wind sensor was failing (one had to be replaced mid-

deployment) or 2) times when there was a sampling issue

FIG. 2. (top) Percent coverage and (bottom)mean power for radar sites 1–3 from left to right. Coverage is defined as the number of 15-min

averages from the site existing at a location for the month of November 2014. Mean backscatter power is in decibels.
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between the AirMar and the ASV which led to shorter

(1–5min) averages of the wind results being transmitted

as the 10-min averaged winds. In total,5% of the ASV

data was eliminated by this QAQC step.

Wind observations were averaged onto a 15-min time

series to match the common period of the radars. Winds

collected on the offshore tower [Air–Sea Interaction

Tower (ASIT)] were considered to be the least biased by

potential orographic effects onshore, or wave sheltering

offshore. While a suite of different sensors, including

Vaisala three-axis and two-axis sonic anemometers and

the Airmar compact two-axis sensor, were used to pro-

vide wind data, the differences between the sensor

quality and measurement heights were small relative to

the potential differences due to the spatial structure of

the wind field and/or orographic effects for the onshore

sensors. As shown in Fig. 3, the adjusted mobile wind

results are similar to the ASIT winds at lower frequen-

cies of variability but differ in both the absolute speed

and timing of transitions.

During the study period, marking the transition to

winter conditions over the New England shelf, winds

were highly variable in both speed and direction. While

the time-averaged wind speed was 7.5m s21 with a

standard deviation of 4m s21, several storms occurred

during the month with wind speeds greater than

10m s21. This study focuses on winds less than 10m s21

for two reasons: 1) 10m s21 is above the equilibrium

range for the Bragg waves examined here (Shen et al.

2012) and 2) offshore wind energy production in the

region is likely to have the greatest impact during the

spring and summer periods, when demand for elec-

tricity is highest and winds are typically weaker than

7m s21 with mean wind speeds of 46 2m s21 (Fewings

et al. 2008). Despite this restriction, distributing the

ASV-based wind observations onto the same 2-km grid

used for the radar observations resulted in more than

15 independent samples (defined here as wind obser-

vations greater than 3 h apart) of the wind spread out

over the deployment month at all locations within the

ASV deployment area. A number of the grid locations

had more than 25 samples, and a majority had samples

from three or more directional quadrants.

4. Model formulation

a. Comparison of observed Bragg ratio to existing
models

A number of models for the directional spreading of

wind-generated waves have been proposed and utilized

withHF radar observations to extract information about

the surface wind direction (seeWyatt 2012 for a review).

As described above, the directional spreading of wind

waves and thus information about the wind direction

itself is seen in the signal received from HF radars via

the difference between the backscattered power from

waves coming directly toward and those moving directly

away from the radar. The ratio, or difference of these

powers, can be exploited to remotely sense the wind

direction, assuming that the Bragg waves are in equi-

librium with the local winds. A plot of this ratio by wind

direction as observed by radar site 3 offshore (Fig. 4)

FIG. 3. (top)Wind direction and (bottom) speed as measured at theMVCOoffshore tower and

the ASV. The red line marks the winds during the period shown in Fig. 10.
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illustrates two main points: 1) The mean relationship

between the radar backscatter ratio, shown by the circles

(bin averages) and red line (moving average), is fairly

smooth and in general representative of a hyperbolic

secant (as sech2 or equivalent) type of shape; and

2) there is significant variability or noise of the individ-

ual results about the smoothed pattern shown that sug-

gests, regardless of the functional form, any viable

model solution would have to account for this variability

to be successful.

Additionally, time series of the difference between

the observed Bragg ratio and a time series of the mean

Bragg ratio for the observed radar–wind direction, de-

fined here as the ‘‘residual’’ Bragg ratio, from all three

sites were positively correlated at any given location.

This correlation suggests that the drivers of the residual

or noise about the mean Bragg ratio must have either

large spatial scales relative to the array itself or be the

result of locally driven oceanic process that affects the

returns of all radars. The correspondence of the mean

Bragg ratio to the models shown in Fig. 4 breaks down

for azimuthal directions observing winds with poten-

tially limited fetch. This effect is more clearly seen in the

results captured by sites 2 and 1, which more often have

‘‘offshore’’ winds. Thus, analysis of these results sug-

gests that the variability seen is coherent across the

radars for a given time and location, potentially due to

variability in wave age, the wave environment, or the

wind speed itself. This variability does not appear to be

due to incoherent internal radar noise as deviations from

the mean functional form are correlated across all the

radars. If true, a directional model fit to the data that

incorporates a parameter or parameters to represent

this variability should be able to achieve more suc-

cessful results than an application of a standard

spreading model with a constant offset for the internal

radar power.

b. Empirical link between power and speed

An examination of the relationship between ob-

served radar power within the Bragg peaks and wind

speed for times when the winds were directly toward or

away from the radar—with no directional dependence

present—illustrates that radar power has a clear de-

pendence on wind speed. Utilizing the longer wind

record available at ASIT, the radar power from the

range–azimuthal cells overlapping the ASIT location

from each radar illustrates that, whether at close or

moderate ranges from the radar (i.e., Fig. 1), an in-

crease in power of 5–20 dB with increasing wind speed

occurs for all sites (Fig. 5). Additionally, separating the

collocated wind and radar results for moderate and

longer ranges for times when the ASV-measured wind

was directly toward or directly away from the radar

illustrates both the wind speed dependence of power

and the range dependence of the wind speed effect

(Fig. 5).

Despite the fact that these relationships appear both

spatially variable and nonlinear, much of the patterns

seen can be explained by a small number of key factors.

First, there is an overall decrease in power with range

due to a range-dependent attenuation. Second, for low

winds the magnitude of the increase in power for in-

creasing wind speed tends to decrease with range. Third,

at higher wind speeds, generally greater than 5m s21, the

observed power increase either tapers off or actually

decreases with increasing wind speed. This falloff can be

attributed to increased winds, causing increased waves

of all wavelengths, which increase scattering and power

loss of the radar signal. Finally, the results have the

potential to be noisy. Despite the advanced quality

control practices used on the radar dataset, significant

scatter exists that may complicate estimates of wind

speed. However, focusing on the results at ASIT (Fig. 5,

top), the scatter is notably different depending on wave/

wind direction. As ASIT is west of site 1 and east of sites

2 and 3, waves/winds to the ‘‘east’’ have positive wind

speeds at site 1 and negative wind speeds at sites 2 and 3,

all of which have larger scatter than waves of the

FIG. 4. Bragg ratios at a central site (418100N, 708350W) as sensed

from site 3 and organized by the relative angle of the wind to the

bearing between the radar and the site. Bin averages, by azimuth,

of the Bragg ratios (red curve and black circles with standard error)

are also shown alongwith common estimates of the functional form

of the Bragg ratios directional dependence, scaled to match the

observations.
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opposite direction, particularly for sites 2 and 3. Here,

the limited fetch conditions present might account for

the scatter seen.

Thus, the relationship between power and speed

consists of variations around a spatially dependentmean

value driven by a combination of increasing power due

to higher winds and decreasing power due to increased

attenuation. This type of potentially simple relationship

exists between the mean power and wind speeds for

all sites.

c. Description of best-fit model

The model chosen here to approximate the azimuthal

variation in wave energy around the wind direction, as

represented by Shen et al. (2012) and Gurgel et al.

(2006), is

G(u)5 0:5b sech2(bu) , (1)

where G is the direction dependence (u) of the wave

energy and

b5

8<
:

2:28( f /f
p
)20:65, 0:97 , f /f

p
# 2:56,

1020:410:8393 exp[20:567 ln( f /fp)], f /f
p
. 2:56:

(2)

For HF radar data, f is the frequency of the Bragg waves

of interest and fp, where

f
p
5

11

p

�
g 2

U
10
F

�1/3

(3)

FIG. 5. Downwind speed (m s21) verses observed backscatter power for each of theWHOI radars (from

left to right) at (top)ASIT (i.e., variable range), and ranges of (middle) 15–25 km and (bottom) 25–35 km.

In all panels, the raw estimates (gray), bin averages (black), and quadratic regressions (black lines)

are shown.
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is the frequency of the dominant wave in equilibrium

with the wind. Finally, g, U10, and F represent gravity,

the wind speed, and the fetch, respectively. A key as-

pect of using a sech2 basis function, first presented by

Donelan and Pierson (1987), as opposed to others that

have been proposed (see Paduan et al. 1999 for a sum-

mary) is that the basis function is continuous over the

full range of azimuthal directions in the format utilized

in Fig. 6. Thus, the model can be used to estimate the

wind direction (u), from the distribution of the back-

scatter differences measured by two or more instru-

ments. While the model for spreading has a wind speed

dependence in b, the results of Fig. 5 show that the ap-

propriate scaling factor to relate the value of G to the

Bragg ratio must also have a wind speed dependence,

and be much larger than 0:5b as shown above. Rescaling

G(u), the model appears to match the shape of the di-

rectional distributions shown here (Fig. 4) reasonably well.

Despite the complex physics governing the transfer of

wind energy to ocean waves and the remote sensing of

those waves by HF radar, the relationships shown in

Fig. 5 can be approximated as an increase in power

above a mean state due to increased wave energy com-

peting with a potential decrease in power from increases

in range or attenuation due to the additional roughness

present at higher winds. Thus, power (P) at the Bragg

frequencies ( f) can be represented as

P(6f )5 k1E , (4)

where k is a location-dependent reference power and

E is the difference in power above this reference that is

due to the increased energy of the Bragg waves as a

result of wind forcing. While k could be modeled based

on a radar’s transmit power, beam spreading, and at-

tenuation, in practice simply using the time series mean

power observed at each location (i.e., Fig. 2) from each

radar results in a better starting point as it accounts for

real variations in the spreading and loss of the radar

signal. Then, E might go as E5Ew1Ea, where

Ew5W
fact

(U
10
/c)2 (5)

and

Ea52(r/r
max

)(U
10
/R

fact
)3 . (6)

As formulated, Ew represents the form of a typical

wave energy growth equation, with U10 being the wind

speed and c being the phase speed of the Bragg wave,

times Wfact, a constant that represents the power

gained per unit wind at each location. The term Ea is

empirically determined to best represent the decrease

in power with increasing range, assumed to be linear,

and the increase in attenuation with wind speed

(U10/Rfact), whereRfact is a constant that determines the

importance of the power loss term. In practice, the

exponent of U10/Rfact, assumed to be cubic here, must

be greater than the exponent of U10/c, to obtain the

FIG. 6. Sample of the model fit methodology for a wind to the northeast, or toward 458 as shown in mathematical convention. (left) The

absolute values of theBragg ratios observed by theWHOI radars (triangles) and the best-fitmodel (black) alongwith the reverse-fitmodel

made using the true wind and the estimated coefficients (blue line) and the inferred Bragg ratios from this model fit (open squares).

(middle) The downwind (blue, black) and upwind (red, green) components of the best-fit model (blue, red) and the reverse-fit model

(black, green) are shown with the observed (closed circles) and estimated (open squares) relative (as absolute mean) powers for the

incoming (blue) and outgoing (red) Bragg waves. See text for details. (right) The least squares fit cost function with the extracted (closed

magenta circle, found by theminimum value of the cost function) and observed (white circle) wind speed and direction and the confidence

interval of the wind extraction (open magenta circles).
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observed rolloff of power with increasing wind speed.

With this formulation, the combination of Wfact and

Rfact can be tuned to mirror any of the profiles seen in

Fig. 5. Thus, the combined model used to represent the

total power is

P(6f )5k1 (Ew1Ea) sech2(bu) . (7)

5. Model calibration and validation

As written, the model can be used to convert wind

speed and direction directly to signal power at a radar,

given a known set of constants (Wfact and Rfact). Alter-

natively, as a linear set of equations for any number of

radar stations (a minimum of two is needed), the model

can be solved in the least squares sense for the wind

speed and direction given observed signal powers and

known model coefficients. The model coefficients

themselves can be estimated for each spatial location by

calculating the modeled signal powers for the entire

parameter range of coefficients given the observed

winds and minimizing a cost function defined by the

normalized sum of three parameters: the average dif-

ference between the modeled and observed Bragg ra-

tios; the incoming Bragg wave power anomaly, or

P(1f )2�[P(1f )]; and the outgoing Bragg wave power

anomaly, or P(2f ) 2 �[P(2f )]. This combination of

parameters was found to give a cost function with po-

tentially high gradients as a function of both Wfact and

Rfact. The methodology was tested extensively with

synthetic data as follows:

1) Estimate the signal powers for an arbitrary set of

wind and coefficient data.

2) Add noise to the estimated signal powers and then

use with the known winds to estimate the model

coefficients via use of the cost function.

3) Use the mean value of the coefficients from (2) with

the noisy signal powers to estimate the wind speed

and direction via use of the cost function.

As formulated, with up to 50% random error assigned to

the synthetic signal powers (noise with a maximum of

50% of the power anomaly, but a mean of 30%), the

process was able predict the wind direction and speed

withRMS differences of 378 and 0.75m s21, respectively.

For real data, only step 2 (the calibration step) and step 3

(the wind estimate step) are used. The cost function used

in step 3 also provides an uncertainty estimate for the

wind speed/direction calculation, defined as the range

over which the cost function value is less than 5% of its

full range above the minimum value (Fig. 6). The value

of 5%was chosen based on the consistency of the results

described below. The solution space for the cost func-

tion potentially had other local minima, but tests showed

that the global minima were most often related to the

correct solution.

6. Analysis of results

a. Empirically determined coefficients and their
variability

To determine the calibration coefficients, a subset

(generally half) of the paired wind and radar data having

returns for both P(1f ) and P(2f ) from all three radar

sites, and wind speeds between 2 and 10m s21 were used.

Again, the observed radar backscatter power was first

used in a backward step to isolate the coefficient values

that best fit the data using the known winds via the

model. The results of this first step (step 2 above) for all

areas within the domain that have greater than 10 cali-

bration samples obtained from two or more separate

wind quadrants have a few clear trends (Fig. 7). As

shown, the combination of using the difference from the

local mean power and the range factor (r/rmax) ac-

counted for much of the range-dependent decrease in

the absolute value and gain of the wind speed de-

pendence (Fig. 5) as there is no real offshore trend in the

value of Rfact.

However, spatial structure still exists in both co-

efficients, and it can be characterized by slowly varying

spatial trends throughout much of the domain except

for near the edges, where calibration data were more

limited (Fig. 7). Except for key outliers, most of the

mean Wfact values range between 0.5 and 2. Both out-

liers and areas along the northern edge of the domain

with high standard deviations may be related more to

poor sampling of the wind or the limited number of

samples (i.e., Fig. 1) than to a marked change in the

true value of the coefficients themselves. High values of

mean Rfact offshore and to the west appear to coincide

more with the area of decreased mean power from site

1 (Fig. 2) as opposed to simply increased offshore dis-

tances. A weaker azimuthal trend with higher values in

the middle exists in Wfact, but it is dwarfed by higher

values to the north and south. In general, these results

tend to support the assumption that azimuthal vari-

ability in the response of the radar antenna system

plays an important role in setting the coefficient values

(see Shen et al. 2012).

A number of the locations had significant scatter

about the mean values. In an attempt to include this

variability in the model fits, coefficient values that were

dependent on the wind speed, for example, were in-

vestigated via regressions to the observed scatter of the
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coefficients for a given location. However, as much of

the variability appearedmore as noise around themean

than a significant trend in wind speed, or any other

known parameter, use of variable coefficients did not

result in better extractions of the wind. Testing the

significance of the results further, the spatially de-

pendent mean values of the coefficients performed

better than a single spatially uniform set of coefficients

and better than the unit value for the coefficients. Fi-

nally, using the longer time series available at the

FIG. 7. Estimated (top)mean and (middle) standard deviations for (right)Wfact and (left)Rfact at each grid

location of the radar fields, and (bottom) the latitudinal variability in both coefficients.
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onshore wind stations, little variability in the derived

mean coefficients was found over time. Thus, with the

exceptions given above, the mean values of the co-

efficients appear to be the best indicator of the ex-

pected value of the result.

Further efforts to understand the drivers of the co-

efficient variability are of critical importance as areas

with a higher standard deviation in the coefficient

values tend to also have higher error rates, as shown

below. Potential sources of variability include fetch or

wave age issues, sampling issues, variable radar at-

tenuation due to local radar-site variability and po-

tential errors in the model solution, radar processing,

or wind observations themselves. Additional effort is

needed to test the effects of these processes on the

scatter or uncertainty of the coefficients, and how this

knowledge can be incorporated into improvements to

the model.

b. Error estimates

Aggregating the results for all potential locations, the

rms differences between the estimated and observed

15-min averages of wind speed and direction were cal-

culated for three different comparisons:

1) Using only the calibration dataset, with the individ-

ual constants determined for each instance

2) Using only the calibration dataset, with the mean

constants for each location

3) Using all viable two- or three-site datasets with the

mean constants for each location

The model predictions have rms differences in wind

direction between 358 and 408, independent of how the

coefficients are used or the wind speed itself. Results

for the method’s ability to predict wind speed, as the

rms difference between observed and extracted winds,

are shown in Fig. 8 for each of these three cases: all

winds, and wind speed ranges of 2–6 and 6–10ms21,

respectively.

The first comparison gives an estimate of the internal

noise of the calibration itself, or how well the radar and

wind observations can match given the model formula-

tion. As would be expected, this comparison has the

lowest rms differences, with values of 1.2–1.7m s21 for

low to high wind speeds. The errors shown here repre-

sent a baseline error estimate of the correspondence

between the measured winds and the observed power

results themselves. For example, if the radar power

observations were not consistent with the observed wind

direction, the forward fit using the exact coefficients

determined by the backward fit might not result in an

extracted wind speed or direction similar to the ob-

served winds.

Applied to both the second and third comparisons,

either the calibration dataset only or all viable data with

in situ validation using the spatially variable mean co-

efficients, the rms difference results have similar error

statistics (Fig. 8). For both, rms differences increase to

1.4 and 2.7m s21 for low and high winds, respectively.

The similarity between the second and third compari-

sons suggests two conclusions: that the increase in errors

due to the use of the mean rather than time-varying

coefficients is the primary source of the increase in error

above the first comparison, and that the calibration

dataset was sufficient, relative to all data, with in situ

validation to capture the mean coefficient, on average.

An important caveat to this is those locations at the

northern end of the area with poor in situ wind coverage.

As the time-varying coefficients cannot be known for all

times, themean relationshipmust be used. Thus, the two

major sources of error moving forward are 1) how well

the model itself is able to fit the data and the wind and

2) how much temporal variability exists in the true co-

efficients. Both are discussed below.

Importantly, while the systemwide rms difference is

2.1m s21 using the mean coefficients, comparisons at

higher wind speeds are significantly worse than the

overall mean. As Fig. 5 illustrates, the range of power

variations at higher wind speeds is quite small, even for

short ranges. Thus, it is not unexpected that the com-

parisons would degrade rapidly with increased speeds.

These results suggest that 25-MHz radar systems may

not be able to sufficiently observe wind speeds greater

than 6–7m s21 alone. Restricted to lower winds where

the system, as deployed, is better suited gives error rates

of 1.4m s21 or less. However, that rms difference mag-

nitudes for wind direction do not vary between the

comparisons suggests that much of the directional error

is due to misfits of the model itself and not due to wind

speed or coefficient variability. These types of errors are

discussed in more detail below.

These error rates are either at par with, for larger wind

speeds, or slightly less than, for smaller wind speeds,

similar error metrics for other remotely sensed wind

products. For example, a number of recent studies have

compared remote QuikSCAT or similar satellite-based

extractions for wind speed and direction to in situ, nor-

mally buoy-based, wind observations (Carvalho et al.

2014) and various reanalysis products (see Carvalho

et al. 2012), finding rms errors for speed and direction of

1.7–2m s21 and 408–508, respectively. Synthetic aperture
radar (SAR) satellite–based winds have been shown to

have rms errors of 2m s21 and directional ambiguities of

6408 (Fisher et al. 2008). While generally comparable to

that shown here, it is important to note that only SAR

observations have potential resolutions that approach
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HF radar in the coastal ocean and that none of these

observational platforms has the temporal sampling

abilities of HF radar.

c. Demonstration of success, failures, and relevance
of the technique

An example of the potential HF radar wind extrac-

tions, compared to available validation data, is shown in

Fig. 9. This comparison is illustrative of the potential

areas of successful wind extractions and of areas needing

improvement. For all the data shown from this location

(located offshore and to the east), the rms differences in

wind direction and speed were 458 and 2.2ms21, re-

spectively. The speed and direction are adequately pre-

dicted during samples 9–11 and 16–24, when the signal

powers themselves have only a small range. However,

areas of notablemisfit also exist that are representative of

the two types of errors encountered in the larger dataset.

The first type, found during samples 1–6, 12–15, and

25–28, is when the extracted wind speed grossly over- or

underpredicts the observed winds. This type of error is

of interest in that the signal powers span a wide range

and the wind direction is potentially well resolved, but

the model fit still poorly estimates the wind speed. It is

suggested that the ambiguity of the wind speed model,

particularly at the offshore locations, might be re-

sponsible for these types of errors. As shown in Fig. 5,

the wind speed relationship is potentially parabolic in

wind speed, and thus the solution could be multivalued

for wind speeds of, for example, 4 or 8ms21. However,

FIG. 8. RMS differences betweenmeasured and estimated wind speeds for all locations, shown for (left

to right) all wind speeds, and 2–6 and 6–10m s21 using (top) the calibration dataset and individually

estimated coefficients, (middle) the calibration dataset and mean coefficients, and (bottom) all available

data with the mean calibrations.
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other environmental factors—for example, rain—and

their effects on the radar might also cause under-

predictions by lowering the overall power for a given

wind speed. It is not known how much rain specifically

may have affected the dataset, but preliminary estimates

suggest that it is not the primary driver of variability

about the mean relationships. Finally, while it is unclear

how much the lower power gains with increasing wind

speed and range offshore may add to this issue, adding

radar coverage from a different operating frequency

would clearly mitigate many of these types of issues and

greatly improve error estimates at higher winds. Further

examination of the drivers of this type of error is an

important topic for future efforts.

The second type of error, shown in samples 29–31

(Fig. 5), is when the wind speed is accurately predicted

but the wind direction is poorly predicted. This indicates

more a disagreement between the radar and the data

than a potential failure of the model, and it may be the

result of a breakdown of the assumption that the Bragg

waves are following and responding to the wind (see

Wyatt 2012) or errors in one or both of the observations.

Analysis of the full dataset shows that these types of

cases tend to have larger values of model-estimated er-

ror. However, the overall the difference between the

observed and extracted winds is within the bounds of the

model-estimated error 80% of the time. Thus, despite

the fact that potentially large differences can exist be-

tween the extracted and observed winds, the wind ex-

traction results are able to provide knowledge about

when such errors are present.

Finally, it is useful to examine the potential role of the

extracted wind results to provide details on the spatial

structure of the wind field not possible via other, coarser

sampling methods. Shown in Fig. 10 is the detailed

structure of the extracted wind speed and direction at

0645 UTC 4 November 2014. As shown, the wind di-

rection is predominately offshore to the south

FIG. 9. Sample comparisons of the in situ measured and estimated (top) wind speed and

(bottom) wind direction, and (middle) the observed radar power differences. Note the sample

numbers do not represent a time series but are individual, independent estimates made

throughout the analysis period.
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throughout the domain with some apparent spread-

ing away from directly south with longitude. The

wind speed, however, varies more substantively, in-

creasing from 4 to 10m s21 from east to west

(Fig. 10). At the time of the sampling, the ASV was

located on the eastern side of the area, and the mobile

wind sensor agreed well with the local extractions. This

example time period occurs at a time of rapidly in-

creasing wind speed (Fig. 3), and the change in speed

across the study area is consistent with a weather feature

propagating through the region. Thus, while the in-

termittent over-/underprediction errors described

above, which can be easily mitigated in future in-

stallations, add a note of caution in the interpretation of

the present dataset, the radar results suggest that sizable

spatial structure in the wind field may be present in the

study area, and captured by the remote sensing methods

described here.

7. Conclusions and recommendations

This work has demonstrated that remote observations

of surface winds can be made via HF radar using low-

cost deployments of autonomous surface vehicles to

calibrate and validate empirical models linking wind

speed and direction directly to the radar backscatter

power. Using the method and calibration/validation

techniques described above, HF radar remote extrac-

tions of surface winds have the following:

d RMS differences of 1.2–1.4m s21 within the observa-

tional range of interest here, nominally 2–6ms21

wind speeds
d RMS differences of 1.7–2.7m s21 for high wind speeds

near the edge of the suitable ranges of the sensors and

technique
d Uncertainties that are well characterized by the

model-estimated uncertainty ranges, as 80% of differ-

ences between in situ and remote estimates were less

than the uncertainty estimate given in the model.

It is important to note that the error values given here

are for 15-min samples of the radar power and winds.

Errors generally decrease with longer—30min or

hourly—averages, suggesting that short-term noise

or model–data mismatches drive a portion of the

errors seen.

The main goal of the study was to show the utility of a

mobile wind sensor, combined with potentially simpli-

fied models and optimizations were able to reasonably

observe the surface wind field remotely via HF radar.

This work has shown that as few as 10–15 independent

samples at each measurement location were sufficient,

provided they spanned the distribution of the potential

wind field present. Thus, potentially short deployments

of an autonomous vehicle, or sparse shipboard obser-

vations of opportunity, could be used to calibrate an

HF radar system for winds and to perform periodic

validation.

However, the model developed and implemented

here remains overly simplistic in a few key areas and

there are numerous, more complex optimizations for

the linear sets of equations examined here. Additional

efforts in honing the model formulation are likely to

provide the most substantial reductions in error. As

stated in the text, 80% of the wind estimates where

within the uncertainty metric of the wind extractions.

Said differently, this shows that large differences between

the data and radar estimates are more likely due to

measurement error in the sensors or a poorly fitting

model than the method used to optimize the solution.

Thus, additional work should examine individual

cases of high error rates to understand what factors in

the data or model drove the misfit, as well as examine

and understand the drivers for empirical constant

variability. Are higher standard deviations in the

empirical constants due to poor wind directional

model fits, radar noise, or incorrect implementations

of the wind speed dependence? Would a more careful

accounting of other sources of power/intensity vari-

ability in the model formulation—that is, due to

FIG. 10. Surfacewind vectors at 0645UTC14Nov 2014 sensed by

the calibrated HF radar system (black) and in situ wind sensors

(red). The mobile sensor was assumed representative of a 3-km

watch circle.
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ground wave propagation changes—lead to improved

results?

Targeted changes or additions to the observational

system used here would likely resolve many of the is-

sues highlighted above. Many of the increased errors at

higher wind speeds were due to low signal-to-noise

ratios and the winds approaching or exceeding the

theoretical limit of radar to wind correlation for the

operating frequencies used. These issues could be fur-

ther mitigated, or perhaps solved, by increased trans-

mitting power (the WHOI systems were not operating

at ‘‘full’’ power during the study period) and com-

bining these observations with those of a second,

lower-frequency system. This combination of multiple

radar-operating frequencies—that is, the 25-MHz

systems used here and an 11–13-MHz system—would

enable data collection over a wider range, 2–14m s21,

of optimal wind speeds. Additionally, in situ estimates

of surface winds by at least one buoy system in the area

would allow real-time monitoring and adjustments of

the extraction estimates, greatly enhancing confidence

in the larger, potentially spatially variable results. Areas

with multifrequency HF radar coverage and in situ

buoy–based wind sampling exist in many coastal areas;

thus, a focused effort to resolve these remaining issues

could allow real-time surface wind monitoring via HF

radar in many areas.

Finally, these results suggests that the technique could be

useful for measuring near-surface winds over the coastal

ocean remotely on an operational basis and would fill an

important niche in our operational observations of coastal

ocean winds. Existing observational systems, such as buoy-

based point measurements and satellite-based scatter-

ometery, provide either high temporal coverage or high

spatial coverage, but not both. However, greater temporal

and spatial resolution of the near-surface winds that drive

ocean currents and impact coastal areas is necessary for a

broad range of research, industry, and operational uses.

Such a real-time, quality-controlled data product could

support data-driven, high-resolution, short-term forecasting

of coastal wind fields with well-characterized uncertainties,

and enable an examination of atmospheric forcing of the

ocean and its potential variability on a wider range of

temporal and spatial scales.
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