
 
 
 
  Chapter 4 

 Rotating Coordinate Systems and the Equations of Motion 

 

1. Rates of change of vectors 
 

We have derived the Navier Stokes equations in an inertial (non accelerating frame 

of reference)  for which Newton’s third law is valid. However, in oceanography and 

meteorology it is more natural to put ourselves in an earth-fixed  coordinate frame,  

rotating with the planet and hence, because of the rotation,  a frame of reference that is 

not inertial.  It is necessary , therefore, to examine how the equations of motion must be 

altered to take this into account. 

The earth rotates with an angular velocity Ω  which we will take,  for our purposes 

to be constant with time although including a time variation for Ω is not difficult and may 

be necessary for dynamics on very long geological time scales.  The Earth’s rotation rate 

is 7.29 10-5 sec-1 (once per day). The radius of the Earth, R, is about 6,400 km. This gives 

an equatorial speed of about 467 m/sec or 1050 miles/hr. There is no current or wind 

system on the Earth that approaches speeds of that magnitude.  To the lowest order the 

ocean and atmosphere are moving with the rotation rate of the planet and all the currents 

and winds that we observe are very small departures from the solid body rotation of the 

Earth. It is therefore sensible that we want to describe the winds and currents that we see 

from within a coordinate frame that removes the basic rotation and shares with us the 

observational platform of the rotating Earth.  

Of course not everyone makes the transition to a rotating coordinate system with 

ease (see below) so we will take it one step at a time. 
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We start by considering two observers ; one fixed in inertial space,  an inertial 

observer,  and one fixed in our rotating frame,  a rotating observer.  Consider  how the 

rate of change of a vector , fixed in length,  e.g. a unit vector, will appear to both 

observers if the unit vector  rotates with the rotation of the Earth.  The situation is shown 

in Figure 4.1.1 

 

 

 

 

 

 

 

 

 

In a time Δt the unit vector swings in under the influence of the rotation and is 

moved at right angles to itself and to the rotation vector as shown in Figure 4.1.2a . 
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Figure 4.1.1 The unit vector  i  rotates 
with angular velocity Ω .   The angle 
between the vectors is φ. φ 
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Figure 4.1.2a The unit vector “swings” from its position at t = t0 to its new position 

at t =t0+Δt.  

 

The difference between the two  vectors , Δi  can be calculated, for small Δt as the 

chord generated in that time by the perpendicular distance from the rotation axis to the tip 

of the unit vector. With reference to Figure 4.1.2b, that perpendicular distance is just 

sinφ. See  also Figure 4.1.2b which shows the situation  in plan view. 
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Figure 4.1.2b The rotated unit vector  at t0+Δt projected onto the plane 

perpendicular to the rotation vector. The angle  of the swing is θ=ΩΔt 

 

The in the time at Δt the change in the unit vector is 
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The final term in (4.1.1) is a unit vector perpendicular to both the unit vector and the 

rotation vector since the change in the unit vector can not change the length of the vector 

only its direction which is at right angles to both  î  and 
!
! .  Note also that, 
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Thus, in the limit Δt  0, 
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This is the rate of change as seen by the inertial observer; the observer rotating with Ω 

sees no change at all. 

Now consider the rate of change of  an arbitrary vector  A. It can be represented as 
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where the î j  are the unit vectors in a rotating coordinate frame as shown  in Figure 4.1.3 
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Figure 4.1.3 The vector A and the three unit vectors used to represent it in a coordinate 

frame rotating with angular velocity  
!
! . 

 

The individual component of the vector each coordinate axis  is the shadow of the 

vector  cast along that axis and is a scalar whose value and rate of change is seen the 

same by both the inertial and rotating observers.  The inertial observer also sees the rate 

of change of the unit vectors. Thus for the inertial observer, 
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î
i
+ A

i

dî
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 (4.1.5) 

The first term on the right hand side of (4.1.5) 
dA

i

dt
î is just the rate of change of the 

vector A as seen by the observer in the rotating frame. That rotating observer is aware of 

only the increase  or decrease of the individual scalar coordinates along the coordinate 

unit vectors that the observer sees as constant. For the inertial observer there is an 

additional term  
!
! "
!
A . The rotating observer only sees the stretching of the components 

of A and not the  swinging of A due to the rotation. So the general relation of the rates of 

change of vectors seen by the inertial and rotating observers is 
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Although we are considering only constant rotation vectors note that the two observers 

would agree on the rate of change of Ω.   

If x is the position vector of a fluid element, 
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so that the relation of the fluid  element’s velocity as measured in the two frames is 
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Now let’s choose  
!
A to be the velocity seen in the inertial frame
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    (4.1.9) 

(again, we have assumed a constant  rotation vector. ) Since,  
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The rate of change  of the inertial velocity,  as seen in inertial space, (and this is what 

Newton’s equation refers to) is related to the acceleration as seen in the rotating 

coordinate frame by  
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The first term on the right  hand side o f(4.1.11) is the acceleration that an observer in the 

rotating frame would see. The third term is the familiar centripetal acceleration. This term 

can be written as the gradient of a scalar, 
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The really novel term is the second term ,
 
2

!
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!
urotating . This is the Coriolis acceleration✪. 

It acts at right angles to the velocity (as seen in the rotating frame) and represents the 

acceleration  due to the swinging of the velocity vector by the rotation vector. The factor 

of 2 enters since the rotation vector swings the velocity 
 

!
urotating but  in  addition,  the 

velocity  
!
! "
!
x , which is not seen in the rotating frame,  will increase if the position 

vector increases, giving a second factor of 
 

!
! "
!
urotating . It is the dominance of the  Coriolis 

acceleration that gives the dynamics of large scale, slow motions in the atmosphere and 

the oceans their special, fascinating character. The Coriolis acceleration  , like all 

accelerations, is produced by a force in the direction of the  acceleration as shown in 

Figure 4.1.4. 

 

 

 

 

 

 

 

Figure 4.1.4 The relationship between the rotation, an applied force and the velocity 

giving rise to a Coriolis acceleration . 

 

Note if we have uniform velocity seen in the rotating system so that there will be no 

acceleration perceived in that system , in order for the flow to continue on a straight path, 

as in Figure 4.1.4, a force must be applied at right angles to the motion. If the rotation is 

counterclockwise the force must be applied from the right.  If that force is removed, the 

                                                
✪ Coriolis (1792-1843) was much more famous for his work on hydraulics and turbines than anything to do 
with rotating fluids.  
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fluid element can no longer continue in a straight line and will veer to the right and this 

gives rise to the sensation  that a force (the Coriolis force) is acting to push the fluid to 

the right.  Of course, if there are no forces there are no accelerations in an inertial frame.  

We are now in a position to rewrite the Navier Stokes equations in a rotating frame. 

In fact, we will always use the rotating frame and unless otherwise stated the velocities 

we use will be those observed from a rotating frame and so we will dispense with the 

subscript label  “rotational”. If we wish to use an inertial frame we need only set Ω to 

zero. Rewriting (3.9.2)  
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It is important to note that spatial gradients are the same in both frames so the pressure 

gradient is unaltered.  The viscous terms are proportional to gradients of the  rate of strain 

tensor or the divergence of the velocity , each of which is independent of  rotation and so 

those terms are invariant between the two system. If the Coriolis acceleration were 

moved to the right hand side of (4.1.13) it would appear  as the Coriolis force. It should 

be emphasized that there is nothing fictitious  about any of these forces or accelerations. 

They are real; it is only that they are not recognized as accelerations by an observer in the 

rotating frame. 

The body force we most frequently encounter is due to gravity. If Φ is the 

gravitational potential so that  
!
F = !"# , then the momentum equations (for the case of 

constant viscosity coefficients) becomes, 
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The combination of the gradient of the gravitational and centrifugal  potentials is what we 

experience as gravity,  i.e. 
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The equation of mass conservation  is the same in rotating frame, i.e. 
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since it involves only the divergence o f the velocity and the rate of change of a scalar. 

 

4 . 2   Boundary conditions 

 

As important as the equations  of motion are, the boundary conditions to apply are 

just as important.  In fact, there are important physical problems, like the physics of 

surface waves on water, in which the fundamental dynamics is contained entirely in the 

boundary conditions. A similar thing occurs in the theory for cyclogenesis,  the theory for 

the explanation of the spontaneous appearance of weather waves in the atmosphere. 

There again, the boundary conditions are dynamical in nature and are an essential 

ingredient in the physics. Their correct formulation is critical to understanding the 

physical phenomenon. It is important  to keep in mind that the formulation of a problem 

in fluid mechanics requires the specification of the pertinent  equations and the relevant 

boundary conditions  with equal care and attention. 

 

4.2.a Boundary condition at a solid surface 

 

The most straightforward conditions apply when the fluid is in contact with a solid 

surface. See Figure 4.2.1 
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Figure 4.2.1 A solid surface and its normal vector n. 
 
S(
!
x,t) = 0 is the equation for 

the surface. 

 

If the surface is solid we must impose the condition that no fluid flow through the 

surface. If the surface is moving this implies that the velocity of the fluid normal to the 

surface must equal the velocity of the surface normal to itself. If fluid elements do not go 

through the surface, a fluid element on the surface remains on the surface, or, following 

the fluid, 
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where  n (not the vector) is the distance coordinate normal to the surface. Substituting 

(4.2.2) into (4.2.1) we obtain, 
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where Un is the velocity of the surface normal to itself. Of course, if the surface is not 

moving (4.2.3) just tells us that the normal velocity of the fluid is zero. Otherwise, it 

takes on the normal velocity of the solid surface. This condition is called the kinematic 

boundary condition. 

In the presence of friction, i.e. for all µ different from zero, we observe that the fluid 

at the boundary sticks to the boundary, that is, the tangential velocity is also equal to the 

tangential velocity of the boundary.  The microscopic explanation,  easily verified for a 

gas, is that as a gas molecule strikes the surface it is captured by the surface potential of 

the molecules constituting the material of the boundary. The gas molecules are captured 

long enough before they escape to have their average motion annulled and their escape 

velocity is random,   completely thermalized by the interaction so that the molecule 
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leaves with no average velocity, i.e. no macroscopic mean velocity.  For gases that are 

very rare, whose density is quite low, this thermalization may be incomplete. Except in 

those cases,  the appropriate boundary condition is , 
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where Utangent is the tangential velocity of the surface. In the 19th century, during the 

period of the original formulation of the Navier Stokes equations, the validity of this 

condition was in doubt. Experimental verification was uncertain and Stokes himself, who 

felt the no slip condition was the natural one, was misled by some experimental data on 

the discharge of flows in pipes and canals that did not seem to be consistent with the no-

slip condition. Later, more careful  experiments have shown without question the 

correctness of this condition. 

It is important to note that the condition (4.2.4) is independent of the size of the 

viscosity coefficient for the fluid even though the condition is physically due to the 

presence of frictional stresses in the fluid. We might imagine that for small enough values 

of µ , that the viscous terms in the Navier Stokes equations could be ignored. However, 

we see from (4.1.14) for example, that eliminating the viscous terms lowers the order of 

the differential  equations  so that they are no longer able to satisfy all the boundary 

conditions.  This is one of the factors that puzzled workers in fluid mechanics in its first 5 

or 6 decades and the resolution of this apparent paradox forms an interesting and 

important part of the dynamics we shall take up in the example of the next chapter. 

 

 

 

4.2 b Boundary conditions at a fluid interface 

The boundary conditions at the interface between two immiscible fluids is rather 

more interesting. Properties in the upper fluid are labeled with  a 1, those in the lower 

layer, 2. 
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Figure 4.2.2 The “pillbox” constructed at the fluid interface to balance the surface 

forces. 

 

The boundary conditions are of two types; kinematic and dynamic. 

Kinematic: 

a) The velocity normal to the interface is continuous across the interface. This 

assures us the fluid remains a continuum with no holes. 

b) The velocity tangent to the interface is continuous at the interface.  This is a 

consequence of a non zero viscosity. A discontinuous tangential velocity 

would imply an infinite shear and hence an infinite stress at the interface 

and this would immediately expunge the velocity discontinuity.  An 

idealization of a fluid that completely ignores viscosity can allow such 

discontinuities and again the relationship between a fluid with small 

viscosity and one with zero viscosity is a singular  one that has to be 

examined. 

Dynamic: 

If we construct  a small pillbox, as shown in Figure 4.2.2 and balance the forces on 

the mass in the box and then take the limit as dh  0,  all the volume forces will go to 

zero faster than the surface  forces on the little box and in the limit the surface  forces 

must balance,   except for the action of surface tension forces, i.e. 
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where Ra and Rb are the radii of curvature of the surface in any two orthogonal directions 

and γ is the surface tension coefficient. (For small surface displacements this term is 

proportional to the Laplacian of the surface displacement). 

Since n̂
1
= !n̂

2
" n̂ , and 
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dynamic boundary condition is 
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In terms of the stress tensor, 
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In the direction normal to the surface, 
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Using the expression for the stress tensor  (3.7.16), 
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or   
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where , in the last term, the symbol 
2

1

}  refers to the difference of the bracket across the 

two sides of the interface.  Typically, this term is very small and of the order of µ∂u3/∂x3. 

The first term on the right hand side is also usually negligible unless we are small enough 

scales (so that the radii of curvature are small) appropriate for capillary waves (the small 

“cats paws” one sees on the surface of the water when the wind comes up). Normally, for 
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larger scales the condition of the continuity of normal stress force reduces to the 

continuity of the pressure across the interface. 

  p
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= p

(2)   (4.2.11) 

 

For the tangent component of (4.2.8), 
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where t
i
is a vector tangent to the interface and there will be two orthogonal  such 

vectors. 

If the surface is nearly flat and perpendicular to the x3 axis this condition is, 
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  (4.2.13 a,b) 

 

 

 

 

 

Figure 4.2.3 The coordinate frame in a nearly flat interface. 

 

Again, typically,  it is the velocity in the plane of the interface that varies rapidly in the 

direction normal to the interface, so that the condition (4.2.13) usually reduces to the 

statement that the shear of the velocity is continuous across the interface. You should 

keep in mind though  that the complete condition in the general case is (4.2.12). 

 If the viscosity is completely ignored, as is done in some problems for which 

the effect of viscosity is deemed to be of minor importance, both the tangent velocity and 

the shear can be discontinuous as the interface. 

 Note too, that if we define the interface by  
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x2 

x3 
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the condition that fluid elements remain on the interface is, 
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so if the tangential velocities are not continuous, the vertical velocity need not be 

continuous if the interface is sloping.  It is only the velocity normal to the interface  that 

needs to be continuous. The figure below makes this clear. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.4 Here the tilted interface is stationary and the velocity is parallel to the 

interface so the normal velocity is trivially continuous across it. Note that since the 

tangential velocity is discontinuous in this case without friction, the “vertical” velocity 

(in the x3 direction) is not continuous. 

 

We will have to examine the small friction limit to see how this result squares  with the 

continuity conditions imposed by friction. 


