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Mineral–microbe interactions in deep-sea
hydrothermal systems: a challenge for

Raman spectroscopy
BY J. A. BREIER*, S. N. WHITE AND C. R. GERMAN

Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

In deep-sea hydrothermal environments, steep chemical and thermal gradients, rapid
and turbulent mixing and biologic processes produce a multitude of diverse mineral
phases and foster the growth of a variety of chemosynthetic micro-organisms. Many of
these microbial species are associated with specific mineral phases, and the interaction
of mineral and microbial processes are of only recently recognized importance in
several areas of hydrothermal research. Many submarine hydrothermal mineral phases
form during kinetically limited reactions and are either metastable or are only
thermodynamically stable under in situ conditions. Laser Raman spectroscopy is well
suited to mineral speciation measurements in the deep sea in many ways, and sea-going
Raman systems have been built and used to make a variety of in situ measurements.
However, the full potential of this technique for hydrothermal science has yet to be
realized. In this focused review, we summarize both the need for in situ mineral
speciation measurements in hydrothermal research and the development of sea-going
Raman systems to date; we describe the rationale for further development of a small,
low-cost sea-going Raman system optimized for mineral identification that incorporates
a fluorescence-minimizing design; and we present three experimental applications that
such a tool would enable.

Keywords: hydrothermal; mineralogy; optical instruments; Raman spectroscopy

1. Introduction

It is a case of historical fortune that Darwin lived in a time before deep-
diving submersibles. This spared him the potential distraction of having to
reconcile his thoughts on Galapagos finches with observations of the bizarre
chemosynthetic ecosystems waiting be found on the seafloor just 450 km to the
northwest of those birds. If Darwin had taken part in the cruise of Corliss
et al. (1979), 142 years after his own voyage to the Galapagos, he might have
dived in the submersible Alvin to the Rose Garden hydrothermal fields of the
Galapagos Rift, and witnessed these exotic, toxic, but energy-rich environments
*Author for correspondence (jbreier@whoi.edu).
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that are dominated by sulphide mineral formations and host fauna previously
unknown to science, including metre-long vestimentiferan tubeworms and large
vesicomyid clams and bathymodiolid mussels that can themselves extend to
tens of centimetre in length (Fisher 1995; Hessler & Kaharl 1995). Life at
these settings is uniquely adapted. For example, vestimentiferan adults have
no digestive track and vesicomyids have only a limited ability to filter feed;
instead, they have evolved to rely on endosymboitic chemosynthetic microbes for
nourishment (Fisher 1995). In fact, the whole deep-sea vent ecosystem thrives on
energy derived by chemosynthetic micro-organisms from oxidation of the reduced
species that are emitted at hydrothermal vents. This flux of reduced chemicals
is also significant in its own right, being one of the main avenues of chemical
exchange between the lithosphere and the oceans and on a par with riverine fluxes
and aeolian dust deposition for a number of elements (Kadko 1993; Elderfield &
Schultz 1996; German & Von Damm 2003). A modern Darwin would surely have
done well in such a situation, but the vent environment is so unique and difficult
to study, that even after 32 years of modern scientific investigation, we do not
fully understand it.

Areas of open research concern the exchange of material between the
lithosphere and the oceans, the extent of the deep-sea chemosynthetic biosphere
and the mechanisms by which records of hydrothermal discharge are created
and preserved in massive sulphide and metalliferous sediment deposits. The
interactions between mineral and microbial processes are important to all of
these topics and occur with distinct variations in three key ‘end-member’
hydrothermal sub-environments: low-temperature (less than 20◦C) diffuse flow,
high-temperature (more than 280◦C) vents and hydrothermal plumes (figure 1).
These sub-environments provide very different examples of microbial activity,
mineral reactions and their relationships. Low-temperature hydrothermal
discharge promotes the growth of large microbial mats, often tens of centimetre
thick. Biomass here is high while mineral mass is low—but mineral crusts often
form at the mat–seawater interface and the availability of mineral substrates may
influence mat development. High-temperature hydrothermal discharge promotes
the growth of massive sulphide chimneys where mineral mass is high and
biomass is low. Nevertheless, distinct microbial species inhabit the chemical and
thermal niches within these chimneys and may also influence their structure.
Finally, the dissolved and particulate products of venting are discharged to
the water column through hydrothermal plumes where mineral particles can
form rapidly and abiotically. Even here, however, a growing body of evidence
suggests that microbes are active, playing roles that may previously have been
overlooked.

Past studies have largely relied on ex situ bulk elemental and mineralogical
measurements to elucidate the geochemical processes that occur in these systems.
These however, shed only partial light on how such processes proceed: the
hydrothermal supply of dissolved chemical constituents varies with time and
between vents; speciation and oxidation rates vary with seawater redox conditions
and vent-fluid composition; and the potential for non-equilibrium phases (e.g.
mackinawite, greigite, wurtzite), and those readily oxidized by abiotic and biotic
processes, to be important raises the possibility that all ex situ analyses may
be biased towards thermodynamically stable and oxidized phases (e.g. Scott &
Barnes 1972; Maginn et al. 2002; Fortin & Langley 2005). Complimentary
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(a) (b) (c)

Figure 1. Mineral and microbial processes occur with distinct variations in several key hydrothermal
sub-environments: (a) massive sulphide chimneys, (b) microbial mats and (c) hydrothermal plumes.
Images courtesy of the National Science Foundation (NSF) Ridge 2000 program; Woods Hole
Oceanographic Institution; C. R. Fisher, Pennsylvania State University; and A. L. Reysenbach,
Portland State University. Images were acquired with support from NSF grants OCE02-40985,
NSF OCE-0728391, OCE-0752469 and OCE-0751839.

techniques are required that can observe not only the composition of the
phases present, but also the bonding within them—all in situ. For in situ
speciation measurements, laser Raman spectroscopy has great potential. A
particular strength of Raman spectroscopy is that it allows for non-invasive,
non-destructive identification for many of the minerals present in hydrothermal
systems. This would allow for reliable measurements of thermodynamically
unstable phases to be made, in situ, and for long-term variations in mineral
speciation to be monitored. Particular advantages would be the ability to (i)
monitor mineralogical changes within hydrothermal chimney walls over time
scales of months to years, (ii) identify mineral occurrence and speciation during
vertical profiles through microbial mats, and (iii) track chemical transformations
of Fe/Mn-rich material within evolving hydrothermal plumes, including the very
earliest stages (less than or equal to 1 h) while the plume is still rising above
a vent site, as well as during the following days and weeks as plume material
is dispersed through the water column and settles to the seafloor. Such an
approach would greatly improve our understanding of (i) the chemical evolution
of hydrothermal systems themselves, (ii) the structure and biogeochemical cycling
within microbial mats, and (iii) the impact of hydrothermal venting upon global
ocean chemistry.

Sea-going Raman systems have been built (Battaglia et al. 2004; Brewer et al.
2004; Schmidt et al. 2004) and deployed to manually analyse gases (White
et al. 2006a); synthetic and natural clathrate hydrates (Hester et al. 2006,
2007); and minerals, fluids and bacterial mats at hydrothermal vents (White
et al. 2006b; White 2009). Laboratory testing has proven the ability to
quantitatively, and autonomously distinguish many minerals typically found at
deep-sea hydrothermal vents, even minerals with similar chemical compositions
(figure 2; Breier et al. 2009a). Several instrument packages have been, or are
being, developed that could interface with sea-going Raman systems in order to
monitor and probe hydrothermal chimney structures, profile microbial mats (e.g.
White et al. 2005) and analyse suspended or sinking hydrothermal plume particles
(Bishop 2009; Breier et al. 2009b).
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Figure 2. Raman spectra of minerals common in deep-sea hydrothermal systems, collected in the
laboratory from prepared mineral standards and solid test specimens. Laboratory testing has shown
spectrum shape, not absolute peak intensities, is sufficient to distinguish the majority of these
minerals from each other (Breier et al. 2009a). Spectra have been normalized to one standard
deviation of their individual intensity distributions, the black line is the median and the grey
region denotes the 25th to 75th quantiles of the collected spectra.

Two technical issues still limit the use of laser Raman spectroscopy in the
deep sea: system size and the issue of fluorescence. The most used sea-going
Raman system built to date (Brewer et al. 2004) is a modified version of
a commercially available laboratory Raman package, which requires a large
fraction of a typical scientific submersible’s payload. More compact commercial
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packages are available, and other sea-going Raman systems being developed are
smaller (Battaglia et al. 2004; Schmidt et al. 2004). Further optimization of
size is desirable and would enable a greater range of deployment modes. More
importantly, the presence of fluorescence-inducing organic matter and transition
metals, which are ubiquitous in the vent environment, cannot be controlled or
effectively eliminated in situ. Thus, there is a need for a purpose-built deep-
sea laser Raman system that is both compact and incorporates fluorescence
mitigating strategies. In this paper, we summarize the scientific needs, review
the application of laser Raman spectroscopy in the deep sea and related technical
developments, present the characteristics of a purpose-built laser Raman system
for hydrothermal mineral analysis, including strategies for both minimizing
system size and mitigating fluorescence, and describe the experiments that would
be enabled by such a system.

2. Deep-sea hydrothermal systems

Hydrothermal circulation was recognized as an important pathway for chemical
exchange between the lithosphere and the global ocean even prior to the
discovery of mid-ocean ridge hydrothermal venting (Wolery & Sleep 1976; Corliss
et al. 1979). At mid-ocean ridges and related geologic features (e.g. back-arc
spreading centres), geothermal heat drives convection cells of seawater deep into
fractured, permeable young ocean crust. Water–rock reactions significantly alter
seawater chemistry during this process; it becomes reducing and acidic and is
enriched in dissolved metals and volatile compounds. As hydrothermal fluid, it
is discharged back to the oceans in the form of (i) focused high-temperature
venting and (ii) diffuse patches of low-temperature discharge (Alt 1995;
Tivey 1995).

At the seafloor, the mixing of high- (more than 300◦C) and intermediate-
(100–300◦C) temperature hydrothermal discharge and seawater (2–4◦C) results in
rapid, profuse, mineral precipitation and the growth of massive sulphide deposits
(Haymon & Kastner 1981; Janecky & Seyfried 1984; Hannington et al. 1995).
A number of different sulphide structures and morphologies form depending on
hydrothermal fluid composition, temperature, velocity, the degree of mixing with
seawater and potentially biotic factors (Hannington et al. 1995; Tivey 1995).
The conceptual model of high-temperature ‘black smoker’ chimney formation
involves two stages (Goldfarb et al. 1983; Haymon et al. 1993; Tivey 1995). Stage I
occurs when no previous structure exists, and involves the formation of a porous
anhydrite conduit lattice during unrestricted mixing of seawater and vent fluid
exiting the seafloor as a buoyant jet. Stage II occurs subsequently, as mixing
of seawater and vent fluid is reduced by the presence of the porous anhydrite
wall, and involves the precipitation of an inner-lining of Cu–Fe, and in some
cases Zn–Fe, sulphides together with the filling in of the outer anhydrite lattice
pore spaces by additional anhydrite and sulphides. Stage I precipitates anhydrite
primarily composed of vent-fluid-derived Ca and seawater-derived SO−2

4 . Stage II
precipitates the Cu–Fe sulphide minerals chalcopyrite, isocubanite, pyrite and
pyrrhotite and the Zn–Fe sulphide minerals sphalerite and wurtzite from vent-
fluid derived Cu, Fe, Zn and S. Weathering and biologic activity, at the seawater
interface and within the pore spaces, can subsequently modify both a chimney’s
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composition and its morphology; but the general product of chimney growth is
a layered, variably porous structure that creates nonlinear micro-environments
of various temperatures and chemistries. The growth process and the layered
structure of sulphide deposits make them valuable records of hydrothermal
venting. However, the temporal relationships between chimney mineralogy and
chemistry and vent-fluid temperature, mixing and composition are still only
partially understood. Further, microbial communities within chimneys may exert
their own influence on chimney growth and mineralization (Hedrick et al. 1992).
Thus, to date, the archival utility of sulphide deposits has only been partially
elucidated. Long-term in situ monitoring of both mineral speciation and fluid
properties within hydrothermal chimneys would provide the data necessary
to validate more complex models of chimney development, and could enable
more detailed reconstructions of the temporal development of these potentially
economically viable deep-sea mineral resources (Hoagland et al. 2009).

In the water column, immediately after seafloor venting, the mixing of high-
temperature hydrothermal discharge (more than 280◦C) and seawater (2–4◦C)
results in rapid, profuse, mineral precipitation and the production of a particle-
rich mineral plume. The abiotic model of hydrothermal plume formation describes
two processes (Feely et al. 1987; Rudnicki & Elderfield 1993; Lilley et al. 1995).
Plume process I occurs immediately after discharge of vent fluids into the ocean:
Fe(II) and other chalcophile elements co-precipitate to form polymetallic sulphide
phases (i.e. a ‘quenching’ effect). Plume process II occurs as reduced vent fluids
rise and mix with more oxidizing ambient seawater: trace elements co-precipitate
with and adsorb to freshly formed Fe(III) oxyhydroxides. Plume process I results
in the accumulation of seafloor metalliferous sediment deposits near vent sites and
is thought to remove the major fraction of vent fluid Fe (Rudnicki & Elderfield
1993; Kadko et al. 1995; Field & Sherrell 2000). Process II generates a finer
particle floc that can be dispersed many kilometres and is considered to be the
primary mechanism for hydrothermal scavenging of seawater nutrients and trace
elements (Mottl & McConachy 1990; Metz & Trefry 2000; German & Von Damm
2003). There is also a growing body of evidence that suggests that, in addition to
abiotic processes, biotic—and particularly microbial—processes can be important
within hydrothermal plumes (Cowen et al. 1986; De Angelis et al. 1993; Dick et al.
2009). For example, the most recent studies indicate that organic carbon binds
a significant fraction of the dissolved and particulate metals in hydrothermal
plumes by the processes of complexation (Sander et al. 2007; Bennett et al.
2009) and aggregation (Toner et al. 2009; Breier et al. submitted)—processes
that have competing influences on chemical dispersal. While chemical models
of hydrothermal plumes have been developed, none incorporate the full range
of abiotic and biotic processes now known to occur, and none are satisfactory
at predicting the behaviour of more than a subset of the elements involved in
hydrothermal reactions. A more realistic model of plume chemistry may require
the incorporation of both biotic and abiotic interactions and a more accurate and
complete description of in situ plume chemical speciation.

The mixing of seawater and vent fluids that accompanies low-temperature
‘diffuse flow’ hydrothermal discharge (less than 20◦C) leads to the production
of seafloor mineral crusts and small formations of silica, barite and iron minerals.
None of this low-temperature mineral precipitation is as rapid and dramatic as for
high-temperature venting, but the same mixing processes also enable the growth
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of extensive microbial ‘mat’ colonies. These microbial colonies are fuelled by fluxes
of reduced Fe, Mn and S, as well as CH4 and H2, liberated from the lithosphere
by hydrothermal circulation. The resultant ‘mats’ form structured microbial
communities based on the redox zonation within them and the metabolic
requirements of each species. Mineral forming processes are intimately related
to the establishment and growth of these microbial colonies, and substrate
mineralogy has been shown to influence microbial growth rates. For example,
incubation experiments by Edwards et al. (2003) have shown that bacterial
colonies grow with increasing rates on substrates of (in order, from slowest to
fastest growth rate): chalcopyrite, sphalerite, pyrite, marcasite, chimney sulphide
and elemental sulphur. In addition, mineralization often occurs directly on
microbes themselves. A lithotrophic Fe oxidizer isolated from hydrothermal
microbial mats forms ferrihydrite encrusted stalks as it grows (Emerson & Moyer
2002), and a mineral layer often covers the surface of hydrothermal microbial
mats. For example, an Mn oxide crust covers the approximately 1 m thick mats
at the base (5000 m deep) of Lohi Seamount. To date these mats, which are
highly flocculated, have been difficult to sample and their community structure
and the mineralogy of their substrate, crust and internal coatings is not well
characterized, but studies are intensifying (Reysenbach et al. 2000; Emerson &
Moyer 2002; Edwards et al. 2007).

3. Application of laser Raman spectroscopy in the deep sea

Raman spectroscopy is well suited to making measurements in the ocean because
water is a relatively weak Raman scatterer (Williams & Collette 2001; Moore
et al. 2009). Consequently, oceanographic applications of Raman spectroscopy
are decades old. For example, the shape of the Raman water spectrum is
temperature dependent, and has been used to measure the temperature of the
upper ocean (up to a depth of 100 m) remotely, via aircraft (Leonard et al.
1977, 1979; Becucci et al. 1999). The intensities of Raman water spectra have
also been used to determine the depth of laser penetration when correcting
airborne fluorescence measurements of phytoplankton density (Bristow et al.
1981; Hoge & Swift 1981). It is only more recently, however, that interest has
grown in using Raman spectroscopy to make chemical measurements in situ in
both the coastal ocean and the deep sea (Kronfeldt & Schmidt 1999; Battaglia
et al. 2004; Pasteris et al. 2004).

In pursuit of this, a series of sea-going Raman systems have been built
(table 1). The DORISS system developed by Brewer et al. (2004), currently in
its second generation, is based on Kaiser Optics laboratory components and uses
532 nm excitation. It was intended principally for CO2 gas and hydrate studies.
Two other sea-going Raman systems use 785 nm excitation. One of these was
developed to study hydrothermal vent-fluid chemistry (Battaglia et al. 2004;
Dable et al. 2006), and uses a variety of modified components including a Control
Development Inc. spectrometer. The other 785 nm system was developed to detect
polyaromatic hydrocarbons in seawater (Schmidt et al. 2004), and uses a custom
surface-enhanced Raman spectroscopy probe and a Jobin Yvon spectrometer
(Kronfeldt & Schmidt 1999).
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Table 1. Sea-going Raman spectrometer specifications.

spectrometer laser
weight

range pixel mappinga wavelength power in air
(cm−1) (cm−1) (nm) (mW) (kg)

current systems
Brewer et al. (2004) 100–4000 1 532 30 150
Battaglia et al. (2004) 200–2200 2 785 300 —b

Schmidt et al. (2004) 239–2739 3 785 —b 50

mineral specificc 100–1000 2 532d 25 <50
aPixel resolution depends on optical system and is typically several times greater than pixel
mapping.
bNot reported.
cTechnical goal and requirements for a next-generation Raman system for hydrothermal mineral
studies.
dAlternatively, a 785 nm wavelength laser is one of several options for minimizing fluorescence.

These choices between 532 and 785 nm excitation wavelength are worth
reviewing. They reflect different choices made by the developers concerning
scattering intensity, cost and fluorescence mitigation. Excitation wavelengths in
the visible spectrum (350–700 nm) minimize attenuation in water; although at the
short focal distances (i.e. centimetres) possible with some in situ applications (e.g.
Breier et al. 2009b), attenuation is not significant into the near ultraviolet and
infrared. Since the intensity of Raman scattering is inversely proportional to l4,
the 532 nm wavelength lasers produces a stronger Raman scattering intensity than
the less costly 785 nm wavelength lasers. However blue-green light is more likely
to produce fluorescence in organic compounds, which can obscure the Raman
signal. Longer excitation wavelengths, such as 785 nm, are one option for reducing
fluorescence effects (Ferraro et al. 2003).

The DORISS system has already been used to make a variety of in situ
measurements of gases, solids, clathrate hydrates and biomolecules. In situ
measurements of the composition of natural gas venting in Guaymas Basin and
along Hydrate Ridge have shown the composition to be primarily CH4 (Hester
et al. 2006). Raman spectroscopy has also been used in ocean experiments to
measure rates of CO2 dissolution (White et al. 2006a), and to determine the
structure of synthetic and natural hydrates and identify the gas molecules they
contain (Hester et al. 2006, 2007). And though the focus of this paper is on
minerals, the ability for Raman spectroscopy to identify CH4 and CO2 is in
also highly relevant to hydrothermal studies, as emissions from ultramafic-hosted
hydrothermal systems are rich in volatile organic compounds and emissions from
volcanic-hosted systems are rich in CO2 (Charlou et al. 2002; Lupton et al.
2006). In addition to these gases, barite and anhydrite minerals have also been
successfully identified at hydrothermal vents, as have the aragonite and calcite
phases of CaCO3 in seafloor shells (White et al. 2006b) and elemental sulphur
in an S8 configuration, together with beta carotenes, in seafloor bacterial mats
(White et al. 2006b).
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Thus, deep-sea deployments have already proven the value of in situ Raman
systems; but deep-sea Raman applications have mainly been qualitative with
the exception of White et al. (2006a), who measured CO2 dissolution rates.
While Raman spectroscopy can also be used for quantitative measurements, the
approach is unlike traditional methods of analytic chemistry because absolute
peak intensity is not a good basis for quantification. Raman scattering intensity
is proportional to analyte concentration,

IR = ILshPC , (3.1)

where IR is the Raman scattering intensity (peak area), IL is the laser intensity,
s is the Raman scattering efficiency (which is analyte specific and a function
of temperature and pressure), h represents the collective instrument parameters
including collection efficiency and optical throughput, P is the path length and C
is the analyte concentration (Owen et al. 1998). However, equation (3.1) is often
impractical to apply directly because instrument parameters, particularly those
that affect irradiance to the sample, are difficult to keep constant (Wopenka &
Pastersis 1986). In addition, for mineral crystals, Raman scattering is anisotropic,
so variations in crystal orientation result in variations in peak intensity. Instead,
for solids, relative chemical proportions within a sample can be quantified
using ‘point counting methods’, where multiple measurements are made at a
representative collection of points (e.g. 100 points on an evenly spaced grid),
and the number of observations of each analyte are used to determine their
relative proportions (Haskin et al. 1997; Wang et al. 2003). In this method,
Raman bands are used to identify species; Raman intensities are not used to
infer concentration.

In addition to being largely qualitative, deep-sea Raman applications to
date have also focused on strong Raman scatterers such as CH4 gas and
hydrates (Hester et al. 2007), or dissolved analytes that can be measured by
surface-enhanced Raman scattering (Schmidt et al. 2004). Even a short list
of the most abundant hydrothermal minerals includes many that are weak
Raman scatterers and share similar chemistries, and thus similar Raman spectra
(figure 2; table 2). Breier et al. (2009a) conducted extensive laboratory testing
to determine if these minerals could, in fact, be quantitatively distinguished in
mineral mixtures. These tests used mixtures of prepared particulate standards for
eight of the most common hydrothermal minerals: anhydrite, pyrite, chalcopyrite,
pyrrhotite, sphalerite, hematite, magnetite and goethite. Measurements were
made with a Kaiser Optics Raman instrument with a green (532 nm) excitation
laser equivalent to the DORISS sea-going Raman system. An automated point
counting scheme and custom autonomous spectral identification algorithm were
used to quantify the composition of binary mixtures, and one seven-component
mixture, of these standards. Accuracy was highest for pyrite, anhydrite and
chalcopyrite (99%, 98% and 96%, respectively), good for sphalerite and magnetite
(both 93%) and satisfactory for goethite and hematite (89 and 80%). For
pyrrhotite, the accuracy and misidentification rate were poor; this mineral
species actually includes two ideal crystal structures, and theory predicts
that neither should be Raman active (Mernaugh & Trudu 1993). Thus, the
results showed that quantification of laboratory standards was possible and
satisfactory in most cases; but preliminary ‘sea-truthing’ of natural sinking and
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Table 2. Deep-sea hydrothermal minerals.

oxides, oxyhydroxides, and other minerals and
sulphides aluminosilicates compounds

pyritea FeS2 hematitea a-Fe2O3 native sulphur S8
marcasite FeS2 ferrihydrite 5Fe2O3 × 9H2O anhydritea CaSO4
greigite Fe2+Fe3+

2 S4 goethitea a-Fe3+O(OH) biomolecules
chalcopyritea CuFeS2 lepidocrocite g-Fe3+O(OH)
cubanite CuFe2S3 magnetitea Fe2+Fe3+

2 O4
isocubanite CuFe2S3 ilmenite Fe2+TiO3
pyrrhotitea Fe(1 to 0.83)S talc Mg3Si4O10(OH)2
covellite CuS nontronite Fe3+-clay
mackinawite (Fe,Ni)S0.9
galena PbS
sphaleritea Zn(Fe)S
wurtzite Zn(Fe)S
aRaman spectra shown in figure 2.

suspended hydrothermal particulate samples has shown that intense broadband
fluorescence frequently obscures any Raman peaks (Breier et al. 2009a).
Overcoming this technical challenge would make this method more widely
applicable.

4. Positioning devices and optically compatible sampling instruments

Sampling instruments are generally necessary to collect useful measurements with
a sea-going Raman system. The Raman effect is weak (only 1 out of 108 incident
photons are Raman scattered) so focused laser light is typically used to increase
the intensity of incident light at the sample; even so, it can take tens of seconds to
collect high-quality Raman spectra. Thus, acquiring and maintaining focus on the
sample is important, and relative motion between the sample and the collection
optics is detrimental to the measurements.

To enable the study of seafloor mineral and hydrate deposits, White et al.
(2005) developed a precision underwater positioning (PUP) system for the
DORISS Raman spectrometer. The PUP system is a submersible precision three-
axis stage that allows the DORISS optical head to be focused on a seafloor
sample of interest. The PUP system was designed to be placed directly on
the seafloor by a remotely operated vehicle (ROV), to isolate measurements
from submersible motion—whether from a human occupied vehicle (HOV) or
an ROV. A similar positioning device could also be used to vertically profile
through microbial mats, profile the interior of drill holes in massive sulphides or
monitor in situ mineral precipitation and dissolution on rock substrates and vent
organisms.

Breier et al. (2009b) developed an optically compatible, trace-metal
clean, suspended-particle rosette multi-sampler for submersible-based sampling
of rising hydrothermal plumes and autonomous times-series sampling of
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(a) (b)

Figure 3. The SUPR sampler (a) is a Woods Hole Oceanographic Institution designed
and built, optical-sensor compatible, multi-sample filtering head interfaced to a McLane
Research Laboratories high flow-rate pumping system. An offset in the flow path
provides optical access to each filtered sample; the current version has a clear acrylic
housing cover and a clear polycarbonate rosette top plate, which allows collection to
be monitored in real time via video link during ROV operations. When configured for
ROV deployments, the SUPR system is compact enough to fit into any science payload
position on ROV Jason (b). Images courtesy of Woods Hole Oceanographic Institution and
Tom Kleindinst.

laterally dispersing, neutrally buoyant plumes from short moorings tethered to
the seafloor (figure 3). This suspended rosette sampler (SUPR) system is designed
to host in situ optical analysis systems, particularly for Raman spectroscopy.
It solves the problems of sample geometry and control for in situ analysis of
suspended particles by concentrating and trapping them on two-dimensional
filters. These filters can be presented to the optical analysis system for as
long or as often as needed and in a repeatable manner that allows for a
focused beam and a minimal amount of seawater in the optical path. We
are currently using this system to collect hydrothermal plume samples for
shore-based analysis (Breier et al. submitted), but the long-term goal is to
obtain in situ speciation measurements of suspended hydrothermal material by
combining the SUPR system with an appropriate in situ Raman spectroscopy
system.

An instrument analogous to the SUPR sampler has been developed for
collecting in situ images of sinking particulate matter. The optical sedimentation
recorder is an adaptation of the sediment trap concept, it funnels sinking
particulate matter onto a flat optical plate on top of an upward looking digital
camera that collects an image time series of accumulating material (Bishop
et al. 2004; Bishop 2009). The plate surface is periodically flushed clean to
prevent material buildup. This system could be readily interfaced with a sea-
going Raman instrument, which would allow in situ speciation measurements of
sinking hydrothermal material.
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5. A compact laser Raman system for hydrothermal mineral analysis

As noted, the first, and second generation, sea-going Raman systems developed
to date use many commercially available laboratory grade Raman components
(i.e. Kaiser Optics, Jobin Yvon and Control Development Inc. spectrometers).
This ensures that critical system components, such as the spectrometer, are
high quality, but it also makes the systems larger and more costly than
necessary for many purposes, thereby limiting their utilization. A smaller,
lower-power and lower-cost sea-going Raman system optimized for mineral
identification would enable many new applications of in situ Raman spectroscopy
in deep-sea research.

In order to achieve significant size and power reduction, it is necessary
to consider the minimum Raman system specifications needed to distinguish
between common hydrothermal minerals. Based on the experiments of Breier
et al. (2009a), the basic characteristics for a next-generation Raman system for
in situ, long-term monitoring of hydrothermal mineralogy should have a spectral
range of 100–1000 cm−1, a resolution of less than 5 cm−1 and provide a laser power
intensity of at least 5 mW on the sample. It should also incorporate some approach
for minimizing fluorescence saturation and the degradation of signal to noise that
it causes.

Concerning fluorescence, while green (532 nm) excitation has been successful
in analysing many laboratory and in situ mineral samples, fluorescence has been
a significant problem in some cases. Fluorescence is of a higher intensity and
longer lived than Raman scattering and, thus, can overwhelm the Raman signal
from a sample. Fluorescence is particularly a concern when organic matter is
present—it is ubiquitous for many hydrothermal applications of interest (i.e.
microbial mats). Fluorescence mitigation techniques include (i) time gating
with a pulsed excitation source to differentiate between the faster, shorter
Raman signal and the fluorescence signal (Matousek et al. 2001), (ii) basing
measurements on the anti-Stokes (blue-shifted) half of the Raman spectrum
that is less affected by fluorescence (which is predominantly red-shifted), and
(iii) shifting to a longer wavelength excitation source (Ferraro et al. 2003).
Of these fluorescence-mitigating approaches, time gating would significantly
increase system complexity and cost, and would require higher laser powers
or longer exposure times. Using the anti-Stokes half of the Raman spectrum
is an intriguing option, but it is significantly less intense than the Stokes
half of Raman spectrum, particularly at colder temperatures. Compensation
for the weaker scattering intensity would require higher laser powers or longer
exposure times. In addition, the intensity of the anti-Stokes portion of the
Raman spectrum decreases rapidly with increasing Raman shift, thus there is
a point where compensation is no longer practical (figure 4). This is the reason
anti-Stokes Raman spectroscopy is not often used in laboratory applications.
Using a red (785 nm) excitation source can mitigate fluorescence in some cases
(figure 5b), and also lowers system cost. However the excitation produced by
a red laser is less intense than that of a green laser, and red excitation does
not preclude fluorescence; in fact, it too can stimulate fluorescence in some cases
(figure 5a; White 2009). Thus, red excitation is only a partial fluorescence solution
and a proper evaluation of the relative merits of red versus green excitation
requires comparison of many in situ measurements. Therefore, what would be
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Figure 4. Raman photons are scattered to both longer (Stokes scattering) and shorter (anti-Stokes
scattering) wavelengths than that of the excitation source. The anti-Stokes portion of a Raman
spectrum is less influenced by fluorescence, which occurs predominantly at longer wavelengths
relative to the excitation source; but the anti-Stokes portion of the Raman spectrum is significantly
less intense than the Stokes portion. Area ratios for matching Stokes/anti-Stokes peaks, measured
from several different minerals, show how rapidly the intensity of the anti-Stokes portion of
the Raman spectrum decreases with increasing Raman shift (inverted triangle, calcite; triangle,
aragonite; square, barite; open circle, anhydrite).

useful at this stage of development is a purpose-built spectrometer with an
optical bench that can be reconfigured easily, to test several different excitation
sources in situ.

6. Towards next-generation deep-sea mineralization studies

We are currently incorporating Raman spectroscopy into a laboratory
analytic sequence for suspended and sinking hydrothermal plume particulate
samples. That sequence begins with non-destructive elemental and speciation
measurements and ends with sample digestion and bulk elemental analysis by
inductively coupled plasma mass spectroscopy. These samples are collected, in
part, with an instrument compatible with in situ optical analysis and the next
step in our analytic development is to deploy a sea-going Raman system to
determine the mineralogy of our samples in situ. Trial measurements could be
made with existing technology but, as noted, further development of sea-going
Raman systems, to achieve a low-cost, compact, fluorescence minimizing design,
could enable a variety of new studies. The following are just three examples.

(a) Long-term monitoring of sulphide chimney mineralization

The temporal relationships between (i) hydrothermal chimney mineralogy,
(ii) vent-fluid temperature, mixing and composition, and (iii) chimney-endemic
microbial communities are still only partially understood. This limits the
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Figure 5. Red (785 nm) excitation is often used to mitigate fluorescence in Raman spectroscopy.
(a) Raman spectra of anhydrite illustrate the fluorescence that can be induced by a red excitation
source; note the narrow-band fluorescence at more than 1100 cm−1 and peaks at 1225 and
1311 cm−1 in the spectrum obtained by 785 nm excitation is absent in the spectrum obtained
by 532 nm excitation. However, (b) Raman spectra of calcite illustrate the fluorescence reduction
possible with a red excitation source; note the broad fluorescence (increasing baseline intensity)
at more than 600 cm−1 in the spectrum obtained by 532 nm (green) excitation is absent in the
spectrum obtained by 785 nm excitation. Modified from White (2009).

extent to which sulphide chimney structures can be used to reconstruct
records of hydrothermal venting and makes uncertain the exact nature of the
micro-environments that chimney-microbes inhabit. To better understand these
relationships, recent studies have used thermocouple arrays to monitor internal
temperatures within chimneys over extended periods of time (Tivey et al. 2002).
In short, existing sulphide chimneys are broken down and removed and a
thermocouple array is put in its place. A new chimney begins to form immediately,
and the growth is rapid enough (several cm d−1) that the thermocouple array
becomes embedded within the new chimney structure within hours. Recovery
of the new chimneys, along with the thermocouple arrays, allows the final
chimney structure, and microbial samples therein, to be compared with the multi-
point internal temperature record—but the temporal development of chimney
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mineralization must still be inferred. In addition to the thermocouple array,
an array of fibre-optic probes coupled to an in situ Raman spectrometer could
allow mineral speciation to be monitored as well as temperature. In fact, such a
system could be used to monitor mineralogy during a variety of seafloor mineral
weathering and microbial colonization experiments. But the real value of this
approach would come from multiple deployments over a variety of time scales,
up to years, for which issues such as biofouling and direct mineralization on the
probe heads would have to be considered along with the previously mentioned
issue of fluorescence.

(b) Long-term monitoring of hydrothermal plume mineral speciation

There is an established body of research which suggests that hydrothermal
flux from a given vent site along any section of mid-ocean ridge should undergo a
predictable chemical evolution, linked to the underlying ridge-crest’s volcano-
tectonic cycles (Butterfield et al. 1997; Von Damm 2004). The most recent
evidence supporting this kind of cyclicity comes from sediment trap samples
collected following the latest eruption at the East Pacific Rise (German et al.
2008). However, the hypothesis remains poorly tested due to the long-term and
episodic nature of volcanic eruptions and the poor temporal resolution that can
be obtained from repeat ‘snap-shot’ sampling visits to any given area with a
dedicated research submersible.

A related hypothesis, and necessary assumption if we are to infer temporal
changes in hydrothermal venting from sediment traps, suspended particulate
samplers, or sediment cores, is that changes in primary vent-fluid chemistry
can be related, predictably, to the chemical composition of hydrothermal plume
particles. This hypothesis has also not been adequately tested due to chronic
under-sampling of the complete hydrothermal plume dispersal path and our
inability to verify in situ chemical speciation. The latter point is particularly
worrisome because kinetically limited reactions and meta-stable minerals are
probable results of the rapid, turbulent mixing and steep chemical and thermal
gradients produced by hydrothermal venting. As noted, the sampling technology
exists to collect hydrothermal plume samples, both sinking and suspended, over
the course of months and years—and even to do so in a manner that allows
optical access to the samples during collection. With the commencement of
science operations on the Neptune Canada cabled seafloor observatory, such
sampling packages, deployed at the main endeavour vent field, may finally be
able to be directed and monitored in response to volcano-tectonic activity on the
Juan de Fuca plate. Raman spectrometers, coupled to these particle sampling
packages, could allow the actual in situ mineral speciation of collected samples
to be identified immediately, and any variability in this mineralogy could also
be monitored, in real time, for periods of up to 6–12 months between necessary
maintenance and servicing.

(c) Point measurements and vertical profiling for mineral identification within
microbial mats

Deep-sea microbial mat research is still nascent and both (i) the relationships
between microbial mat community structure, substrate and surface crust
mineralogy and (ii) the processes of internal mat mineralization remain poorly
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understood. However the study of deep-sea microbial mats, motivated in part
by the search for novel metabolic processes, is becoming more intensive, and
new sampling instruments are being developed to better sample and measure
the chemistry of these systems. A sampling system currently being developed
by J. Breier and D. Emerson (Bigelow Laboratory for Ocean Sciences) will allow
high-resolution vertical profiling within microbial mats for both sample collection
and measurement of dissolved O2 and temperature. An ability to determine in situ
mineral speciation would provide a very valuable additional measurement with
which to characterize the environment and, hence, serve as a guide for more
detailed sampling. This, however, may represent the ultimate challenge for in situ
deep-sea Raman spectroscopy because the possibility for significant fluorescence
from the predominantly organic microbial matrix is very high.

7. Conclusions

For a variety of geological studies, understanding mineral speciation can be
at least as important as determining elemental concentrations of a given
material. Mineral speciation is particularly important in deep-sea hydrothermal
environments where steep chemical and thermal gradients, rapid and turbulent
mixing and biologic processes produce a multitude of diverse mineral phases—
many only metastable. Laser Raman spectroscopy is, in many ways, well suited
to mineral speciation measurements in the deep sea. A particular strength of
Raman spectroscopy for deep-sea hydrothermal systems is that it allows for
in situ, non-invasive and non-destructive measurements of Fe and Mn compounds.
This could enable measurements of thermodynamically unstable phases to be
made, in situ, and provide a novel method for the long-term monitoring of
variations in hydrothermal Fe and Mn compounds. As such, Raman spectroscopy
has great potential as a tool in a variety of hydrothermal science applications.
Indeed, sea-going Raman systems have been built and used to make a variety of
measurements in the deep sea, but there is a real need for further development.
To realize the full potential of this technique for hydrothermal research, a
small, low-cost sea-going Raman system optimized for mineral identification,
which also incorporates a fluorescence-minimizing design, is required. Such a
tool could be used to track chemical transformations of Fe/Mn-rich minerals
within developing sulphide deposits, hydrothermal plumes and growing microbial
mats, and could be deployed in a variety of fashions: in autonomous experimental
packages, as part of a cabled or moored observatory, or from a deep-diving
research submersible: HOV, ROV or even an Autonomous Underwater Vehicle
(AUV). The experimental approaches this would enable could greatly improve
our understanding of: (i) the impact of Fe and Mn cycling upon global ocean
chemistry, (ii) the extent to which Fe- and Mn-oxidation energy can fuel
(micro)biogeochemical cycling within the water column above hydrothermal vent
sites, and (iii) the mechanisms by which depositional records of the history of
hydrothermal discharge are laid down and preserved in massive sulphide deposits
and deep ocean sediments.
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