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Wavelet analysis of ecological time series
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Abstract Wavelet analysis is a powerful tool that is

already in use throughout science and engineering. The

versatility and attractiveness of the wavelet approach lie in

its decomposition properties, principally its time-scale

localization. It is especially relevant to the analysis of non-

stationary systems, i.e., systems with short-lived transient

components, like those observed in ecological systems.

Here, we review the basic properties of the wavelet approach

for time-series analysis from an ecological perspective.

Wavelet decomposition offers several advantages that are

discussed in this paper and illustrated by appropriate syn-

thetic and ecological examples. Wavelet analysis is notably

free from the assumption of stationarity that makes most

methods unsuitable for many ecological time series. Wavelet

analysis also permits analysis of the relationships between

two signals, and it is especially appropriate for following

gradual change in forcing by exogenous variables.

Keywords Ecological time series � Transient dynamics �
Non-stationarity � Discontinuities � Wavelets �
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Introduction

Since Elton’s classic works (Elton 1924; Elton and Nichol-

son 1942), understanding and explaining the causes of quasi-

regular multiannual cycles in animal populations have been

central issues in ecology. Nowadays, explaining both the

characteristics of ecological time series and the dependen-

cies between population time series and environmental series

is an important challenge (Buonaccorsi et al. 2001; Cazelles

and Stone 2003; Liebhold et al. 2004). The importance of

this challenge is emphasized by the increasing evidence that

several ecological and population processes are affected by

climatic fluctuations (Bjørnstad and Grenfell 2001; Stenseth

et al. 2002). In particular, a variety of ecosystems and pop-

ulations are driven by large-scale climatic oscillations

(Forchhammer and Post 2004; Klvana et al. 2004).

In ecological studies, population monitoring often

consists of a series of observations on the abundance of

the organism (or species) made at equal intervals over a
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period of time. Statistical procedures are used to extract

information and to identify scales of pattern in the pop-

ulation fluctuations. Most of these statistical methods

come from what is generally known as time-series anal-

ysis. One of the fundamental tools in time-series analysis

is the periodogram or spectrum (Chatfield 1989). The

signal (the time series) is decomposed into harmonic

components based on Fourier analysis. This can be

regarded as a partition of the variance of the series into its

different oscillating components with different frequencies

(periods). Peaks in the periodogram or in the spectrum

indicate which frequencies are contributing the most to

the variance of the series. In this manner, periodicities, if

present, are detected. Spectral analysis in ecology dates

back more than 50 years when Bartlett (1954) analyzed

Canadian lynx data in the MacKenzie River area with a

periodogram. Spectral approaches have been used fre-

quently in ecology and population dynamics (see Platt and

Denman 1975 for a review).

The spectral (or correlation) techniques make the

assumption that the statistical properties of the time series do

not vary with time, i.e., are stationary. However, ecological

processes typically violate the stationarity assumption and

there are an increasing number of papers that underline the

non-stationary features of population dynamics (Cazelles

and Hales 2006). For instance, the dynamics of transients can

play a key role in the structure of natural systems (Hastings

2001; Benton et al. 2006). Recent studies have shown that

population dynamics can switch between different dynamics

at multidecadal scales, triggered by small environmental

changes. These regime shifts were observed in the North

Pacific ecosystem around 1977 (Hare and Mantua 2000).

Regime shifts have also been suggested in other regions, for

instance, in sea bird populations (Barbraud and We-

imerskirch 2001; Jenouvrier et al. 2005) and in some parts of

the marine trophic food web (Reid et al. 2001). Environ-

mental perturbations are not the only mechanisms able to

generate complex transients. Nonlinear dynamics with

‘‘unstable dynamical sets’’ can also generate complex and

non-stationary dynamics (Cushing et al. 1998; Cazelles

2001; Cazelles et al. 2001). Nevertheless, the more specta-

cular examples of transient behavior in population dynamics

have been documented in epidemiological studies (Cazelles

and Hales 2006). Long-term changes in climate, human

demography and/or social features of human populations

have large effects on the dynamics of numerous epidemics as

underlined by the analyses of some large data sets on measles

and whooping cough (Duncan et al. 1996; Rohani et al.

1999). Recently, a transient relationship between cholera

prevalence and El Niño oscillations in Bangladesh has been

identified (Rodó et al. 2002).

Wavelet analysis overcomes the problems of non-sta-

tionarity in time series by performing a local time-scale

decomposition of the signal, i.e., the estimation of its

spectral characteristics as a function of time (Lau et al.

1995; Torrence and Campo 1998). Through this approach

one can track how the different scales related to the periodic

components of the signal change over time. Wavelet cross-

spectrum and wavelet coherency generalize these methods,

allowing the analyses of dependencies between two signals.

It is worth noting that modified correlation approaches have

also been proposed to account for the non-stationary nature

of ecological time series (Rodriguez-Arias and Rodó 2004).

The potential of wavelet analysis appears particularly

attractive given the specific nature of ecological and

environmental time series and the relationships between

them. In 2001, synchrony patterns of measles in the UK

were revealed by wavelet analysis by Grenfell et al.

(2001). They used wavelets to show a progressive increase

in epidemic phase with time, accompanying the increasing

trend in vaccination rates. Since this work, several appli-

cations of wavelet analysis have been published. Some of

these papers were based on the characterization of time

series and the analysis of their possible association with

environmental signals. Nezlin and Li (2003) used wavelets

to qualitatively compare the features of chlorophyll and

environmental time series. Klvana et al. (2004) used

wavelets to demonstrate the association between North

American porcupine dynamics, local climate, and the solar

cycle. Recent studies used wavelets to indicate an abrupt

shift in the cyclic dynamics of Antarctic seabirds (Je-

nouvrier et al. 2005) and in Japanese vole dynamics

(Saitoh et al. 2006). Cazelles et al. (2005) also used this

approach to demonstrate a highly significant but non-sta-

tionary association between El Niño, precipitation and

dengue epidemics in Thailand. Using similar approaches,

Ménard et al. (2007) quantified the non-stationary associ-

ation between climate and tuna populations in the Indian

Ocean. Other papers have used the wavelet approach to

compare the frequency features of simulated and observed

data (e.g., Koelle and Pascual 2004) or to compare dif-

ferent analysis techniques (e.g., José and Bishop 2003,

Rodriguez-Arias and Rodó 2004). Some analyses dealing

with population synchrony use wavelets to extract the

phase of the time series and to estimate phase synchrony

(Rohani et al. 2003; Xia et al. 2004; Johnson et al. 2006).

Wavelet analysis was also applied to the analysis of spatial

patterns in vegetation systems (e.g., Bradshaw and Spies

1992; Dale and Mah 1998; Rosenberg 2004; Keitt and

Urband 2005; Mi et al. 2005). Despite the fact that most

papers deal with discrete wavelet transforms (DWT), Mi

et al. (2005) offer an interesting comparison of results

obtained using different continuous wavelet functions for

an analysis of ecological patterns. Nevertheless the analy-

ses of spatial patterns appear quite different to those of

ecological time series, which are the focus of this paper.
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In the following, we present the basic ideas of the wavelet

analysis for time-series analysis and its key features illus-

trated by both synthetic and ecological examples. Our main

goal is to emphasize the advantages of this technique in the

context of time-series analyses in ecology and population

biology. It is worth noting that most of the studies that used

wavelets in population dynamics only dealt with uni-variate

time series. Here, we show that wavelet approaches are also

of interest for the analyses of bi-variate time series.

Theory: the wavelet analysis

Although Fourier analysis is well suited to the quantifica-

tion of constant periodic components in a time series, it

cannot characterize signals whose frequency content

changes with time. Whereas a Fourier decomposition may

determine all the spectral components embedded in a sig-

nal, it does not provide any information about when they

are present. To overcome this problem, several solutions

have been developed in the past decades which are more or

less able to represent a signal in the time and frequency

domain at the same time. The aim of these approaches is to

expand a signal into different waveforms with local time–

frequency properties well adapted to the signal’s structure.

Gabor (1946) introduced a windowed Fourier decomposi-

tion to quantify the time–frequency content of signals. This

short-time or windowed Fourier transform provides a

decomposition of the signal in a time–frequency plane

whose partition is layered by rectangular cells of the same

size (Fig. 1). The time–frequency localization of this

approach is, however, inefficient because the frequency

resolution is the same for all the frequencies. A transient

(with higher frequencies) needs a high time resolution to be

well localized in time (Fig. 1). In contrast, a low-frequency

structure might need a small time resolution (Fig. 1).

The wavelet transform decomposes a signal over func-

tions (wavelets) that are narrow when high frequency

features are focused and wide on low frequency structures

(Daubechies 1992; Lau and Weng 1995). This decompo-

sition leads to a good trade-off for the time-scale

resolution, which is related to frequency resolution. This

also allows a good localization in both time and frequency

(Fig. 1), which is well suited to investigations of the tem-

poral evolution of aperiodic and transient signals. Indeed,

wavelet analysis is the time–frequency decomposition with

the optimal trade-off between time and frequency resolu-

tion (Lau and Weng 1995; Mallat 1998).

Continuous wavelet approach

The wavelet transform decomposes signals over dilated

and translated functions called ‘‘mother wavelets’’ u(t) that

can be expressed as the function of two parameters, one for

the time position (s), and the other for the scale of the

wavelets (a). More explicitly, wavelets are defined as

ua;sðtÞ ¼ 1
ffiffi

a
p u t�s

a

� �

: The wavelet transform of a time series

x(t) with respect to a chosen mother wavelet is performed

as follow:

Wxða; sÞ ¼
1
ffiffiffi

a
p

Z

þ1

�1

xðtÞu� t � s
a

� �

dt ¼
Z

þ1

�1

xðtÞu�a;sðtÞdt

ð1Þ

where * denotes the complex conjugate form. The wavelet

coefficients, Wx(a,s), represent the contribution of the scales
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Fig. 1 Time–frequency resolution of the wavelet approach. Left-
hand panel Examples of wavelets and their time–frequency boxes

representing the corresponding variance distribution. When the scale

(a) decreases, the time resolution improves but the frequency

resolution becomes poorer and is shifted towards high frequencies.

Conversely, if a increases, the boxes shift toward the region of low

frequencies and the height of the boxes decreases (with a better

frequency resolution) but they become wider (with a poor time

resolution). Right-hand panel In contrast to wavelets, all the boxes of

the windowed Fourier transform are obtained by a time or frequency

shift of a unique function, which yields the same variance spread over

the entire time–frequency plane
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(the a values) to the signal at different time positions (the s
values). The wavelet transform can be thought as a cross-

correlation of a signal x(t) with a set of wavelets of various

‘‘widths’’ or ‘‘scales’’ a, at different time positions s.

Figure 2 attempts to visualize the signification of the

wavelet transform. In Fig. 2d a mother wavelet of scale a

centered at location s is shown superimposed on an arbi-

trary time series. In the case of good matching between the

signal (x) and the wavelet (u), the integral of the product of

the signal with the wavelet of scale a produces a large

positive value for the real part of wavelet transform,

< Wxða; sÞð Þ; at the position s (Fig. 2d). When the matching

is low, < Wxða; sÞð Þ takes low values. But an association in

the opposite phase results in a high negative value for the

real part of wavelet transform (Fig. 2d). By moving the

wavelet along the signal (by increasing the s parameter),

structures relating to a specific scale a can be identified.

This process is repeated over continuous ranges of a and s
to identify all the coherent structures within the signal

(Fig. 2e). This produces a two-dimensional surface of

< Wxða; sÞð Þ (Fig. 2e).

Note that the choice of the wavelet function u(t) is not

arbitrary. This function is normalized to have unitary var-

iance ð
R

uðtÞj j2dt ¼ 1Þ and it verifies $u(t)dt = 0. The

wavelet decomposition is therefore a linear representation

of the signal where the variance is preserved (Daubechies

1992). This implies that the original signal can be recov-

ered by means of the inverse wavelet transform:

xðtÞ ¼ 1

Cg

Z

þ1

�1

Z

1

0

1

a2
Wxða; sÞua;sðtÞdsda ð2Þ

where Cg ¼
R1

0

ûðf Þk k2

f df and ûðf Þ denotes the Fourier

transform of u(t).

The wavelet transform is basically a linear filter whose

response function is given by the wavelet function. By

means of the inverse transform, the original signal can be

recovered by integrating over all scales and locations, a

0

0
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Fig. 2 Wavelet analysis. a–c Form of the Morlet wavelet as a

function of the scale parameter a for s = 0: a = a1 = 0.5 (a), a = a2

= 2 (b), a = a3 = 4 (c). Graphs display both the real part (solid line)

and the imaginary part (dashed line) of the wavelet. d Morlet wavelet

with a = a2 is superimposed on a given signal at different time

positions (s1, s2,s3). In s1, the matching between the signal and the

wavelet is height; this will give a high positive value of the real part

of the wavelet transform, < Wxða; s1Þð Þ: In s2, the matching is weak

and the value of < Wxða; s2Þð Þ will be low. Finally in s3, the signal and

the Morlet wavelet are in a perfect opposite phase with similar period,

and there will be a high negative value for < Wxða; s3Þð Þ: e Wavelet

transforms [or quantities derived from Wx (a,s)] are plotted on a two-

dimensional (2D) graph. As an example, e shows the value of

Wxða; sÞj j2 for a = a2 and for the three time positions s1, s2 and s3

defined in d. The complete 2D plot is obtained simply by computing

wavelet transforms for a given range of a and s values
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and s. Nevertheless, one can limit the integration over a

chosen range of scales, a1–a2, to perform a band-pass fil-

tering of the original time series in this chosen range of

scales.

Choice of the mother wavelet

There are several considerations in making the choice of a

wavelet, for example, real versus complex wavelets, con-

tinuous or discrete wavelets, orthogonal versus redundant

decompositions. Briefly, the continuous wavelets often yield

a redundant decomposition (the information extracted from a

given scale band slightly overlaps that extracted from

neighboring scales) but they are more robust to noise as

compared with other decomposition schemes. Discrete

wavelets have the advantage of fast implementation but

generally the number of scales and the time invariant prop-

erty (a filter is time invariant if shifting the input in time

correspondingly shifts the output) strongly depend on the

data length. If quantitative information about phase inter-

actions between two time series is required, continuous and

complex wavelets provide the best choice (further details can

be found in Mallat 1998). However, all the wavelets share a

general feature: low oscillations have good frequency and

poor time resolution whereas fast oscillations have good time

resolution but a lower frequency resolution.

Two popular continuous wavelets are the ‘‘Mexican hat’’

and the ‘‘Morlet wavelet’’. The choice of the continuous

wavelet can influence the time and the scale resolution of the

decomposition (this decomposition is related to the fre-

quency decomposition as seen below). Thus, as the Morlet

wavelet is very well localized in scales and then in fre-

quencies, a high frequency resolution is expected. In

contrast, the Mexican hat wavelet has a good time localiza-

tion (it can isolate a single bump), but a poor frequency

localization. Mi et al. (2005) compared the results of the

analysis of spatial pattern with the Mexican hat and the

Morlet wavelets in an ecological context. They came to

similar conclusions concerning the features of these wave-

lets. In our applications we have chosen the Morlet wavelet

uðtÞ ¼ p�1=4 exp �i2pf0tð Þ exp �t2=2ð Þ; (Fig. 2a–c).

For some particular mother wavelets, the relation

between the frequency and the wavelet scale can be

derived analytically (e.g., Meyers et al. 1993). For the

Morlet wavelet this equivalence is done by 1
f ¼ 4pa

x0þ
ffiffiffiffiffiffiffiffiffi

2þx2
0

p ;

with x0 the central angular frequency of the wavelet (x0

= 2pf0). Then with x0 around 2p, the wavelet scale a is

therefore inversely proportional to the central frequency

of the wavelet, f � 1=a: This greatly simplifies the inter-

pretation of the wavelet analysis and one can replace, in

all equations, the scale a by the frequency f or the period

p = 1/f.

The Morlet wavelet has the advantage of having both

real and imaginary parts. This allows separation of the

phase and the amplitude of the studied signal. As Wx (f,s) is

a complex number, we can write Wx(f,s) in terms of its

phase /x(f,s) and modulus Wxðf ; sÞj j: The phase of the

Morlet transform varies cyclically between -p and p
over the duration of the component waveforms and is

defined as:

/xðf ; sÞ ¼ tan�1 =ðWxðf ; sÞÞ
<ðWxðf ; sÞÞ

ð3Þ

Wavelet power spectrum

In one sense, the wavelet transform can be regarded as a

generalization of the Fourier transform, and by analogy

with spectral approaches one can compute the ‘‘local

wavelet power spectrum’’ by Sxðf ; sÞ ¼ Wxðf ; sÞk k2: The

Fourier spectrum of a signal can be compared with the

global wavelet power spectrum which is defined as the

averaged variance contained in all wavelet coefficients of

the same frequency f:

Sxðf Þ ¼
r2

x

T

Z

T

0

Wxðf ; sÞk k2ds ð4Þ

with rx
2 the variance of the time series x and T the duration

of the time series. Another interesting computation is the

mean variance at each time location, obtained by averaging

the frequency components:

sxðsÞ ¼
r2

xp
1=4s1=2

Cg

Z

1

0

1

f

� �1=2

Wxðf ; sÞk k2df ð5Þ

This quantity can also be filtered in a given frequency

band, f1–f2.

Wavelet coherency and phase difference

In many applications, it is desirable to quantify statistical

relationships between two non-stationary signals. In Fou-

rier analysis, the coherency is used to determine the

association between two signals, x(t) and y(t). The coher-

ence function is a direct measure of the correlation between

the spectra of two time series (Chatfield 1989). To quantify

the relationships between two non-stationary signals, the

following quantities can be computed: the ‘‘wavelet cross-

spectrum’’ and the ‘‘wavelet coherence’’.

The wavelet cross-spectrum is given by Wx;yðf ; sÞ ¼
Wxðf ; sÞW�y ðf ; sÞ;with * denoting the complex conjugate.

As in the Fourier spectral approaches, the wavelet coher-

ency is defined as the cross-spectrum normalized by the

spectrum of each signal:
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Rx;yðf ; sÞ ¼
Wx;yðf ; sÞ
� 	












Wx;xðf ; sÞ
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1=2
Wy;yðf ; sÞ
� 	












1=2
ð6Þ

where ‘hi’ denotes a smoothing operator in both time and

scale. Using this definition, Rx,y(f,s) is bounded by

06Rx;yðf ; sÞ61: The smoothing is performed, as in Fourier

spectral approaches, by a convolution with a constant-

length window function both in the time and frequency

directions (Chatfield 1989).

The advantage of these ‘‘wavelet-based quantities’’ is

that they vary in time, and can, therefore, detect transient

association between studied signals (Liu 1994). These

quantities provide local information about where the two

non-stationary time series are linearly correlated at a par-

ticular frequency (or frequency band) and temporal

location in the time–frequency plane. They can also be

interpreted as the fractional portion of power of x(t) that is

in common (i.e., it can be accounted for by a linear rela-

tionship) with that of y(t) at a particular time and frequency

band. The wavelet coherence Rx,y(f,s) is equal to 1 when

there is a perfect linear relation at particular time location

and frequency between the two signals.

To obtain information about the possible delay in the

relationship (i.e., in phase or out of phase relations), with

complex wavelets one has the opportunity to compute the

phase difference /x,y(f,s) and possibly the distribution of

phase difference. The phase difference reads:

/x;yðf ; sÞ ¼ tan�1 =ðhWx;yðf ; sÞiÞ
<ðhWx;yðf ; sÞiÞ

ð7Þ

A unimodal distribution of the phase difference (for the

chosen range of scales or periods) indicates there is a

preferred value of /x,y(f,s) and thus a statistical tendency

for the two time series to be phase locked. Conversely, the

lack of association between the phase of x(t) and y(t) is

characterized by a broad and uniform distribution. To

quantify the spread of the phase difference distribution one

can use circular statistics or quantities derived from the

Shannon entropy (Pikovsky et al. 2001; Cazelles and Stone

2003).

Zero padding and the cone of influence

In practice, the wavelet power spectrum is computed by

first taking a discrete Fourier transform of the time series.

For each scale, the wavelet’s frequency response is then

analytically computed and it is multiplied by the data’s

transform in the frequency domain. The Fourier inverse

transform of this product is finally taken. This, however,

requires certain periodicity assumptions in both the data

and the response function of the wavelet. In order to avoid

false periodic events (‘‘wrap-around’’ artifacts), zero pad-

ding is needed. Currently, the length of the time series is

artificially increased, to the next-higher power of two, by

adding zero-value samples. Nevertheless, the disadvantage

of zero padding is that discontinuities are artificially cre-

ated at the border of the data. As the wavelet gets closer to

the edge of the time series, part of it exceeds the edge and

thus the values of the wavelet transform are affected

(reduced) by the zeros introduced creating the boundary

effect. Further, the affected region increases in extent as the

scale a (or the frequency f) of the wavelet increases. This

zone where edge effects are present, is called the ‘‘cone of

influence’’ (see Torrence and Campo 1998) and the spectral

information below the cone is lacking in accuracy and

should be interpreted with caution.

Assessment of statistical significance

As with other time-series methods, it is crucial to assess

the statistical significance of the patterns exhibited by the

wavelet approach. To this end, we suggest employing

bootstrapping methods. The idea is to construct, from

observed time series, control data sets, which share some

properties with the original series but are constructed

under a defined null hypothesis. There exists a large range

of null hypotheses and associated re-sampling procedures

ranging from simple bootstrap (Efron and Tibshirani

1993) to more complex resampling that preserves the

autocorrelation function of the raw time series (see The-

iler et al. 1992). It is clear that a simple random shuffling

of data generates a white noise process that appears as a

‘‘weak’’ null-hypothesis that should be rejected easily. At

the other extreme, the surrogate by Theiler et al. (1992)

mirrors a ‘‘hard’’ null-hypothesis that should be rejected

with difficulty in the case of wavelet analysis because

these bootstrapped series and the raw series share the

same autocorrelation function (see Rouyer et al. 2008).

Here, we have chosen to use a procedure based on a

resampling of the observed data with a Markov process

scheme that preserves only the short temporal correlations

(see Cazelles and Stone 2003). Our aim is to test whether

the wavelet-based quantities (e.g., the spectra or coher-

ence) observed at a particular position on the time-scale

plane are not due to a random process with the same

Markov transitions (time order) as the original time series.

Technically the bootstrapped series are computed in the

following way:

1. The time series {xi} (or {yt}) is binned to form a fre-

quency histogram of nh equal-sized bins.

2. A transition matrix M that describes the time evolution

from bin-i to bin-j is then estimated based on the actual

relative frequencies of the data contained within bin-i,

Mij ¼ Pr xnþ1 2 bj xn 2 bij
� �

:

3. To construct a bootstrapped time series {zi}, an initial

value z0 is randomly chosen from the raw series.
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4. To determine zn+1 having obtained already zn the

probability Mij that zn from bin bi ends up in bin bj is

used. With Mij the bin bj associated with zn+1 is

randomly chosen. zn+1 is then computed by making a

random selection from the elements in bin bj.

5. The last step is iterated to obtain a surrogate series of

the same length as the raw series.

For each bootstrapped series the wavelet transform and

‘‘related quantities’’ are computed. As the process is repeated

nb times, the distribution of these ‘‘wavelet quantities’’ under

the null hypothesis is constructed. We can compare the

wavelet quantities of the raw series with their distribution

under the null hypothesis, extracting, for instance, the 99th or

the 95th percentiles of this distribution. It is important to note

that we also used other null hypotheses and associated

resampling schemes (e.g., simple bootstrapping, white noise,

red noise) and similar conclusions were reached. A possible

explanation of this weak sensitivity of the choice of the

resampling scheme to our results may be related to key

features of the analyzed time series that are short and noisy.

The results from the statistical tests may mainly be affected

by the breakdown of the time order of the time series.

From theory to practice: analysis of non-stationary

synthetic time series

Synthetic signals with identical power spectrum

The main property of the wavelet approach is to introduce

the possibility of identifying a time–frequency discrepancy

of studied signals. This allows one to distinguish between

two signals that have identical periodic components and a

similar power spectrum.

We have used two signals composed of two periodic

components of period (p1 and p2). For the first signal, the

two periodic components are present during the whole

interval of observation:

yðtÞ ¼ lþ 1

2
sin

2pt

p1

� �

þ 1

2
sin

2pt

p2

� �

þ e ð8Þ

where l is the mean of the time series, p1 and p2 are the

two periods and e is a Gaussian noise component with a

weak variance. For the second, the two periods are

temporally localized on the first and the second half-part

of the time series:

yðtÞ ¼ lþ sin
2pt

p1

� �

þ e if t\ts

yðtÞ ¼ lþ sin
2pt

p2

� �

þ e if t>ts

ð9Þ

where ts is the time of the shift of the periodicity of the

signals.

These two time series are displayed in Fig. 3a, c. For their

analyses 200 data points have been used. Despite their large

discrepancy (Fig. 3a, c), these two signals have quasi iden-

tical power spectrum (Fig. 3b, d) with the same two distinct

peaks at the significant periods p1 and p2. Contrary to the

Fourier spectrum, with wavelet analysis one can clearly

discriminate the temporal difference of these two signals

(Fig. 3e, g). Based on these figures, one can easily observe

that in the first case the two periodic components are present

during the whole time series (Fig. 3e), whereas in the second

the period of the time series shifts from p1 to p2 at time ts = 5

(Fig. 3g). For the first signal (Eq. 8) the dominant periodic

components appear as a horizontal band centered at the two

periodic components, reflecting the constancy of these

periodic components in time. For the second (Eq. 9) one can

observe that only one component is present for the two half-

parts of the series with a discontinuity in the period of this

component around time ts = 5. We have also plotted the

average wavelet power spectrum (Fig. 3f, h) to allow the

reader to see the correspondence between the continuous

wavelet approaches and Fourier spectral analysis (Fig. 3b, d).

A synthetic signal with transient periodic and amplitude

components

Here, we examine the wavelet signature of gradual or

abrupt changes in the amplitude or frequency of a simple

sinusoidal signal. This sinusoidal model reads:

yðtÞ ¼ lþ A1 sin
2pt

p2

� �

þ e if t\ts1

yðtÞ ¼ lþ A2 sin
2pt

p1

� �

þ e if ts1\t\ts2

ð10Þ

yðtÞ ¼ lþ AðtÞ sin
2pt

pðtÞ

� �

þ e if t� ts2

with AðtÞ ¼ A2 þ ðA1 � A2Þ t�ts1

ts2�ts1
; pðtÞ ¼ p1 þ ðp2 � p1Þ

t�ts1

ts2�ts1
; A1 ¼ 2; A2 ¼ 1; e is a small Gaussian perturba-

tion and tsi are the time shifts of the features of the time series.

This signal with 200 data points is displayed in Fig. 4a. The

Fourier spectrum summarizes the average characteristic of

this signal and identifies a broad period around 1 unit of time

(u.t.) (Fig. 4b). Using wavelet analysis one can reconstruct the

time evolution of the main oscillating components of the time

series. Figure 4c shows the wavelet transform of the signal,

where wavelets of different time-offsets and frequencies

resonate with the signal at different time points. Based on the

wavelet power spectrum (Fig. 4d), one can easily observe that

in the first part of the time series the dominant period is around

p2 = 1 u.t., then at ts1 this period shifts to p1 = 0.25 u.t. and it

increases from p1 = 0.25 to p2 = 1 u.t. after ts2. Figure 4e

shows how the time-averaged wavelet power spectrum is very

similar to the Fourier spectrum (Fig. 4b). With wavelet
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decomposition one has also the possibility to examine fluc-

tuations of the variance of the time series over both time and a

range of period. Figure 4e shows this evolution for the sinu-

soidal signal over different bands. One can easily observe the

dominance of the 0.25 u.t. periodic component between ts1
and ts2 and of 1 u.t., before ts1 and after ts2.

In this example, whereas the Fourier spectrum was not

able to differentiate temporally between the different

periodic components, the wavelet analysis clearly identifies

both the abrupt periodic shift at ts1 = 3 and the smooth

increase of the period after ts2 = 5.25.

Influence of the number of data points

and observational noise

To stress the robustness of the wavelet approach for eco-

logical applications, we focus on the effect of the number

of data points used for the analysis and also on the potential

effect of the observational noise.

We use a lag-2 autoregressive [AR(2)] model with two

parameter sets in a reasonable ecological range (Royama

1992), as an illustrative example of non-stationary

dynamics. The model reads:

yðtÞ ¼ a1 þ b1yðt � 1Þ þ c1yðt � 2Þ þ e1 if t\ts

yðtÞ ¼ a2 þ b2yðt � 1Þ þ c2yðt � 2Þ þ e2 if t� ts

ð11Þ

where ai, bi and ci are the parameters of the autoregressive

model and ei are the noise perturbations which are

Gaussian with variance ri
2. The two sets of parameters are

chosen to obtain dynamics with two different main peri-

odicities before and after ts. Figure 5a shows the analyzed

time series with n = 100 data points and Fig. 5b shows the

wavelet power spectrum. One can observe the abrupt
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Fig. 3 Wavelet analysis of sinusoidal signals with two periodic

components. a A signal with a periodic component present during the

whole series [l = 5, p1 = 0.25 unit of time (u.t.) and p2 = 1 u.t.]. b
Fourier spectrum of the signals displayed in a. The periodograms

have been smoothed with a Parzen window (Chatfield 1989). c A

series with the same periodic components as those of a but these two

periodic components are localized on the first and on the second half-

part of the signal, the period shift is at ts = 5. d Fourier spectrum of

the signals displayed in c. e Wavelet power spectrum of the signal

displayed in a. The colors code for power values from dark blue (low

values), to dark red (high values). Dotted white lines materialize the

maxima of the undulations of the wavelet power spectrum and the

black line indicates the cone of influence that delimits the region not

influenced by edge effects. f Average wavelet power spectrum ðSxðf ÞÞ
of the signal in a. g, h As in e, f but for the signal displayed in c
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variation of the main periodicity around ts = 60. The period

is ca. eight iterations before ts, and ca. four iterations after.

These two periodic components also appear clearly on the

average wavelet power spectrum (Fig. 5c). What appears

to be particularly interesting is that these results can also be

found with just half of the data points (Fig. 5d–g). Of

course, when halving the number of data points, some

information is lost and the periodicity appears less obvious,

but similar conclusions can be drawn (Fig. 5d–g).

Another interesting result relates to the robustness of the

results when observational noise is added to the time series.

Figure 5h–i shows results of analyses performed only on

the even data points of the time series when Gaussian

observational noise with a variance proportional to the

variance of the complete time series is added. Even with

this noisy and short signal, results do not differ from those

obtained with the raw series.

These simulations have been repeated (k = 100) and the

two significant periodic bands around eight iterations

before ts = 60 and around four iterations after ts were

present each time. Moreover, based on classic ANOVA,

the differences between the k average P-values in the sig-

nificant periodic bands appear non-significant.

Relationships between two synthetic signals

To illustrate the possibility of quantifying an association

between two time series, we used two AR(2) models with

slightly different parameter values but with correlated

noise components. The two series were correlated even

when they had slightly different oscillating components,

since the noise components were correlated. This is known

as the ‘‘Moran effect’’ (see Royama 1992).

A weak correlation between the noise components

ðqex;ey
¼ 0:50Þ was used. The correlation between the series

was thus also weak. Figure 6 summarizes the results of the

wavelet analysis (the normalized time series, the wavelet

cross-spectrum, its average, and the wavelet coherency are

shown in Fig. 6a–d, respectively). The main co-variance

between the two time series is in the 7–9 period band (Figs

6b, c). The association between the two time series

(quantified as the coherence) is significant in the same
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Fig. 4 Synthetic transient signal studied with wavelet approach. a A

transient time series with modification of both the amplitude and the

period described by Eq. 10 with l = 5, ts1 = 3 and ts2 = 5.25. b
Fourier spectrum of the signal displayed in a. The periodogram has

been smoothed with a Parzen window (Chatfield 1989). c Wavelet

power spectrum of the signal. The colors code for power values from

dark blue (low values) to dark red (high values). Dotted white lines
materialize the maxima of the undulations of the wavelet power

spectrum and the black line indicates the cone of influence that

delimits the region not influenced by edge effects. d Average wavelet

power spectrum ðSxðf ÞÞ of the signal. On the graphs c, d dashed lines
show the a = 5% significance levels computed based on 1,000

Markov bootstrapped series. c P-values associated with the values

within the area delineated by the dashed line are less than 5%. e
Frequency-average wavelet power for the signal displayed in a, over

the 0.1–5 u.t. band (black line), around the 1 u.t. band (dashed line)

and around the 0.25 u.t. band (dotted–dashed line)
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period band, but this association appears more discontin-

uous, with high coherence only between the iterations

1–20, 35–55 and 75–90 (Fig. 6e). There are also some

significant areas for the 12–16 mode. To obtain information

about the sign of the association and the possible delay in

the relationship, we have computed the phases of the two

signals for the 7–9 period band, as well as the phase dif-

ference (Fig. 6e). Results show that the two time series are

out of phase with a short delay around p/2, except for the

time interval 35–55 where the two series are in phase. Due

to the transient behavior of the association between the

series, the distribution of phase difference (Fig. 6f) appears
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Fig. 5 Influence of the number of data point and the observational

noise on wavelet analysis. a The time series is generated with the lag-

2 autoregressive [AR(2)] models (Eq. 11). Triangles indicate the odd

data point, stars even data points and the dashed line noisy even data

points. b Wavelet power spectrum of the full data set (n = 100 and the

sampling time step Dt = 1). d Wavelet power spectrum of the odd

data points (n = 50 and Dt = 2). f Wavelet power spectrum of the

even data points (n = 50 and Dt = 2). h Wavelet power spectrum of

the even data points (n = 50 and Dt = 2) when observational noise is

added (ri = 0.80 rx). c–i Average wavelet power spectrum corre-

sponding to the wavelet power spectrum plotted in b–h, respectively.

On the wavelet power spectrum graphs, the dashed lines show the

a = 5% significance levels computed based on 1,000 Markov

bootstrapped series. On these 2-D graphs (b–h), the colors code for

power values from dark blue (low values), to dark red (high values),

the dotted white lines materialize the maxima of the undulations of

the wavelet power spectrum, the black lines indicate the cone of

influence that delimits the region not influenced by edge effects and

the P-values associated with the values within the area delineated by

the dashed line are less than 5%. The parameters used for the AR(2)

models are: a1 = 1.5, b1 = 1.2, c1 = -0.9, r1
2 = 0.15, a2 = 4, b2 = 0.1,

c2 = -1, r2
2 = 0.05 and ts = 60
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bimodal, so that it is difficult to test the significance of this

distribution in this particular case.

Real life data: analysis of ecological time series

Grouse dynamics as an example of transient periodic

dynamics

Records of shooting bags in northeast Scotland (MacKen-

zie 1952) have generated long ecological time series

representing fluctuations in red grouse populations (Fig. 7

a). The Fourier spectrum of this series is dominated by high

periods between 40 and 50 years (Fig. 7b). These periods

correspond approximately to half the length of the time

series, underlying some form of non-stationarity where the

amplitude of variance of the series differs between the first

and second parts of the series. After detrending the time

series, which is the classic approach used for reducing non-

stationarity (Chatfield 1989), one can observe a first peak

around 3 years and a second broader peak between 5 and

6 years (Fig. 7d). Nevertheless, this classic approach may

lead to a misleading interpretation of the dominant oscil-

lating components and their time localization.

Wavelet analysis allowed us to decompose the grouse

abundance variability from 1849 to 1945 as a function of

period and time. Figure 7e shows the wavelet power

spectrum for the grouse time series and Fig. 7f shows the

average wavelet power spectrum (which appears similar to

the Fourier spectrum, see Fig. 7c). Statistically significant

periodicity is revealed, although only for some restricted

period of time; for the 5–6 year mode from 1860 to 1875,
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Fig. 6 Quantification of the association between two synthetic signals

with the wavelet approach. a Time series, x(t) and y(t), generated with

two different AR(2) models with correlated noise components (n
= 100). These series have been normalized for the analyses. b Wavelet

cross-spectrum. c Average wavelet cross-spectrum. d Coherence

between the two time series. Colors code from dark blue (low values)

to dark red (high values) and the black lines indicate the cone of

influence that delimits the region not influenced by edge effects. On

the graphs b–d dashed lines show the a = 5% significance levels

computed based on 1,000 Markov bootstrapped series. P-values

associated with the values within the region delineated by the

dashed line are less than 5%. e Phases of the two time series

computed in the 7–9 periodic band; dotted line represents the phase

difference. f Distribution of the phase difference of the two time

series. The parameters used for the AR model are: ax ¼ 1:5; bx ¼
1:2; cx ¼ �0:9; r2

x ¼ 0:025; ay ¼ 1; by ¼ 1:35; cy ¼ �0:75;
r2

y ¼ 0:025 and q2x ;2y
¼ 0:50
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and for the 8–10 year mode from 1895 to 1910 (Fig. 7d).

These results emphasize the non-stationary behavior of the

grouse abundance and the absence of a single persistent

mode of variability within the time interval 1849–1945.

Population fluctuations and the solar cycle

Several studies have suggested that the solar cycle could

impact climate and then indirectly fluctuations of animal

populations (Elton 1924; Royama 1992). This sunspot

hypothesis was for example put forth to explain the 10-year

lynx cycle in Canada (Sinclar et al. 1993), although the

issue is still controversial. Recently, Klvana et al. (2004)

have shown that porcupine abundance in eastern Quebec

has fluctuated periodically since 1868. They have also

demonstrated that these oscillations have a strong associ-

ation with both the solar cycle and local climate

fluctuations.

Here we show how wavelet analyses can contribute to

the debate surrounding the possibility of a relationship

between the 10-year solar cycle, climate and population

fluctuations. We compare the association between the

sunspot number and: (1) lynx population abundance, and

(2) porcupine population abundance. The lynx time series

analyzed is the series from the MacKenzie River region

(Elton and Nicholson 1942) and the porcupine time series

comes from a dendrochronological reconstruction of

porcupine abundance (Klvana et al. 2004). As shown in

Fig. 8b–d, the association between sunspot number and

lynx abundance appears very weak and significant in the

10–12 periodic band only for the time periods 1821–1840

and 1915–1934. In addition, the phase analysis shows

that for the time period 1821–1840 the two series are in

phase while for 1915–1934 the two series are out of

phase with a delay of 3p/2 or 3/4 of the quasi-period

(Fig. 8c). Conversely, we obtained a strong association

between porcupine abundance and the sunspot number in

the 10–12 periodic band for virtually the full length of

the time series (Fig. 8e–g). This relation is weaker during

1940–1980 when the oscillations are coherent around the

22-year periodic band (Fig. 8e). The coherence is also

very significant around the 22-year mode as stressed in

Klvana et al. (2004). Phase analysis reveals (Fig. 8f) that

the two series are out of phase with an approximate

delay of half a quasi-cycle (p). The sign of the associ-

ation is then negative. Furthermore, this relationship

between the phases of the two series is highly significant

(Fig. 8g).

Wavelet analyses allowed us to take into account the

non-stationary nature of the associations between
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Fig. 7 A non-stationary

ecological time series, the red

grouse population in northeast

Scotland (MacKenzie 1952).

Grouse time series estimated

based on records of shooting

bags (97 data points). b Power

spectrum of the raw time series.

c Enlargement of b. d Power

spectrum of the detrended time

series. The periodograms have

been smoothed with a Parzen

window (Chatfield 1989).

e Wavelet power spectrum,

Wxðf ; sÞj j2; of the grouse series.

The colors code for power

values from dark blue (low

values) to dark red (high values)

and the black line indicates the

cone of influence that delimits

the region not influenced by

edge effects. f Average wavelet

power spectrum of the grouse

series. On the graphs e, f dashed
lines show the a = 5%

significance levels computed

based on 1,000 Markov

bootstrapped series. P-values

associated with the values

within the region delineated by

the dashed line are less than 5%
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population data and the solar cycle. This clearly showed

that the relationship between the solar cycle and lynx

abundance is mostly non-significant, except during the time

period 1821–1840. For porcupines, however, the relation-

ship with the solar cycle is clear and highly significant (see

also Klvana et al. 2004). This example clearly shows how

wavelet analyses can contribute to a debate based on

complex biological relationships evolving through time.

Discussion

Wavelet analysis can help us to interpret multi-scale, non-

stationary time-series data and reveals features we could

not see otherwise. Wavelet analysis is thus becoming an

important addition to the set of tools used to analyze time

series, and thus has important practical applications in

environmental sciences.
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Fig. 8 Comparison between the association between the sunspot

numbers and the lynx population and between the sunspot numbers

and the porcupine population. a Normalized time series: the sunspot

numbers (red line), the lynx abundance (blue line) and the porcupine

abundance (black line). Note that the lynx and porcupine time series

have a different starting date and different length, which explains the

blank spaces in the following graphs. b–d Lynx-sunspot analyses and

e–g porcupine-sunspot analyses. b, e Wavelet coherency between the

population abundance and the sunspot numbers. Colors code for

coherence values from dark blue (0) to dark red (1). Black line
indicates the cone of influence that delimits the region not influenced

by edge effects and dashed lines show the a = 5% and a = 10%

significance levels computed based on 1,000 Markov bootstrapped

series. c, f Phases of the population abundance and the sunspot

numbers computed in the 10–12 year periodic band. Dotted line
represents the phase difference and the colors are as in a. d, g
Distribution of the phase difference of the two considered time series.

d Normalized entropy of this phase difference distribution (see

Cazelles and Stone 2003) is Q = 0.19 and it is not significant. g
Normalized entropy of this distribution is Q = 0.47 and it is

significant with a P-value computed with 1,000 Markov bootstrapped

series less than 0.1%
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The major aims of much current research in ecology are

to characterize and to understand the nature of order in

natural systems, the role of endogenous mechanisms and

the influence of exogenous changes on the dynamics of

natural systems. As the achievement of these experiments

is particularly difficult, retrospective approaches are fre-

quently employed with the use of time-series analysis.

Retrospective approaches use a mode of analysis which is

rooted in the comparative and observational richness of the

data. In consequence, a key requirement is to take into

account the major characteristics of the observations that

mirror the underlying properties of the studied system. As

stressed in the Introduction, transient dynamics appear to

be the rule rather than the exception in nature, either

because ecological processes are influenced by exogenous

trends or because complex endogenous dynamics pre-

dominate (e.g., Cushing et al. 1998 or Cazelles 2001). This

makes it inappropriate to use traditional techniques when

analyzing time series or their mutual dependencies. Using

the wavelet approach, we have shown that it is possible to

study irregular, non-stationary and noisy time series, and

also to analyze weak and transient interactions between

such series. The wavelet power spectrum allows quantifi-

cation of the main periodic component of a given time

series and its evolution through time. Dynamic evolution or

marked changes can be identified and then associated with

endogenous and/or exogenous mechanisms. Wavelet

coherency is used to quantify the degree of linear rela-

tionship between two non-stationary series in the time–

frequency domain. The key advantage of the wavelet

approach over the more classic techniques is that it does

not share their particularly restrictive requirement of an

assumption of stationarity, where all moments of the time

series must be constant in time (see also Rodriguez-Arias

and Rodó 2004). One of our main results stressed that

ecological time series can change dramatically with time.

The results from classic approaches must then be inter-

preted with caution. Furthermore wavelet analysis provides

a natural way to follow gradual changes in the forcing by

exogenous variables such as environmental or climatic

variables.

In practice, wavelet analysis emphasizes interpretation

of time series that are changing over time, with good

time–frequency localization and the ‘‘zoom-in, zoom-out’’

property, an issue which classic spectral analysis is

incapable of addressing. The main advantage of the

wavelet approach is clearly to have the possibility to

analyze transient dynamics, both to characterize a one-

dimensional signal and the association between two time

series. As with other classic time-series approaches,

inferential methods are needed to characterize the cyclical

features of non-stationary time series, and to quantify the

relationships between such time series. We have

suggested statistical significance tests based on resam-

pling techniques for the ‘‘wavelets-based quantities’’. An

important question that is frequently raised by users of the

wavelet approach is the number of data points needed for

such analysis. We have demonstrated on a short and noisy

time series that halving the data points modifies only

slightly the conclusions drawn based on the wavelet

approach (Fig. 5). The criteria for applying wavelet

analysis should thus be very similar to those employed

with classic spectral methods. For instance, Murdoch et

al. (2002) have analyzed ‘‘cyclic species’’, with a classic

spectral method applied to more than 100 time series.

They have used a minimum time-series length of 25 years

with an estimated period smaller than one-third of the

series length as criteria to apply a spectral analysis. Based

on our experience, we suggest criteria a little more

restrictive than those of Murdoch et al. (2002): time series

of 30–40 data points with significant periodic components

smaller than 20–25% of the series length. Another inter-

esting aspect is the possibility of easily extracting the

phases of the studied signals and then conducting a phase

analysis. Phase analysis is a non-linear technique that has

a major advantage over linear ones in that it enables the

study of rather weak interactions (Cazelles and Stone

2003).

Despite its advantages, the continuous wavelet

approach also has its shortcomings. The first one concerns

the edge effects at the beginning and at the end of the

time series. One way to decrease edge effects is to pad

time series with sufficient zeros (Torrence and Compo

1998), but it is impossible to eliminate edge effects, and

the region affected by edge effects is known as the ‘‘cone

of influence’’. As we have already stressed, the spectral

information within this cone is likely to be less accurate.

Nevertheless, it is dependent on the mother wavelets that

are used. For instance, the Morlet wavelet is more

affected by edge effects than is the Mexican hat wavelet

(e.g., Torrence and Compo 1998). Even if wavelet anal-

ysis performs decomposition with different time supports

for different frequencies (see Fig. 1), unfortunately one

cannot achieve an arbitrarily high resolution in both the

frequency and time domains. Generally, the more accurate

the temporal localization of a component is, the less

accurate the spectral measure (and vice versa). For

example, the Mexican hat wavelet allows for good tem-

poral resolution but poor frequency resolution, whereas

the Morlet wavelet allows for good frequency resolution

but less precise temporal resolution (e.g., Mi et al. 2005).

Therefore, the major consideration in choosing a wavelet

is the trade-off between strong localization, which is good

for analyzing sharp transients, and weak localization,

which induces more precise isolation of dominant fre-

quencies (Lau and Weng 1995).
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As a statistical analysis, the wavelet approach provides no

information about the underlying ecological mechanisms.

There is not a single relation, either between cyclical features

and biological mechanisms, or between associations or

relationships and mechanisms—a given pattern of associa-

tion between series may be generated by a wide variety of

different mechanisms. For example, we have shown that

porcupine populations are phase-locked to the oscillations of

solar activity (Fig. 8e–g). Nevertheless, we have not proved

that solar cycles are the only factor accounting for the por-

cupine oscillations. Solar cycles and climatic fluctuations

may trigger and/or amplify such population cycles. Further

experimental studies will be necessary to elucidate the

mechanisms that underlie the phase dependence between

population abundance and climatic signals. Like other cor-

relative approaches (e.g., Rodriguez-Arias and Rodó 2004),

wavelet analysis must be complemented by experimental

tests. However, this technique does provide useful clues

about the nature of the underlying ecological processes. Such

clues pave the way for future modeling approaches in which

explicit mechanisms can be incorporated. In this sense

wavelet analysis appears as a spectral technique that may

supplement the classic time-series models (e.g., Royama

1992, Ives et al. 2003). Nevertheless, these classic modeling

approaches must also take into account these non-stationary

features of population systems, for example with time-

varying parameters. In this context, Bayesian approaches

appear very appealing (e.g., Cazelles and Chau 1997 or Bi-

erman et al. 2006).

Since there are some applications of the DWT in ecol-

ogy, at least for spatial pattern analysis, one can also

compare continuous to discrete wavelet approaches. The

main property of the wavelet transform is its ability to

provide a time-scale localization of a signal’s variance,

which derives from the compact support of its basis func-

tion. Therefore, wavelet analysis is mainly used with two

aims: extraction of local time-scale or time–frequency

information, and representation of processes on appropriate

bases. Clearly, continuous wavelets are well suited to the

first and discrete wavelets for to second aim. Indeed, one of

the major advantages of continuous versus discrete wave-

lets is the well-defined relationship between frequency and

scale of continuous wavelets. This greatly facilitates the

comparison with Fourier analysis and the analysis of

transient phenomena. For the discrete wavelets, this rela-

tionship between scale and frequency has less meaning and

should be ignored (Daubechies 1992). One disadvantage of

the continuous wavelets is that it is characterized by a

redundancy of information among the wavelet coefficients.

This redundancy implies correlation between coefficients,

which is intrinsic to the wavelet function and not to the

analyzed time series. The wavelet coefficient interpretation

is then strongly dependent on the chosen projection basis,

which must be adapted to the specific problem at hand. On

the other hand, discrete wavelets that are orthogonal have

the ability to concentrate the variance of the signal in a

limited number of coefficients. DWT allow a decomposi-

tion of a time series in terms of scales—fast and slow

scales, for example. The discrete wavelet power spectrum

and cross-spectrum have proved to be valuable alternative

representations of the variance–covariance distributions

across scales (Bradshaw and Spies 1992; Keitt and Urband

2005). Nevertheless, as this scale decomposition is com-

puted on a dyadic base (the number of scale is always 2n),

the number of data points heavily influences this decom-

position and particularly the variance repartition (see

Fig. 9). Even if analyzing data in a scale-dependent manner

is particularly helpful in numerous situations, it is also

important to interpret the obtained scales. For example,

even if the DWT allow us to identify a shift toward multi-

annual variation it can be interesting to explain this shift in

terms of frequency to associate this shift with some

exogenous forcing. Unfortunately the scale decomposition

based on discrete wavelets is difficult to interpret, espe-

cially concerning their time evolution (see Fig. 9). This

interpretation requires the use of other techniques, contrary

to the continuous wavelet transform for which a well-

defined relationship between scale and frequency exists.

Recently, another decomposition method has been

introduced: the empirical mode decomposition (EMD)

(Huang et al. 1998). This method decomposes a time series

into different modes similarly to discrete wavelet transform

or singular spectrum analysis (Vautard et al. 1992). How-

ever, this decomposition uses functions that are data-driven

and connected to the local maxima and minima of the time

series. This method seems to have similar weaknesses to

DWT, which are sensitive to the number of data points and

lack of characterization of the different modes (see Fig. 9).

This approach has been employed by Cummings et al.

(2004) to analyze the spatio-temporal dynamics of dengue

incidence in Thailand. Using this technique they observed

waves in a 3-year periodic component for Thailand. Nev-

ertheless, they were not able to underline either the

transient nature of these waves or their association with

large climatic oscillation using this EMD approach, con-

trary to analyses that have employed continuous wavelet

transform (Cazelles et al. 2005).

We have performed a decomposition of non-stationary

time series with DWT and EMD to facilitate the compar-

ison with continuous wavelet transforms adopted in this

work. We have employed the AR(2) model time series

(Eq. 11) used for Fig. 5. Our results, presented in Fig. 9,

can easily be compared with those obtained with the con-

tinuous wavelet approach (Fig. 5). These results clearly

illustrate the main disadvantages of DWT and EMD

decompositions, namely that the computed decomposed
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signals that contain the major part of the variance are non-

stationary, as are the analyzed signals (Fig. 9). For

instance, the first intrinsic mode function has the same

complexity as the raw signal (Fig. 9c, f) and the fourth and

fifth levels of reconstruction signals show a marked shift

around ts = 60 (Fig. 9b, e). These decompositions (DWT

and EMD) then do not permit direct quantification of the

time evolution of the main characteristics of the analyzed

time series, however crucial for non-stationary signals.

These results (Fig. 9b, e) also stress the high sensitivity of

the DWT decomposition to the number of data points,

contrary to the continuous wavelet approach.

Despite its interesting features, illustrated by our work,

wavelet approaches can be improved in different ways. In

an ecological context two points warrant further improve-

ment: the irregular or uneven sample data, and the

multivariate analysis of time series. As regards awkward

sampling quality, Keitt and Fischer (2006), analyzing the

response of zooplankton communities to anthropogenic

disturbance, employed an adaptive ‘‘second-generation’’

wavelet named the ‘‘lifting scheme’’ (Sweldens 1998).

These discrete wavelets have the advantage of adapting

their shape near sampling gaps and boundaries. This is an

important consideration for ecological time series which
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Fig. 9 Comparison between

different time-scale

decompositions. The analyzed

signal is the AR(2) model time

series of Fig. 5; however, due to

the characteristics of the

methods employed [discrete

wavelet transforms (DWT) and

empirical mode decomposition

(EMD)], 27 = 128 data points

have been used (a). The odd

points (64 data points) have also

been analyzed (d).

b, e Reconstruction signals from

DWT with Daubechies 10

wavelets for the full data set and

the odd data points,

respectively. The first

reconstruction level is at the top
and the last at the bottom.

c, f Intrinsic model functions

obtained with EMD for the full

data set and the odd data points,

respectively. The first intrinsic

model function is at the top and

the fourth at the bottom
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are often short, irregularly sampled and may contain

missing values. It will also be interesting to explore the

possibility of Foster’s wavelet analysis technique (Foster

1996), an appropriate tool for investigating temporarily

changing spectral properties of records characterized by

uneven sampling quality. The coupling between wavelet

analysis and clustering approaches seems a promising

avenue for analyzing multivariate time series. The wavelet

power spectra could be compared with procedures based on

multivariate methods like maximum covariance analysis

that was originally used to compare spatio-temporal fields

(Rouyer et al. 2008).

Up to very recently, all time-series analyses reported in

the ecological literature were based on the stationarity

assumption of the data. Some exceptions have been pub-

lished recently (Grenfell et al. 2001; Rodó et al. 2002;

Haydon et al. 2003; Cazelles and Stone 2003; Cazelles

2004; Rodriguez-Arias and Rodó 2004). We hope that our

presentation of wavelet analysis promotes a methodologi-

cal shift in the analysis of ecological time series. Such

methodological advances are critical for a better under-

standing of ecological processes in a rapidly changing

global environment.
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Rodriguez-Arias MA, Rodó X (2004) A primer on the study of

transitory dynamics in ecological series using the scaledependent

correlation analysis. Oecologia 138:485–504

Rohani P, Earn DJD, Grenfell BT (1999) Opposite patterns of

synchrony in sympatric disease metapopulations. Science

286:968–971

Rohani P, Green CJ, Mantilla-Beniers NB, Grenfell BT (2003)

Ecological interference between fatal diseases. Nature 422:885–

888

Rosenberg M (2004) Wavelet analysis for detecting anisotropy in

point patterns. J Veg Sci 15:277–284

Rouyer T, Fromentin JM, Stenseth NC, Cazelles B (2008) Analysing

multiple time series and extending significance testing in

wavelet. Mar Ecol Progr Ser (in press)

Royama T (1992) Analytical population dynamics. Chapman & Hall,

London

Saitoh T, Cazelles B, Vik JO, Viljugrein H, Stenseth NC (2006)

Effects of the regime shift on population dynamics of the grey-

sided vole in Hokkaido, Japan. Clim Res 32:109–118

Sinclar ARE, Gosline JM, Holdsworth G, Krebs CJ, Boutin S, Smith

JNM, Boonstra R, Dale M (1993) Can the solar cycle and

climate synchronize the snowshoe hare cycle in Canada?

Evidence from the tree rings and ice cores. Am Nat 141:173–198

Stenseth NC, Mysterud A, Ottersen G, Hurrel JW, Chan KS, Lima M

(2002) Ecological effects of climate fluctuations. Science

297:1292–1296

Sweldens W (1998) The lifting scheme: a construction of second

generation wavelets. SIAM J Math Anal 29:511–546

Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992)

Testing for nonlinearity in time series: the method of surrogate

data. Physica D 58:77–94

Torrence C, Compo GP (1998) A practical guide to wavelet analysis.

Bull Am Meteorol Soc 79:61–78

Vautard R, Yiou P, Ghil M (1992) Singular spectrum analysis: a

toolkit for short, noisy chaotic signals. Physica D 58:95–126

Xia Y, Bjørnstad ON, Grenfell BT (2004) Measles metapopulation

dynamics: a gravity model for epidemiological coupling and

dynamics. Am Nat 164:267–281

304 Oecologia (2008) 156:287–304

123


	Wavelet analysis of ecological time series
	Abstract
	Introduction
	Theory: the wavelet analysis
	Continuous wavelet approach
	Choice of the mother wavelet
	Wavelet power spectrum
	Wavelet coherency and phase difference
	Zero padding and the cone of influence
	Assessment of statistical significance

	From theory to practice: analysis of non-stationary synthetic time series
	Synthetic signals with identical power spectrum
	A synthetic signal with transient periodic and amplitude components
	Influence of the number of data points �and observational noise
	Relationships between two synthetic signals

	Real life data: analysis of ecological time series
	Grouse dynamics as an example of transient periodic dynamics
	Population fluctuations and the solar cycle

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


