The role of ocean mixing in Southern Ocean iron-fueled phytoplankton blooms: insight from radium isotopes

Matt Charette Woods Hole Oceanographic Institution, Woods Hole, MA USA

> Pieter van Beek LEGOS, Toulouse, France

with M. Gonneea, P. Statham, H. Planquette, P. Morris, I. Salter, G. Fones (WHOI, NOC-Southampton UK; CROZEX Project),

H. Dulaiova, P. Henderson, and P. Supcharoen (BWZ Project),

and M. Bourquin, J-L. Reyss, M. Souhaut, and C. Jeandel (KEOPS Project).

Funding from NSF (US), NERC (UK), and CNRS (France)

-30 -40 -50 S Georgia -60 erguelen November 200 -70 ____ -180 -120 120 -60 60 180 0 -30 -40 -50 -60 Kerguelen er 2001 Jecemh -70 a maine stime in a subset -180 -120 -60 60 120 180 **1.Kerguelen Plateau 2.Shackelton Fracture Zone/Southern Scotia Sea**

Intense Phytoplankton Blooms in HNLC Waters

3.Crozet Plateau

Objectives

Key question(s):

What are the sources of iron that fuel Southern Ocean phytoplankton blooms?

- (a) Shelf/Island source?-propagation of the short-lived radium isotopes away from shore
- (b) Vertical mixing (sub-euphotic zone) source? -vertical gradient in a longer-lived radium isotope

Vertical Mixing of Deep Water Iron

Iron concentration increases with depthDiapycnal mixing may supply the necessary iron

Coale et al., 2005

Enhanced Turbulent Mixing Over Rough Topography

-mixing rates increased 10-100x above and downstream of ocean plateaus and ridges -increases observed >500-1000 m above the seafloor

Garabato et al., 2004

Radium isotopes (²²³Ra, ²²⁴Ra, ²²⁶Ra, ²²⁸Ra): Sources

- Like iron, water above shelves is enriched in radium, which is not biologically or chemically scavengened

- Enrichments may be transferred to the open ocean by advection/diffusion transport processes

Estimate of transit time (Ra : chronometers)

Radium isotopes (²²³Ra, ²²⁴Ra, ²²⁶Ra, ²²⁸Ra): Mixing Tracers

Kerguelen Plateau

<u>KEOPS</u>

²²⁸Ra : Tracing water masses that interacted with shallow sediments = advection

van Beek et al, 2008 Bourquin et al., 2008

²²⁸Ra : quantification of the vertical mixing

Vertical Fe Flux on the Kerguelen Plateau = 1.0 - 14.3 nmol / m² d

Fe demand : 208 \pm 77 nmol/ m² d

Diapycnal mixing cannot supply enough iron to sustain the bloom

van Beek et al, 2008

Distribution of Total Dissolvable Fe on the Kerguelen Plateau

(F. Chever et al.)

TDFe concentrations (nM) 0 - 500 m ; except C1

Lateral transport : potentially significant Fe source for the Plateau

Shackelton Fracture Zone

Dissolved Total Flux = **4900 nmol m⁻² d⁻¹** if bloom area = $2.25 \times 10^{10} \text{ m}^2$

Dulaiova et al. (2008), GBC

Crozet Plateau

-diffusion model can be fit to the transect gradient

-mixing is not necessarily constant across the entire transect

Charette et al. (2007) DSR II

Plateau Derived Fe Flux

Assume:

Dissolved **Fe gradient** of: ~1300 nmol/m³ (0 km) to 200 nmol/m³ (15 km) = 0.070 nmol/m³/m

Ra-derived K_h of:

6.6-39 m²/s (5.7 x 10⁵ m²/d)

 $F_{Fe} = 0.070 \text{ nmol/m}^4 \text{ x } 5.7-34 \text{ x } 10^5 \text{ m}^2/\text{d} = 40-240 \text{ }\mu\text{mol/m}^2/\text{d}$

Total plateau derived Fe (70 m MLD):

 $F_{Fe} = 140 \ \mu mol/m^2/d \ x \ 70 \ m \ x \ 600,000 \ m = 5,900 \ mol \ Fe/d$

Total plateau derived Fe (250 m MLD):

 $F_{Fe} = 140 \ \mu mol/m^2/d \ x \ 70 \ m \ x \ 2,100,000 \ m = 21,000 \ mol \ Fe/d$

Normalized to bloom region (300 km x 300 km): $F_{Fe} = 65-230 \text{ nmol/m}^2/d$

Crozet Plateau Dissolved Fe Budget

Total Fe supply to the mixed layer: 85-300 nmol/m²/d (could elevate pre-winter Fe to ~0.6-0.8 nM)

Total Phytoplankton Fe requirement: 25-1000 nmol/m²/d

Summary

-The Ra quartet show promise as tracers of micronutrient fluxes in HNLC waters

-Lateral iron fluxes appear to dominate over vertical exchange in Southern Ocean natural iron fertilized blooms (*though in some cases the "vertical" source may be linked to subsurface horizontal supply*)

Study Area	Vertical	Horizontal
Kerguelen	1-14	?
Shackelton FZ	27-135	4800
Crozet	6 - 62	65-230

nmol m⁻² d⁻¹

-but....

-Detection is a problem (large volumes required)

-Lateral input may complicate 1-D model for 228-Ra derived K_z

estimates

Charette, M.A., M.E. Gonneea, P. Morris, P. Statham, G. Fones, H. Planquette, I. Salter, A. Naveira Garabato. (2007) *Deep-Sea Research II*, **54**, 1989-1998.

van Beek P., M. Bourquin, J-L. Reyss J-L., M. Souhaut M., M. Charette, and C. Jeandel. (2008) *Deep-Sea Research II*, **55**, 622-637.

Dulaiova, H., P. Henderson, M.V. Ardelan, and M.A. Charette. (2009) *Global Biogeochemical Cycles*, **23**, GB4014, doi:10.1029/2008GB003406.