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Electromagnetic induction by a finite electric dipole
source over a 2-D earth

Martyn J. Unsworth*, Bryan J.  and Alan D. Chave**

ABSTRACT

A numerical solution for the frequency domain
electromagnetic response of a two-dimensional (2-D)
conductivity structure to excitation by a three-dimen-
sional (3-D) current source has been developed. The
fields are Fourier transformed in the invariant conduc-
tivity direction and then expressed in a variational
form. At each of a set of discrete spatial wavenumbers
a finite-element method is used to obtain a solution for
the secondary electromagnetic fields. The finite ele-
ment uses exponential elements to efficiently model
the fields in the far-field. In combination with an
iterative solution for the along-strike electromagnetic
fields, this produces a considerable reduction in com-
putation costs. The numerical solutions for a horizon-
tal electric dipole are computed and shown to agree
with closed form expressions and to converge with
respect to the parameterization. Finally some simple
examples of the electromagnetic fields produced by
horizontal electric dipole sources at both the seafloor
and air-earth interface are presented to illustrate the
usefulness of the code.

INTRODUCTION

Major advances have been made in the numerical model-
ing of electromagnetic induction in the earth in recent years
due to the ever increasing power of digital computers and
numerical algorithms. However, a problem that has received
very little attention in the geophysical literature is the
general, three-dimensional (3-D) or finite source over an

earth whose conductivity varies in only two dimensions, the
so-called 2.5-D problem. The 2.5-D problem represents an
important geophysical situation since many geological tar-
gets may be approximately 2-D, but practical electromag-
netic sources are of necessity 3-D. In such cases, a fully 3-D
medium is not needed and the computational costs can be
greatly reduced by solving just the 2.5-D problem.

A limited number of solutions have appeared in the
literature which are relevant to 2.5-D electrical and electro-
magnetic problems. The DC resistivity and induced polar-
ization problems were addressed in Coggon (1971), Snyder
(1976), and Fox et al. (1980). The first published theoretical
finite-element (FE) derivation for the 2.5-D electromagnetic
problem was in Coggon (1971). Stoyer and Greenfield (1976)
used a finite-difference method to compute the frequency-
domain response of a 2-D earth to a vertical magnetic dipole
source. This approach was successfully applied by Stoyer
(1975) to groundwater exploration problems. Lee (1978) and
Lee and Morrison (1985) presented a finite-element solution
for the fields induced by a magnetic dipole over a 2-D earth
and found good agreement with analog results, but the
method was computationally intensive. The 2.5-D time-
domain problem has been addressed by Everett (1990) who
describes a solution for a transient seafloor exploration
system and by Moghaddam et al. (1991) who present a
solution for ground-penetrating radar.

Recent developments in finite-element methodology
should be able to produce an algorithm that can accurately
and efficiently model the electromagnetic response of com-
plex 2-D conductivity structures to 3-D sources. In this
paper, the 2.5-D differential equations will be defined and
then the corresponding variational forms will be used to
generate the finite-element equations. The finite-element
methodology will be described in detail, as will the tests used
to validate the code and its numerical stability. The paper
concludes with some simple seafloor examples.
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THEORY

Governing Equations

The total electric and magnetic fields (E and B) generated
by a specified source current distribution  satisfy the
pre-Maxwell equations in which the magnetic effect of
displacement current is neglected

where  is the electrical conductivity which is assumed to
vary in two dimensions and  is the magnetic permeability
of free space. For a point electromagnetic source,  is
singular and difficult to represent accurately by a discrete
formulation. This problem is easily overcome by separating
the total electric and magnetic fields into their primary and
secondary components. The primary fields can be calculated
for a simple, one-dimensional (1-D) conductivity structure,

  Thus, equations (2) and (3) also govern primary
fields, when    and when subtraction equations
obtained for the secondary fields are:

where     is the difference between the total 2-D
conductivity and the 1-D background conductivity used to
calculate the primary fields. Providing that    at the
source, the singular source term has been replaced by the
nonsingular function  which is distributed throughout
the solution space. Note that ha is not constrained to be
either small or positive.

A Cartesian coordinate system is defined with  vertically
upwards and the conductivity invariant in the 
Since the conductivity varies in only two dimensions, the
solution can be simplified further by Fourier transforming
each field component in the i-direction, with the Fourier
transform of each component defined as

Throughout this paper a hat (  will be used to denote
quantities in the Fourier transform domain. With a harmonic
time variation proportional to e  for each field compo-
nent, equations (4) and (5) can be written in Cartesian form
as

where  is the along-strike wavenumber. If the source is
invariant in the t-direction  = 0), then it is well known
that two independent electromagnetic modes can be treated
separately, as in magnetotellurics or for an infinitely long
wire source. In this limit the transverse electric (TE) or 
mode is defined by equations (7) to (9) and only has an
electric field component in the invariant direction  of
conductivity. The transverse magnetic (TM) or  mode is
defined by equations (10) to (12) and has a magnetic compo-
nent only in the invariant conductivity direction  while
the electric field is confined to the ( y , Z) plane. The solution
of these zero-wavenumber problems gives useful insights
into the physics of electromagnetic induction, but the results
must be applied cautiously to the interpretation of data from
3-D sources, since the reduction in dimension fails to repre-
sent the complete inductive process.

To compute the response for a finite source, a range of
nonzero  values must be considered to represent the fields
in the Fourier domain. When  is nonzero, independent 
and  modes no longer exist; they are effectively coupled
by the source so that the fields vary in three dimensions.
Equations (7) to (12) may be rearranged to yield coupled
equations for  and the secondary, along-strike fields
in the Fourier transform domain.

      is a unit vector in the x-direction
and       The coupling term is proportional to 
so that at zero-wavenumber the modes are independent.
With a nonzero wavenumber, a minimum of two field
components must be calculated at a point to represent the
3-D electromagnetic fields, whereas only one suffices for the
zero-wavenumber case.

Finite-element formulation

The 2.5-D induction problem can also be written in a
variational form that allows the finite-element equations to
be derived. Suppose that a field V( y, Z) satisfies the differ-
ential equation  = f in a region  with boundary
conditions V = on the perimeter  where  is a
differential operator, f is a specified source function, and fo
is a known function. The calculus of variations, e.g., Clegg
(1968), shows that solving the differential equation is equiv-
alent to finding a function V that minimizes the Lagrangian



200 Unsworth et al.

where L, the Lagrange density, satisfies the Euler-Lagrange
equation,

Equations (13) and (14) are of the form

       

which can easily be shown to have Lagrange densities of the
form

The finite-element method is described in detail in
Zienkiewicz (1967) and Oden and Carey (1983); only an
outline is presented here. The region  is divided into 
2-D elements, and the kth element is defined by n(k) nodes
with coordinates             The mesh
contains  nodes in total. The solution, V approximated
within each element by the nodal values         
and a set of shape functions          in the kth
element.  is given by

With this approximation for V, the Lagrangian (Clegg, 1989)
can be simply expressed as a sum of integrals over individual
elements,

where the inner sum extends fromj = 1 to n(k). If the basis
functions are required to have the property that

    

at the nodal points             and 
is the Kronecker delta, then the contribution to  from each
element can be conveniently written in quadratic form as

where  is the vector containing the node values and H
denotes the conjugate transpose. The element stiffness ma-
trix is given by

where        is the global solution vector of
nodal values,     is the global stiffness matrix and
f    is the global load vector. K contains all of the
information regarding the element sizes and media proper-
ties (a and b) , and v contains the unknown nodal values. To
minimize  with respect to v, equation (26) is differentiated
with respect to v and equated to zero, yielding the matrix
equation,    which can be solved for v.

IMPLEMENTATION

Mesh generation

The success of a finite-element calculation depends on the
way the solution region  is discretized into a finite-element
mesh. The meshes used in this study have been generated
with TRIMESH, a 2-D mesh generator described by Travis
and Chave (1992) which permits a general triangular mesh
(i.e., one composed of nonright triangles) to be produced
from minimal input information and is capable of handling
the most general of geometries, including multiply-con-
nected regions. Figure 1 shows a typical mesh that was used
in the seafloor examples described later in this paper. Since
a general triangular mesh does not produce the simple
banded matrix equation obtained when the mesh is com-

FIG. 1. A typical finite-element mesh used for modeling the
fields of an HED source at the seafloor. The sloping seafloor
is indicated by the arrows.
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posed of right triangles, some matrix preprocessing to min-
imize the bandwidth is required. The automatic node renum-
bering algorithm of Collins (1973) is used to rearrange the
matrix terms, hence optimally reducing the bandwidth by a
factor of 100 or more. This allows efficient banded matrix
solvers to be used to solve the finite-element equations.

illustrated in Figure 2. The element has four nodes, and since
two nodal values are set to zero, only two shape functions
need be defined as

Calculation of  and 

To express equations (13) and (14) in variational form, the
integrals (24) and (25) must be evaluated. For general,
isoparametric, triangular elements these integrals are ana-
lytic, and the components of the element stiffness matrices
and load vectors are derived in Appendix A.

Calculation of primary fields

Computation of the element load vectors at each wave-
number requires that the three primary electric field compo-
nents be evaluated at each node. If the primary conductivity
structure is taken to be two half spaces, then the fields can be
derived in closed form. The finite-element method will work
for an arbitrary electromagnetic source, but this study con-
centrates on the case of an infinitesimal horizontal electric
dipole (HED). The primary fields for an HED were derived
using a method similar to that of Chave and Cox (1982) and
the expressions used are listed in Appendix B. The sine-
cosine integrals were evaluated using a method similar to
that described by Chave (1983) for Hankel transforms.
Because the fields are spatially smooth, they may be calcu-
lated at a reduced set of locations to save computation, with
subsequent evaluations being obtained by spline interpola-
tion.

These shape functions are continuous with those in the
adjoining triangular elements and allow the secondary fields
to decay to zero with the appropriate decay constant, 
To determine  it is often necessary to use a general
technique such as that described in Pissanetzky (1983), but
in the present instance the cylindrical symmetry of the
secondary field can be used to find an approximate form.
Thus for the horizontal elements on the right boundary of the
mesh, the radial skin depth is resolved parallel to the
element’s infinite side to give,

Boundary conditions: Infinite elements

The electromagnetic fields obey a radiation condition at
infinity; since the fields decay to zero at infinite distance
from the source, imposing an essential boundary condition;
i.e., forcing them to be zero at a finite range may result in
significant errors. Extending the finite-element mesh to a
distance of several skin depths requires many extra ele-
ments, and the matrix equation rapidly becomes too large to
be solved quickly or conveniently. Coggon (1971) and Prid-
more et al. (1981) attempted to overcome this problem by
terminating the mesh at natural boundaries so that no energy
flowed across them. While such boundaries can be devised
for the scattering problem in a whole space, this method
cannot be used for the scattering due to a source near an
interface, and some other way of modeling the dissipation of
energy in all directions must be developed.

where    is the horizontal coordinate of
the source, f is its frequency, and  is the conductivity of
the infinite element. Similar expressions may be derived for
the infinite elements on the left, top, and bottom sides of the
mesh. The stiffness matrices and load vectors for the infinite
elements are calculated in an identical manner to those for
the triangular elements and are then added to the global
matrix equation. The results are presented in Appendix C.
The improvement made by using these elements is depicted
in Figure 3, which shows the mean seafloor errors for the
simple structure described in the section detailing the error

An elegant way to proceed is to apply a derivative
boundary condition at a finite distance from the source. This
requires that the solution V at the boundary satisfy

    (27)

where A and B are defined operators and n is the normal to
the boundary. This is equivalent to extending the mesh to
infinite distance from the source with a set of infinite
elements. This type of element has been used extensively in
other diffusive computational problems such as heat flow
(Lewis et al., 1985). The geometry of one such element is

FIG. 2. The geometry of an infinite
source.

element in relationto the
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analysis with both infinite elements and an essential bound-
ary condition implemented at 1.5 skin depths from the
source.

It remains to be shown that the use of infinite elements is
equivalent to applying a natural boundary condition at the
perimeter of the triangular mesh. In terms of node values and
shape functions,

and upon substitution into equation (27) at y = yE, this
becomes

which is satisfied for all z if B = 0 and A = 

Iterative solution of the coupled equations

As previously demonstrated in equations (13) and (14), at
least two electromagnetic field components are needed to
fully describe the physics of electromagnetic induction from
3-D sources, and it is convenient to solve for the along-strike
electric and magnetic field components. The other field
components can then be calculated by numerical differenti-
ation of these principal components using equations (7) to
(12). To avoid the errors arising from this process, both
Coggon (1971) and Lee and Morrison (1985) solved directly
for all three electric field components, but this approach
increases the size of the matrix equations by 50 percent.

The equations could be solved simultaneously for  and
 but this would double each dimension of the global

stiffness matrix and greatly increase the computer time and
memory needed for solution. It is more efficient to treat the
equations in an iterative fashion by including the coupling
terms on the right-hand sides of equations (13) and (14) in the
source term f. To do this  is set to zero and equation (13)
is solved for an initial  . This is then used as a source term
in equation (14) to calculate  which is then used to
improve the approximation to  This cycle is repeated
until convergence is achieved, which is defined as occurring
when both the mean and maximum change in the secondary
fields at the earth’s surface is less than some specified
amount. Figure 4 shows the number of iterations needed as
a function of wavenumber for a variety of convergence
parameters. The model used is the 1-D conductivity used in
the following section. This alternating solution is equivalent
to a minimization of the corresponding Lagrangian even
though the Lagrange density is never explicitly calculated.
Stoyer (1975) described a similar approximation scheme that
was unstable, possibly because the solution was for the total
fields. The present application appears to be the first suc-
cessful implementation of an iterative solution to this prob-
lem. Table 1 compares the performance of the iterative and
simultaneous solutions for  and  for meshes of varying
sizes on a Convex C-120 computer. The iterative solution is
particularly effective when meshes with more than 2000
nodes are being used. This is because these matrices are
close in size to the computer’s memory, and it is quicker to
solve two matrices of order 2000 that will fit into memory at
one time than to solve one of order 4000 which does not. In
some instances it was necessary to damp the secondary

FIG. 3. Total and secondary field errors at the seafloor. The upper frame shows the errors that occur when the fields are forced
to zero at the edge of the mesh and the lower frames show the improvement obtained by using infinite elements. The dashed
line represents secondary field quantities and the solid line is for the corresponding total field quantities.
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fields to ensure that the iteration does not diverge. The
present algorithm automatically selects the value of a damp-
ing factor  which lies between 0 and 1. If the field compo-
nent at the previous iteration was  and at the present
iteration is  then the damped value  is defined as

   

tively. Similarly,    and    are odd
functions of their respective variables for this orientation.
Writing the exponential functions in terms of sines and
cosines gives,

Inverse Fourier transform

Once the along-strike fields have been computed in the
 , y , Z) domain at a discrete set of wavenumbers, inverse

Fourier transforms,

can be evaluated. Between wavenumbers,  and  are
interpolated by cubic splines since both quantities are
smooth functions of Figure 5 shows an example of

 at the seafloor for the structure used in the conver-
gence study in the following section. With the current source
parallel to the structure and located at (x = 0)     
and   , y , Z) are even functions of x and  , respec-

Similar results are obtained when the source is perpendicular
to strike, but with the symmetries reversed. The other
secondary field components are evaluated by numerical
differentiation of the along-strike field components. Finally,
the primary fields of the point dipole are evaluated directly
from Hankel transform expressions and added to equations
(36) and (37) to yield the total electromagnetic fields.

VALIDATION OF THE CODE

It is vital to demonstrate that the results of a numerical
method are accurate and independent of the parameteriza-
tion. There are internal and external types of tests. External
tests compare the results with alternative numerical methods
or analytic results, while internal tests check for self-consis-
tency and convergence with respect to the parameterization.

The parameterization of the 2.5-D problem is defined by
the spatial parameterization-the mesh texture and extent-
and the set of wavenumbers. The mesh texture is the number
of elements per skin depth, and the mesh extent is the
distance from the source that the triangular mesh extends
before being terminated by infinite elements. In the wave-
number domain, the spacing of the wavenumber values at
which the fields are computed and the upper and lower limits
of the wavenumber spectrum must be specified. In both
domains the finite-element solution becomes satisfactory
when the linear finite elements or the polynomial spline
functions become a good approximation to the quasi-expo-
nentially decaying fields and when the parameterization
extends over the appropriate range.

To demonstrate the accuracy of the method and to char-
acterize its convergence, a simple 1-D model is used. The
medium consists of two half-spaces with the lower one
representing the earth  = 0.003  and the upper one

FIG. 4. Number of iterations required for convergence as a
function of wavenumber for a range of termination
parameters.

Table 1. Comparison of iterative and direct solution times in seconds for meshes with 2000, 1500,
and 1000 nodes on a Convex C-120 computer.

Number of nodes

Solution method

Forming matrix
Factorizing matrix
10 iterations

TOTAL 510 38 195 21 14 16

2000 1500 1000

Direct Iterative Direct Iterative Direct Iterative

220 6 70 4 4 3
290 18 125 13 10 9

0 4 0 4 0 4
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the seawater     The source has a frequency of
8 Hz and is 20 m above the interface between the half-
spaces. The lower half-space contains a 2 km thick conduc-
tive layer  = 0.03  at a depth of 2 km. The seafloor
fields computed with the 2.5-D finite-element method are
compared with those obtained from the Hankel transform
expressions of Chave and Cox (1982).

The accuracy of the seafloor fields with respect to the
mesh texture  is shown in Figure 6. For a mesh with
constant element spacing, the errors display a monotonic
decrease as  increases, and with more than three elements
per skin depth the change is small. It should be noted that at
large wavenumbers the effective decay length d approaches

 which is shorter than that at zero wavenumber and

independent of conductivity. Even though the mesh may
only have one element per skin depth for these 
the spatial fields are still accurate since the high wavenumber
terms make only a small contribution to the inverse Fourier
transform. Lee and Morrison (1985) found it necessary to
use a separate mesh for each wavenumber, but this has not
been found to improve the present simulation. Meshes with
textures varying with source range were also investigated
and found to be capable of producing smaller errors around
the source, but larger errors at the edge of the mesh when
using the same number of nodes. The optimal mesh could be
found by implementing a moving finite-element method,

bewhich has been shown in Travis and Chave (1991) to
useful in magnetotelluric modeling.

FIG. 5. Normalized real and imaginary components of   , y , z = 0) at the seafloor as a function of wavenumber for the
conductivity structure used to validate the code. The curves with greatest amplitude are for points 500 m from the source, and
subsequent curves are 500 m apart.

FIG. 6. Mean seafloor errors in the along-strike electric field as a function of the mesh texture.
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Figure 7 shows the mean seafloor errors as a function of
 the mesh extent. Since the infinite elements represent

the solution in the far-field, they cannot begin too close to
the source, and it can be seen that  = 1.5 is generally
adequate. With < 1.5, the solution not only becomes
inaccurate but the iterative solution may become unstable,
since the infinite-element shape functions do not accurately
approximate the secondary fields at less than a skin depth
from the source. If an essential boundary condition were
used instead of the infinite elements, then to obtain accept-
able errors in the center of the mesh would require  > 4,
which would increase the number of nodes needed by a
factor of 3 and result in significantly more computation.

The fields in the wavenumber domain were represented by
Nkx wavenumbers per decade and the dependence of the
seafloor errors on this quantity are given in Figure 8. The
errors show a very rapid decrease a Nkx is increased, and
provided  > 5, the wavenumber spectrum is adequately
parameterized. The upper limit of the wavenumber spec-
trum,  depends on the minimum distance from a
region of nonzero  to the point at which the fields are
required to have a specified accuracy. The fact that the fields
have an increased high wavenumber content close to the
source can be expressed as   = C, where C is a
constant of 0( 1) as proposed in Snyder (1976). In this case,
taking C = 4 and since = 2000 m, this requires
kmax = 0.002  This is confirmed by Figure 9 which
shows the monotonic decrease of the seafloor errors with
respect to With a region of nonzero  close to the
surface, many more  values must be included to accurately
represent the fields in the Fourier domain, thus it is efficient
to define the primary conductivity so as to maximize Rmin .
This is achieved by allowing certain regions to have negative

To accurately represent the fields at points along strike
and not just in the plane of the dipole, it is necessary to
define the minimum wavenumber  down to where there
are Nkx wavenumbers per decade. This arises because at
and along the strike range of X, the inverse Fourier trans-
form must include wavelengths up to 2X and thus  is

 
Using the criteria for a convergent parameterization out-

lined above, it was found empirically that for a typical problem
15  values and up to 2000 nodes are required. The seafloor
field strength and phase errors are shown in Figure 3, and
everywhere are less than 5 percent and 2 degrees, respectively.
They are largest at the mesh edge where the infinite-element
approximation is least accurate. It is this behavior that pro-
duces the residual error at the highest parameterization in
Figures 6 to 9.

Having demonstrated the accuracy of the code for 1-D
conductivity structures, the code was applied to some simple
2-D structures. Unfortunately no solutions for an HED
source have been published for a direct comparison of
results. Thus a number of internal tests were applied to these
2-D solutions to ensure that they converged as the parame-
terization was progressively refined, and similar spatial and
wavenumber requirements were obtained. Other internal
tests have been used and indicate that the solutions are
accurate and stable. For example, equation (1) requires that
the divergence of the magnetic field should be zero, and
since this condition is not imposed explicitly on the solution,
it provides a good consistency check. The normalized diver-
gence,

FIG. 7. The percentage of seafloor nodes with secondary field strength and phase errors below a specified level as a function of
mesh extent.
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is generally in the range     indicating that this
condition is well satisfied. Reciprocity is also a useful
condition to consider (i.e.,interchanging the source and
receiver positions should result in the same fields at the
receiver), and this is found to hold to within 2 percent and
2 degrees in the field strength and phases, respectively. The
results in this section indicate that the solution is accurate to
an acceptable degree and stable with respect to the spatial
and wavenumber parameterization.

EXAMPLES

The code has been used extensively to simulate seafloor
electromagnetic induction experiments using HED sources.
The fields induced in the earth in such a configuration are
very different from those produced in the terrestrial one
since the earth is the least conductive region, rather than
most conductive region, as is the case in terrestrial experi-
mentation. Figures 10 and 11 show electric and magnetic

FIG. 8. Mean seafloor errors as a function of the number of  values per decade used to represent the fields in the Fourier
domain.

FIG. 9. Mean seafloor error as a function of the highest wavenumber used in the inverse Fourier transform.



EM Induction in 2-D Earth by 3-D Source 207

field components of the fields that are induced in a uniform circulation of current within the more conductive medium,
seafloor containing resistive and conductive prisms. In the but this high conductivity also acts to rapidly attenuate the
former the HED source is parallel to the i-direction and electromagnetic fields. The vortex below is much more
thus, in a plane through the source only,  is nonzero. The diffuse. Since current crosses conductivity gradients in this
current flow is predominantly parallel to conductivity gradi- plane. the effect of the two prisms is markedly different to
ents and thus the fields decay with length scales of the order the previous example. Both produce a significant alteration
of the skin depth,  =   The field strength and of the current Row that is manifested in the magnitude and
phase can be seen to vary more rapidly in the conductivephase of  In both of these orientations it can be seen that
seawater than in the resistive earth. The conductive prismlong range propagation of the fields produced by an HED
can be seen to reduce the field strength and delay the phase,source is dominantly through the more resistive half-space.
whereas the resistive prism has a minimal effect on the fields.Figure 12 shows a plan view of the seafloor in the vicinity of
In Figure I I the HED source is oriented in the j-direction, the HED source and demonstrates the 3-D nature of the
and in a plane through the source, the electromagnetic fieldelectromagnetic fields induced in a 2-D earth by a point HED
is characterized by  Two current vortices are generated, source. At zero along-strike range, the conductive prism
one above and one below the HED source. The one abovereduces field strengths below their half-space values by
the source produces a high flux density due to the tighter simple attenuation, as was shown by the vertical section in

FIG. IO. Electromagnetic mode generated by an HED source at the seafloor parallel to i-direction with frequency of 1/2 HZ.
Conductivities are in  and the electric field strength is in Vm per source dipole moment. The phase is relative to the
source and mapped onto the interval 0 to 180 degrees. This results in 120 and 240 degrees appearing as the same shade, since
they are both 60 degrees away from 180 degrees.
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Figure 10. However at along-strike ranges greater than 2 km
and above the conductive prism, the field strengths are
increased above the half-space values by current channeling.
Electric current that in a uniform half-space would turn at
depths greater than 2 km is now able to take the low
impedance path along the conductive prism. Thus the cur-
rent density and hence electric field strengths are increased.
Again, the resistive prism has minimal effect on the electro-
magnetic fields.

The code has also been applied to the case of an HED
source at the earth-air interface. The fundamental difference
with the previous example is that the 2-D conductivity
structure is now contained within the more conductive
half-space. The use of the primary-secondary separation,
the iterative solution, and the infinite elements was again
found to greatly reduce the computational requirements. The
air is represented by a low but nonzero conductivity and

provided that the triangular mesh is extended at least 1.1
skin depths within it. the iterative solution was found to
converge reliably. The infinite elements were found to be
particularly effective in representing the fields in the air,
since the conductivity contrast between the earth and air is
greater than that between the earth and seawater in the
previous example. The response of uniform earth containing
a conductive prism is shown in Figure 13. Note that the
conductive body attenuates signals traveling through the
earth so that signals received at ranges of more than a
kilometer to the right of the source are dominated by
electromagnetic energy that has propagated through the air.
As expected these signals have larger field strengths and
earlier phases. Since the electromagnetic fields‘ propagation
is dominantly through the air, such a survey would be
relatively insensitive to earth conductivity more than a skin
depth below the surface of the earth.

FIG. 11. Electromagnetic mode generated by an HED source at the seafloor normal to x-direction with frequency of 1/2 Hz.
Conductivities are in Sm -1 and the magnetic flux density is in Tper source dipole moment. The phase is relative to the source
and mapped on to the interval 0 to 180 degrees.
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CONCLUSIONS The performance and applicability of the algorithm could
be further improved. Quadratic elements could be used

The 2.5-D numerical method described in this paper has
been found to be useful for simulating electromagnetic

along internal boundaries between regions of differing con-

induction experiments. The combination of the secondary
ductivity to explicitly allow the continuity of normal electric

field iterative solution with the use of infinite elements has
current and magnetic flux density to be imposed. At high
wavenumbers the electromagnetic fields in the Fourier do-

considerably reduced the computational cost. Both execu-
tion time and memory requirements have been reduced by

main become independent of conductivity and decay as

more than a factor of 10 compared to solutions not using     
these features. In conjunction with the use of a general
triangular mesh the method permits the response of complexwhere r is the radial distance from the source and  is a
conductivity models to be computed with ease. It is stable constant. Thus  will develop a spatial singularity and be
for both terrestrial and marine applications, but becomespoorly represented by the finite elements. This wavenumber
particularly efficient for the latter since the rapid decay of singularity could be subtracted from the secondary fields in
secondary fields with the conductive seawater layer allows a manner analogous to the primary-secondary separation
the mesh to be terminated very close to the seafloor, thusused to remove the spatial singularity of the source. This is
greatly reducing the number of elements required to repre-generally unnecessary unless the solution near the source is
sent the electromagnetic fields. of interest. The applicability of the code could be increased

FIG. 12. A plan view of the (x, y) plane (the seafloor) showing the along strike field variations produced by the 2-D structure
shown in Figure 10. The source orientation is shown by the arrow and the position of the prisms is indicated by the straight lines.
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FIG. 13. Electromagnetic fields at the earth’s surface generated by a HED source marked “X” with frequency 100 Hz over the
conductivity model shown in the upper panel. The source is parallel to the invariant conductivity direction. All conductiv-
ities are in  . The shifts in the fields are relative to those computed for a double half-space model.

by considering other types of finite-electromagnetic sources.
The features that have improved the performance in the
present application (infinite elements and the iterative solu-
tion) are expected to produce comparable improvements in
modeling of the fields generated by other types of electro-
magnetic source.
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APPENDIX A

ELEMENT STIFFNESS MATRICES AND LOAD VECTORS

With a triangular element having nodes at      
1, . ..) 3 the diagonal and off-diagonal terms of the element
stiffness matrix are of the form,

and the other matrix elements may be obtained by cyclic
permutation of the indices. Thus, for equation (13) a =

 and b =  and for equation (14) a   and
b =  The source term of equation (13) is of the form

The three terms  ,  , and  are considered in turn, and
thus the first component of the element load vector may be
written as =  +  In each element the
primary and secondary electric and magnetic field compo-
nents are expressed in terms of their nodal values  

   with i = 1, . . . , 3, and thus

to the element load vector where i = 1, . . . , 3, and since
 is discontinuous at the element boundaries, it contains

singularities. To perform the integration, the vector identity

where  is constant within each element, but undefined
at the interface. If the value on the interface is defined to be
the arithmetic mean of the value in the two elements,
summation over all elements of the line integral terms will
cancel when all of the elements are considered. Thus,
ignoring these line integral terms, the first component of the
element load vector becomes

and the others may be obtained by cyclic permutation of the
indices. The coupling term,  contributes

to the element load vector, where i = 1, . . . , 3. This
integral also contains terms that are singular at element
boundaries, and the identity

is used to show that
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(A-18)

 ( A - 1 4 )

where i = 1, . . . , 3. Using Stokes’s theorem, the second
area integral reduces to a line integral yielding

        

(A-15)

Again, the line integral terms cancel when all the elements
are considered, and the contribution to the first component
of the element load vector can be written in the form,

       

2         

(A-16)

with the other components being obtained by a cyclic
permutation of the indices.

The element load vector for equation (14) is calculated in
an almost identical manner      . The first term,

 
(A-17)
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contributes

where i = 1, . . . , 3 to the element load vector. Using the
identity (A-13) and Stokes’s theorem, it is straightforward to
show that for a triangular element the contribution to the first
component of the element load vector is of the form

       (A-19)

and the others are obtained by cyclic permutation of the
indices. The contribution from the coupling  is given
by,

 
            

 
           

(A-20)

and again the other components are obtained by a cyclic
permutation of the indices.

APPENDIX B
PRIMARY FIELDS FOR AN HED SOURCE IN THE    DOMAIN

The simplest primary conductivity structure consists of
two half-spaces having conductivities  and  with a
dipole source parallel to the t-direction and at a height 
above the interface. In the half-space containing the source

  0) the fields at a point  , y , 

 

   
     

       (B-1)

   

    
     

       (B-2)

 

 
    

     (B-3)

and

 
   

  

       (B-4)

And in the source-free half-space   0) these expressions
become,

    

   

       (B-5)

       

   

      (B-6)

        

(B-7)
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and
  

  
  

         

   w i t h             

      (B-8)        and the upper sign in equation
(B-4) is for    Very similar expressions can be obtained

where the complex reflection coefficients are when the dipole is parallel to the 

APPENDIX C

STIFFNESS MATRIX AND LOAD VECTORS FOR INFINITE ELEMENTS

The element stiffness matrices and load vectors for the
infinite elements are calculated from integrals (24) and (25) in
an identical manner to those for the triangular elements. The
function   defined in equation (30) is approximated to the
constant value at each node, and for the rectangular infinite
element of width  shown in Figure 5, the shape functions
are

 ,     
 = , , 

  
(C-1)

where

=  and  

(C-2)

and  and  are defined in Figure 2. To represent the
primary fields in terms of the shape functions it is necessary
to define their decay constants as ( C - 8 )

  and 

(C-3)

where  is the primary conductivity of the element. In the
corners a half-infinite square element is used with a single
shape function of the form

( C - 9 )

c    (C-4)

where  and  are the decay constants resolved in the 
and Z-directions, respectively. The results in the following
section are for an element on the right-hand side of the mesh,
and the expressions for the other sides can be derived in a
similar way provided that care is taken to ensure that the
primary field components are interchanged, since in these
elements the i-component of the primary field is parallel,
rather than normal to the strip. The elements of the symmet-
ric 2 X 2 stiffness matrix are

(C-10)

( C - 1 1 )

  (C-5)

 
  

        
(C-6)

For the corner elements the matrix has a single element of
the form

(C-7)

For equation (13)        and for the
along-strike magnetic field equation (14),      

Separating the source terms into the five   
defined in Appendix A, it is straightforward to show that the
contributions to the element load vectors for equations (13)
and (14) are

(C-12)
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1 1

     

 
(C-13)

      
   (C-15)

ik, 
E

 
 a n d   

 
(C-14)

For a corner element, the element load vector has a single
element           where,

 
 

     

and

 
    

       (C-16)

where   and  are the values of the primary electric
field at the corner node.


