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ABSTRACT

 

The area under the receiver operating characteristic (ROC) curve, known as the
AUC, is currently considered to be the standard method to assess the accuracy of
predictive distribution models. It avoids the supposed subjectivity in the threshold
selection process, when continuous probability derived scores are converted to a
binary presence–absence variable, by summarizing overall model performance over
all possible thresholds. In this manuscript we review some of the features of this
measure and bring into question its reliability as a comparative measure of accuracy
between model results. We do not recommend using AUC for five reasons: (1) it
ignores the predicted probability values and the goodness-of-fit of the model; (2) it
summarises the test performance over regions of the ROC space in which one would
rarely operate; (3) it weights omission and commission errors equally; (4) it
does not give information about the spatial distribution of model errors; and, most
importantly, (5) the total extent to which models are carried out highly influences
the rate of well-predicted absences and the AUC scores.
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INTRODUCTION

 

The area under the receiver operating characteristic (ROC)

curve, known as the AUC, is widely used to estimate the predictive

accuracy of distributional models derived from presence–

absence species data. As the output of the different modelling

techniques that use binary data as dependent variables produces

continuous probabilities of presence (

 

P

 

), where 

 

P 

 

and 1 – 

 

P

 

represent the degree to which each case is a member of one of the

two events, a threshold is needed to predict class membership.

Thus, the cases above this threshold would be predicted as

presences, and the remaining cases would be absences. Comparing

these binary transformed probabilities with the validation

presence–absence data set enables the estimation of four different

fractions in a two-by-two confusion matrix: the correctly

predicted positive fraction or sensitivity; the correctly predicted

negative fraction or specificity; the falsely predicted positive

fraction (commission errors); and the falsely predicted negative

fraction (omission errors). These four scores, and other measures

of accuracy derived from the confusion matrix, such as the

proportion of correct predictions (correct classification rate) and

Cohen’s kappa (Cohen, 1960), all depend on the discrimination

threshold. In order to overcome the supposed subjectivity in the

threshold selection process, the ROC curve plots sensitivity as a

function of commission error (1 – specificity) as the threshold

changes. The calculation of the area under this curve (the AUC

score) provides a single-number discrimination measure across

all possible ranges of thresholds. This discrimination measure is

equivalent to the non-parametric Wilcoxon test (Hanley &

McNeil, 1982), in which the rank of all possible pairs for presence

and absence assigned probabilities is compared.

ROC curves were developed during World War II to assess

the performance of radar receivers in signal detection (to estimate

the trade-off between hit rates and false alarm rates), and were

subsequently adopted in biomedical applications, mainly for

comparing the performance of diagnostic tests (Pepe, 2000). In

spite of its wide use and its generally good performance (Bradley,

1997), a lot of research effort has recently been devoted to the

calculation of AUC score variations. This is being done to

provide a measure of variance or to estimate the AUC’s statistical

significance (Provost & Fawcett, 2001; Fawcett, 2004; Schröder,

2004; Ferri 

 

et al

 

., 2005; Forman & Cohen, 2005). Since its first

proposal as an appropriate method to estimate the accuracy of

species distribution models (Fielding & Bell, 1997), many studies
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have recommended its use in this field of research (Pearce &

Ferrier, 2000; Manel 

 

et al

 

., 2001; McPherson 

 

et al

 

., 2004, among

many others). However, some authors have begun to criticize the

indiscriminate use of AUC as the standard measurement of

accuracy in distribution models (Termansen 

 

et al

 

., 2006; Austin,

2007). In particular, Austin (2007) warns that ‘reliance on AUC

as a sufficient test of model success needs to be re-examined’.

Agreeing with this concern, we examined some of the characteristics

of this measure that question its reliability as a comparative

measure of accuracy between model results. We also evaluated its

general usefulness in distribution predictive modelling.

 

DRAWBACKS OF AUC AS A MEASURE OF 
OBSERVATION–PREDICTION FIT IN SPATIAL 
DISTRIBUTION MODELLING

 

There are several recognized features of the ROC curve that

prevent its use as a measure of model accuracy. Firstly, AUC

scores ignore the actual probability values, being insensitive to

transformations of the predicted probabilities that preserve their

ranks (Ferri 

 

et al

 

., 2005). This could be an advantage as it makes

possible the comparison of tests that yield numerical results on

different measurement scales (Pepe, 2000). However, in this way,

transformations for species occurrence probabilities, such as

those proposed by Real 

 

et al

 

. (2006), may dramatically change

the prediction output but do not have any effect on the AUC

score. AUC is a discrimination index that represents the likeli-

hood that a presence will have a higher predicted value than an

absence (Hosmer & Lemeshow, 2000, p. 162), regardless of the

goodness-of-fit of the predictions (Vaughan & Ormerod, 2005;

Quiñonero-Candela 

 

et al

 

., 2006; Reineking & Schröder, 2006).

Therefore, it is possible that a poorly fitted model (overestimating

or underestimating all the predictions) has a good discrimination

power (Hosmer & Lemeshow, 2000, p. 163). It is also possible

that a well-fitted model has poor discrimination, if probabilities

for presences are only moderately higher than those for absences,

for example. Hosmer & Lemeshow (1980) and Lemeshow &

Hosmer (1982) proposed testing the fitness of a model according

to the predicted probabilities (see revisions of this approach in

Graubard 

 

et al

 

., 1997, and in Hosmer 

 

et al

 

., 1997). They tested

whether the proportion of presences in different ranges of the

predictor values corresponded to the predicted probabilities.

A probability value of 0.3, for instance, does not predict that all

sites with this value will be absences (or presences if a lower

threshold is selected), but that 30% of sites with this value will

support the species. If, for example, the probability of presence

increases from a mean value of 0.4 in half of the territory to a

mean value of 0.6 in the other half, and a goodness-of-fit test

shows that data fit the predictions, the AUC value will nevertheless

be 0.6 (remarkably low), meaning low discrimination but not

low accuracy.

A second weakness of ROC plots is that they summarize test

performance over regions of the ROC space in which one would

rarely operate (see Baker & Pinsky, 2001). The ROC curve has

been recommended because it summarises model performance

over all conditions a model could operate in (Swets, 1988), using

all the information provided by the predictive model (Fielding &

Bell, 1997). However, researchers will rarely be interested in all

possible situations, but rather in one or a few of them. For

example, extreme right and left sides of the ROC space are

generally useless, as they correspond to high false-positive and

high false-negative rates, respectively (Baker & Pinsky, 2001).

On the contrary, if we were interested in maximizing correctly

predicted positives and commission errors were unimportant,

then the central and left areas of the curve would be valueless.

Partial ROC curves have been proposed as an alternative to

entire ROC curves (Thompson & Zucchini, 1989; Baker & Pinsky,

2001), but the partial AUC does not avoid any of the remaining

drawbacks pointed out in this contribution.

Third, and related to the second point, AUC weights omission

and commission errors equally, while in many applications of

distribution modelling, omission and commission errors may

not have the same importance (Fielding & Bell, 1997; Peterson,

2006). For example, from a reserve-design point of view, mis-

classifications of absences (commission errors) must be regarded

as a more serious drawback than the opposite. On the other hand,

low omission errors are desirable when searching for new species

or populations (see Peterson, 2006). In fact, some modelling

techniques based only on known presences and focused on

simulating the potential, not realized, distribution of the species

explicitly weight omission errors more strongly than commission

errors (Anderson 

 

et al

 

., 2003). When misclassification costs are

unequal, summarising over all possible threshold values is flawed

(Adams & Hand, 1999). If two ROC curves belonging to different

models cross, we could decide that the one with the highest AUC

value is the best although, perhaps, the other can be the best for

our cost ratio decision criteria (Adams & Hand, 1999). Visual

inspection of the complete ROC curves instead of considering

only the numerical AUC values could be a better strategy in this

case. Anyway, cost assignments to false presences and absences

are always subjective, and the simplest way of doing this is to

change the probability threshold above which presence is

accepted until the desired rate between commission and omission

errors is achieved. The independent examination of the percentage

of presence and absence errors helps to select the best model

according to the researcher’s goals, rather than the use of a

synthetic measure such as the AUC.

Moreover, in contrast to biomedical applications where

positive or negative events are clearer (a patient has cancer or

not, with little doubt), when recording presence–absence

data of a species, absences have a higher degree of uncertainty

than presences. Apparent absences may be due, simply, to low

detectability of the species, or may correspond to non-sampled

areas. Because of this, false absences are more likely to occur than

false presences and, consequently, commission errors should not

weigh as much as omission errors. A compound discrimination

measure such as AUC could then be misleading. This fact is

of special concern given the extended use of background data as

pseudo-absences, i.e., using randomly selected sites where the

species has not been reported as absences in the training process

(Elith 

 

et al

 

., 2006), a procedure that inflates the number of false

absences.
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A fourth weakness is that ROC plots do not provide information

about the spatial distribution of model errors (Pontius & Schneider,

2001), since it is impossible to decide if the biases are homogene-

ously distributed across the modelled territory, or if the lack of

discrimination is due to the incapacity to correctly predict a

specific region. Ignorance of the spatial distribution of errors is

a common drawback to all single-number measures of accuracy,

such as sensitivity, specificity and other measures derived from

contingency tables. Researchers usually ignore the spatial location

of errors, but their spatial arrangement can give interesting clues

about ecological and biogeographical questions, and can change

the relative weight of those errors (i.e., a model with randomly

distributed errors is not the same as a model with spatially

aggregated errors, the latter probably indicating the role of

unaccounted for spatially structured variables).

Fifth, species distribution data are referred to a concrete

geographical extent, and increasing the geographical extent

outside presence environmental domain entails obtaining higher

AUC scores. This feature decisively prevents the use of AUC for

testing accuracy in predictive distribution modelling. For example,

in a clinical investigation, the purpose may be to estimate if a

drug has a significant effect on a sample of patients compared

with a control population. In this case, avoiding a bias in the control

population (for example, people with a special resistance to the

disease) is crucial to the experimental design. In species distribution

research, it has been proposed that ‘invented’ absences from

environmentally distant areas be used as pseudo-absences (Engler

 

et al

 

., 2004; Lobo 

 

et al

 

., 2006). In this case, using pseudo-absences

more environmentally distant from the presences increases the

rate of well-predicted absences and the AUC scores. This would

be analogous to selecting a control sample in a clinical study

comprising people gradually more distant from the conditions

that cause the incidence of the disease (for example, selecting the

resistant population). The more environmentally distant the

absences, the better they will be predicted even with a bad model.

A model that overpredicts presences will have a low commis-

sion error if the number of absences is much higher than that of

presences as a consequence of increasing the extent of the study

area. If, for example, 10 actual presences are compared to 90

absences and a model predicts presences in 20 sites (an over-

prediction of 100%), the sensitivity will be 1, the specificity will be

0.89, and the AUC will be interpreted as outstanding. Thus, high

sensitivity, specificity and AUC scores can be artificially obtained

by simply increasing the extent of the territory. Consequently, the

accuracy of different models for the same species should not be

assessed using AUC if they differ in the total extent analysed.

On the other hand, different species usually have distinct

ratios between the extent of occurrence and the whole extent of

the territory under study, i.e. they differ in their relative occurrence

area. The smaller this ratio, the higher the number of absences

and the more likely it is that absence data are environmentally

distant from the presence domain. This is probably the reason

why rare species are usually ‘better predicted’ than widespread

ones (e.g. Brotons 

 

et al

 

., 2004; Arntzen, 2006; Hernández 

 

et al

 

.,

2006; McPherson & Jetz, 2007); it is a pure and inevitable

methodological question. Consequently, AUC values cannot be

used to compare model accuracy between species when they

differ in their relative area of occurrence. In the same way, similar

values of specificity and AUC may imply large differences in the

degree of overprediction. A 5% commission error is not equivalent

for a ‘common’ and a ‘rare’ species. For the latter, this commission

error can imply a several fold increase in the distributional area

of the species.

The dependence of the AUC on the choice of geographical

extent has been outlined by other authors in papers not specifically

devoted to this question (Wiley 

 

et al

 

., 2003; Termansen 

 

et al

 

.,

2006), but the deep implications of this effect continue without

being considered. Both AUC and specificity scores depend on the

relative occurrence area, which implies that between-species

model accuracy comparisons should not be approached using

these measures.

 

CONVERSION TO BINARY MAPS: IS THE 
THRESHOLD CRITERION SUBJECTIVE?

 

The main argument in favour of ROC curves is that they do not

depend on a threshold, whose selection is thought to be subjective.

However, this argument is questionable, since the criteria to

select the best threshold to convert continuous predicted values

to binary predictions have been recently improved. The logistic

function, for instance, is symmetric with the inflection point

located at the 0.5 probability value (Real 

 

et al

 

., 2006). So, when

the training data contain the same number of presences and

absences, 0.5 is the obvious and correct threshold if the same cost

is assigned to commission and omission errors. However, when

any of the two events is higher than the other, mean probabilities

are biased towards the most common event (Hosmer & Lemeshow,

1980; Cramer, 1999). This effect is inevitable because logistic

probabilities are computed based on the values of the predictors

as well as on the relative proportion of presences and absences

(Real 

 

et al

 

., 2006). When this happens, the 0.5 threshold is incorrect,

and a prevalence-dependent threshold is needed (Jiménez-

Valverde & Lobo, 2006; Jiménez-Valverde & Lobo, 2007). The

supposed ambiguity in the threshold selection process is

produced by this inevitable and well-known mathematical effect.

Simply, the threshold must be adjusted to the prevalence of the

training data.

Paradoxically, once the AUC score was developed as a threshold-

independent measure, researchers proposed methods for

selecting a threshold from this curve. It has been assumed that in

ROC plots the optimal classifier point is the one that maximizes

the sum of sensitivity and specificity (Zweig & Campbell, 1993).

However, Jiménez-Valverde & Lobo (2007) have found that a

threshold that minimizes the difference between sensitivity and

specificity performs slightly better than one that maximizes the

sum if commission and omission errors are equally costly. When

the threshold changes from 0 to 1, the rate of well-predicted

presences diminishes while the rate of well-predicted absences

increases. The point where both curves cross can be considered

the appropriate threshold if both types of errors are equally

weighted (Fig. 1a). In a ROC plot, this point lies at the intersection

of the ROC curve and the line perpendicular to the diagonal of
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no discrimination (Fig. 1b), i.e., the ‘northwesternmost’ point of

the ROC curve. The two thresholds can be easily computed

without using the ROC curve. Both thresholds are highly correlated

and, more importantly, they also correlate with prevalence (Liu

 

et al

 

., 2005; Jiménez-Valverde & Lobo, 2007). As a general rule,

a good classifier needs to minimize the false positive and negative

rates or, similarly, to maximize the true negative and positive

rates. Thus, if we place equal weight on presences and absences

there is only one correct threshold. This optimal threshold, the

one that minimizes the difference between sensitivity and specificity,

achieves this objective and provides a balanced trade-off between

commission and omission errors. Nevertheless, as pointed out

before, if different costs are assigned to false negatives and false

positives, and the prevalence bias is always taken into account,

the threshold should be selected according to the required criteria.

It is also necessary to underline that the transformation of

continuous probabilities into binary maps is frequently necessary

for many practical applications that rely on making decisions

(e.g., reserve selection).

 

CONTINUOUS PROBABILITY MAPS

 

AUC is commonly used in distribution modelling literature, even

when discrimination capacity is not the main objective. We could

be interested in the continuous probability map (Vaughan &

Ormerod, 2003), as it reveals the whole gradient in habitat

suitability. In this case, the selection of an appropriate threshold

would be of concern only for measuring discrimination capacity.

We need to consider that, because the mean probability bias is

due to unbalanced prevalence, raw probability scores do not

reflect habitat suitability (Jiménez-Valverde & Lobo, 2006; Real

 

et al

 

., 2006). It is necessary to rescale these probabilities if we want

to use continuous and not binary predictions (Jiménez-Valverde

& Lobo, 2006; Real 

 

et al

 

. 2006). Then, after the proper rescaling,

not only a measure of discrimination capacity is necessary, but

also a measure of habitat suitability accuracy. This is an interesting

challenge in distribution modelling: do probability scores reflect

real adequacy? The ROC curve says nothing about this, so a high

AUC score does not imply suitability accuracy. Researchers must

avoid the indiscriminate use of the AUC and reconsider the evalua-

tion procedure of their models in accordance with their goal.

 

THE APPROPRIATE USE OF AUC IN 
DISTRIBUTION MODEL ASSESSMENT

 

Despite widespread use in several research fields, AUC has

serious drawbacks when applied to species distribution modelling.

It was rapidly adopted by presence–absence modellers as a measure

of discrimination due to its good performance in other research

areas and its ease in understanding and computation. However,

apart from the flaws common to all disciplines, the uncertainty

of absences and, mainly, the spatial dimensions of distributions

are specific characteristics of species data that prevent the use of

AUC in distribution modelling. The real value of AUC is that it

provides a measure of the degree to which a species is restricted

to a part of the variation range of the modelled predictors, so that

presences can be told apart from absences. If a species is wide-

spread and the probability of presence increases steadily with

predictor values, an accurate model will have low AUC values,

which will only denote the true generalist nature of the species

distribution. In conclusion, AUC provides information about the

generalist or restricted distribution of a species along the range of

predictor conditions in the study area, but it does not provide

information about the good performance of the model.

 

WHERE TO FROM HERE?

 

The overall agreement between the observed training data

and the model output scores is guaranteed by the modelling

methods. Modelling techniques are based on an inductive process,

and inductive models should be assessed on the basis of their

induction rules. The error derived from the incorrect application

of the induction rules could be discarded if the software used is

Figure 1 (a) Variation in the percentage of success in the prediction 
of presences (continuous line) and absences (broken line) with the 
change in the threshold used to discriminate both states from a 
continuous probability variable. The arrow represents the threshold 
that minimizes the difference between sensitivity and specificity. 
(b) ROC plot in which an arrow shows the ‘most north-western’ point.
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reliable. Different methods could be compared, however, according

to the assumptions implicit in the induction rules. Some profile

methods, for instance, assume that the species is equally likely to

occur within the environmental range of the presences, whereas

GLMs tend to define a function of gradual probability variation

according to the environmental conditions.

Nevertheless, even inductive models may fail to reflect the

training data in specific parts of the territory analysed. The

display of the deviance between observations and predictions

(the subtraction of the output score from 1 for presences and

from 0 for absences) throughout the territory may reflect the

areas where commission error (negative deviance) and omission

error (positive deviance) aggregate spatially.

Model distributional simulations can be confirmed using new

information of the same type used to calibrate it (generally

presence/absence data), but must always consider that the

percentages of correct presences and absences depend on the

relative occurrence area. The accuracy of distribution models

can also be estimated by examining the consistency of model

predictions with new observational data of a type different from

that used to calibrate the models. The results of a field survey in

a portion of the territory could be used to evaluate, for example,

if the model scores correlate with the species abundance, density

of breeding pairs, or productivity, which could also help in the

interpretation of the biogeographical meaning of the results.

Strictly speaking, only closed models can be validated

(Oreskes 

 

et al

 

., 1994). Species distribution models are incomplete

approximations because the distribution of a species is always

influenced by an unknown number of non-independent factors

that interact spatially in an unknown manner. In this case, the

agreement between simulated and observational data implies the

calculation of the accuracy of the model within a confirmatory

iterative procedure in which the result of each model should be

viewed as a unique ‘distributional hypothesis’ limited to the used

predictors, and the extent and location of the considered region.

The relevance of omission and commission errors depends on

the modelling purpose. If we want to generate a distributional

simulation able to reflect all the environmentally suitable places in

which a species can occur according to a group of environmental

variables (the potential distribution), we need to use profile

techniques that only use presence data, or discrimination

techniques that use ‘invented’ absences outside the environmental

domain of presences. In this way we will not incorporate absence

data from climatically suitable localities in which the species does

not occur due to historical factors, biotic interactions or dispersal

limitation processes (Ricklefs & Schluter, 1993; Hanski, 1998;

Pulliam, 1988; Pulliam, 2000). Including absences from 

 

a priori

 

favourable environmental localities inevitably diminishes the

predicted range size approaching the simulation to the realized

distribution. We claim that the current distribution of species

should be modelled incorporating such distribution restriction

forces and using reliable presence and absence data, and that

these geographical representations need to be confirmed using

reliable distributional information, always considering that model

predictions are reliant on the conditions in which the model has

been carried out (the predictors used, the quality and number of

data points of the dependent variable, as well as the extent and

resolution considered).

Accuracy measures proposed in the literature (Fielding & Bell,

1997) can be used to compare techniques for the same species at

the same extent. In this case, instead of using only the AUC, we

propose that sensitivity and specificity should be also reported,

so that the relative importance of commission and omission

errors can be considered to assess the method performance.

Unfortunately, we cannot recommend any useful method to

compare model performance among species. To the same extent,

species unavoidably differ in range sizes and, therefore, in their

relative areas of occurrence. Thus, the extent-dependence of

model accuracy measures hinders their use as a means to compare

model performance between species.
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