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Abstract 

 

Wind-driven changes in the path of warm Bering/Chukchi waters carried by the Alaska 

Coastal Current through Barrow Canyon during late summer are described from high-

resolution hydrography, acoustic Doppler current profiler measured currents, and 

satellite-measured sea surface temperature imagery acquired mid-August to mid-

 



September 2005-2007 near Barrow, Alaska. Numerical simulations are used to provide a 

multi-decadal context for these observational data. Four generalized wind regimes and 

associated circulation states are identified. When winds are from the east or east-

southeast, the ACC jet tends to be relatively strong and flows adjacent to the shelf break 

along the southern flank of Barrow Canyon. These easterly winds drive inner shelf 

currents northwestward along the Alaskan Beaufort coast where they oppose significant 

eastward intrusions of warm water from Barrow Canyon onto the shelf. Because these 

easterly winds promote sea level set down over the Beaufort shelf and upwelling along 

the Beaufort slope, the ACC jet necessarily becomes weaker, broader, and displaced 

seaward from the Beaufort shelf break upon exiting Barrow Canyon.  Winds from the 

northeast promote separation of the ACC from the southern flank of Barrow Canyon and 

establish an up-canyon current along the southern flank that is fed in part by waters from 

the western Beaufort shelf. When winds are weak or from the southwest, warm 

Bering/Chukchi waters from Barrow Canyon intrude onto the western Beaufort shelf.  

 

 

1. Introduction 

 

Warm waters of Bering Sea and Chukchi Sea origin have figured prominently in many 

investigations of circulation in the Chukchi and Beaufort Seas. Interest in these warm 

waters has greatly increased in recent years as they have been implicated in the 

precipitous decline of sea ice in the Arctic Ocean (e.g. Shimada et al., 2006). 

 



These warm waters tend to follow the northwestern Alaskan coast in the eastern Chukchi 

Sea as the Alaska Coastal Current (ACC) (Paquette and Bourke, 1974; Mountain et al., 

1976). Hufford (1973) identified an extensive warm water layer from widely-spaced 

hydrographic data acquired over the slope and outer shelf in the southern Beaufort Sea 

that led him to infer the presence of an eastward-flowing current along the Beaufort shelf 

break and to suggest the source waters were from the Bering Sea. Aagaard (1984) 

identified this current as the Beaufort Undercurrent and described its mean and time-

varying characteristics. Pickart (2004) analyzed historical current meter and hydrographic 

data to identify composite seasonal modes of the shelf edge circulation in the southern 

Beaufort, two modes of which were characterized by their Bering/Chukchi source waters: 

a cold, subsurface flow characteristically occurring during late spring to mid-summer and 

a warm, surface-intensified flow typically occurring during late summer and early 

autumn. In the present context of diminishing Arctic sea ice, Paquette and Bourke (1974), 

who noted the interaction of the warm ACC with the ice edge in the Chukchi Sea, and 

Ahlnas and Garrison (1984), who used satellite imagery to show that sea ice was melted 

by this warm coastal flow, appear prescient. 

 

The aforementioned papers are only a small subset of a fairly extensive body of research 

on the ACC. With the possible exception of the Hufford (1973) paper, none explicitly 

focus on hydrography and circulation on the Beaufort shelf (i.e. from coastline to the 

shelf break) near Barrow. There is also a considerable body of research on biological and 

physical oceanography of the ‘western’ Beaufort shelf. However, in this context, the 

western Beaufort shelf has been generalized to refer to that portion of the Beaufort shelf 

 



adjacent to Alaska. Moreover, the bulk of ‘western’ Beaufort shelf research has been 

targeted on the shelf waters in the vicinity of the Prudhoe Bay oilfields. The observations 

(hydrography, current measurements, satellite imagery) and numerical simulations 

described and analyzed in the following sections were acquired in what is arguably the 

most poorly sampled region of the Alaskan Beaufort shelf, the westernmost portion of 

this shelf. These observations were acquired as components of multidisciplinary projects 

investigating oceanographic features and processes associated with Bowhead whale 

feeding hotspots near Barrow, Alaska during August-September 2005-2007. 

 

The paper is organized as follows: Section 2 describes the methods, observational data, 

and numerical model formulation employed. Section 3 summarizes characteristics of the 

wind field near Barrow, reviews four generalized wind regimes and associated circulation 

states identified from the observational data, and extends the observational data with 

numerical model simulations. Limitations to the analyses and a summary of the results 

are presented in Section 4. 

 

2.  Methods, Data, and Model Formulation 

 

During August-September 2005-2007, hydrographic surveys were conducted from the 

coastal research vessel, R/V Annika Marie, along a set of transects extending from the 

northern Alaskan coast across Barrow Canyon and across the Beaufort shelf (Figure 1). 

An Acrobat (Sea Sciences, Inc.) towed vehicle, equipped with a Seabird SBE 49 CTD, 

acquired high-resolution measurements of temperature and salinity along each transect in 

 



the upper water column (the shallower of, to within ~3 m of the bottom or to ~ 45-50 m 

depth) as the vessel motored offshore.  Typical towing speeds were ~3 m s-1 (~6 knots), 

yielding water column profiles every ~0.15 km over the shelf and ~1 km seaward of the 

shelf break. At the same time, an RDI 300 kHz downward-looking ADCP with bottom-

tracking was towed alongside the vessel to acquire water column profiles of current speed 

and direction to a depth of ~100 m. The water column velocities were acquired at 1-m 

vertical resolution over the shelf and at 3-m vertical resolution off the shelf. Temporal 

averaging of the towed ADCP data resulted in ~0.15 km horizontal spacing of the of 

water column velocities. Towed ADCP data were not acquired in 2005 due to instrument 

failure. 

 

A Seabird 19plus CTD was used to acquire surface-to-bottom profiles of temperature and 

salinity to provide measurements in water depths greater than sampled by the Acrobat-

borne CTD. Spacing between successive CTD casts ranged between ~2 km and 12 km 

and, as such, only coarsely resolved horizontal hydrographic structure at off-shelf 

locations and depths for which there were not high-resolution data acquired by the 

Acrobat. These along-transect hydrographic (Acrobat and individual cast) data were 

interpolated to a regular 1-km horizontal by 1-m vertical grid from which geostrophic 

velocities were computed for the upper 60 m using the shallower of the bottom depth or 

60 m as the level of no motion.  

 

A low-profile, bottom-mounted oceanographic mooring, instrumented with an upward-

looking 300 kHz RDI ADCP was deployed about 17 km north of Cape Halkett (70° 

 



58.875’N, 152° 15.039’W; ~160 km east-southeast of Point Barrow) in 15 m of water on 

16 August 2007 and recovered on 11 September 2007. The moored ADCP acquired water 

column velocity measurements in 0.5-m bins at 15-minute intervals, but were sub-

sampled at hourly intervals for comparison with hourly wind data. 

 

Wind speed and direction measurements at Barrow were obtained from the Atmospheric 

Radiation Measurement website (www.archive.arm.gov) for August and September of 

each field year. Hourly interval time series were generated for use as working data sets.  

Satellite sea surface temperature imagery from 2003 and 2007 was acquired to provide a 

broad spatial context for interpreting the field-based measurements described above. 

Level 0 MODIS Terra and Aqua data were retrieved from the NASA GSFC and were 

processed using SEADAS for sea surface temperature at 250-m resolution.  

 

The numerical model used is the pan-Arctic Naval Postgraduate School coupled sea 

ice-ocean model. This model has a horizontal grid spacing of 1/12° (or ~9 km) and 45 

vertical depth layers with eight levels in the upper 50 m and fifteen levels in the upper 

200 m. The model domain contains the sub-Arctic North Pacific and North Atlantic 

Oceans, the Arctic Ocean, the Canadian Arctic Archipelago and the Nordic Seas (see Fig. 

1A of Maslowski et al., 2004 for model domain). Model bathymetry is derived from two 

sources: ETOPO5 at 5-minute resolution for the region south of 64°N and International 

Bathymetric Chart of the Arctic Ocean (IBCAO; Jakobsson et al., 2000) at 2.5-km 

resolution for the region north of 64°N. The ocean model was initialized with 

climatological, 3-dimensional temperature and salinity fields (Polar Science Center 

 

http://www.archive.arm.gov/


Hydrographic Climatology; PHC; Steele et al., 2000) and integrated for 48 years in a 

spinup mode. The spinup approach is especially important in establishing realistic ocean 

circulation representative of the time period at the beginning of the actual interannual 

integration. At the same time, the spin-up procedure was designed to force the model into 

a quasi-equilibrium state that is minimally sensitive to the specific initial conditions.  The 

final run with realistic daily averaged ECMWF interannual forcing starts in 1979 and 

continues through 2004. Results from this integration are used for the analyses in this 

paper. Additional details on the model including sea ice, river runoff, and restoring have 

been provided elsewhere (Maslowski and Lipscomb, 2003 and Maslowski et al., 2004). 

We use two different archived model output products in this study; daily output and 

monthly mean output. Storage requirements for the full 26-year pan-Arctic three-

dimensional suite of daily model output are prohibitive. Accordingly, only a small subset 

of the daily output is archived. Daily output from the surface layer (level 1) is archived. 

The next two layers for which daily output is archived are levels 5 and 10 (layer bottom 

depths are 26 m and 81 m, respectively). Because the inner Beaufort shelf in our study 

area is shallower than ~20 m, we use daily output only from the surface layer. The entire 

26-year pan-Arctic three-dimensional record of monthly mean model output is archived, 

however, and we present vertically averaged (layers 1-6; 0-33 m) monthly mean output as 

representative of near surface conditions. 

 

 

3.  Observations 

 

 



Winds 

 

Daily vector averaged winds at Barrow for August-September 2005-2007 are 

summarized in Figure 2. The top panels show that late summer winds were 

predominantly from the southeast in 2005, from the east-northeast in 2006, and from the 

east in 2007. The middle panels show that the highest wind speeds were generally 

associated with these prevailing winds. The bottom panels show the corresponding 

distributions of wind speeds. In this study, we characterize wind speeds less than 2 m s-1 

as weak, wind speeds between 2 m s-1 and 8 m s-1 as moderate, and wind speeds greater 

than 8 m s-1 as strong. 

 

Currents during winds from the east 

 

Figure 3 shows paired plots of ADCP-measured near-surface (vertical average of valid 

measurements acquired between 3-20 m) current vectors and corresponding temperature 

and salinity cross sections along transect lines occupied during moderate (~3.5 – 5.0 m s-1 

) easterly winds. The line 3 (Figure 3a) and line 4 (Figure 3b) velocity stick plots and 

companion temperature cross sections indicate weak eastward intrusion of relatively 

warm Bering/Chukchi-origin water onto the Beaufort shelf near Pt. Barrow despite the 

opposing winds, but northwestward flow across line 6 (Figure 3c) on the Beaufort shelf. 

Line 3 and line 4 temperature and salinity cross sections show isolines intersect the upper 

slope of Barrow Canyon indicative of baroclinic contributions to the ACC jet. The ACC 

 



velocity field, not well resolved except along line 4, depicts a strong northeastward-

flowing shelf break jet (~1 m s-1) adjacent to the southern flank of Barrow Canyon. 

 

Figure 4 shows a MODIS sea surface temperature image acquired on 10 August 2007. 

Vector-averaged winds for the 24-hour period preceding the image acquisition were from 

the east-southeast at 4.2 m s-1. The image shows that warm Bering/Chukchi waters are 

carried northeastward by a well-defined ACC adjacent to the shelf break in Barrow 

Canyon in a manner consistent with that depicted in the line 4 velocity stick plot and 

temperature/salinity  profiles (cf. Figure 3b). The SST image also shows a warm water 

intrusion onto the western Beaufort shelf near Pt. Barrow, the extent of which is similar 

to that suggested by the line 3 and line 4 velocity stick plots and temperature plots. 

Temperatures over the majority of the Beaufort shelf are cooler (< 5°C) than occur over 

the adjacent off shelf regions. Based on the line 6 velocity stick plot (Figure 3c), we infer 

that these cooler shelf waters are flowing along shore to the northwest. The absence of a 

well-defined southeastward-flowing warm plume over the upper slope in the southern 

Beaufort Sea, downstream (east of) the mouth of Barrow Canyon suggests that the ACC 

jet has weakened within a relatively short distance from the canyon mouth. The absence 

of a strong ACC jet along the Beaufort shelf break is expected for these wind conditions 

because the Ekman response to east-southeasterly alongshore winds is sea level setdown 

over the Beaufort shelf.  

 

As depicted in Figure 3 above, winds at Barrow in August- September 2005-2007 were 

predominantly from the eastern quadrant. The current meter data collected by the 

 



mooring at Cape Halkett and the Barrow wind data allow identification of the 

characteristic shelf flow associated with easterly winds and investigation of wind-forced 

changes to the characteristic current regime on the inner Beaufort shelf. Figure 5 shows 

the time series of vertically-averaged U and V current components on the inner shelf near 

Cape Halkett and the concurrent winds at Barrow. Hourly time series of projected 

currents and winds are best correlated (R2 = 0.75, current lags wind by 5 hours) for a 

northwestward-flowing (to 308°T) current driven by winds from the east-northeast (from 

78°T). This wind-current relationship can be considered to be representative of late 

summer conditions. The best-fit linear response of the projected current, Cp, to the 

projected wind, Wp, is 

 

Cp = 0.0687 + 0.0375 · Wp        (1) 

 

in which a wind component from the east-northeast is negative and a wind component 

from the west-southwest is positive. Similarly, a positive value current is directed to the 

southeast and a negative value current is directed to the northwest. This relationship 

predicts that northwestward flow on the inner shelf reverses to the southeast when the 

east-northeasterly component wind speed falls below 1.8 m s-1. Because winds at Barrow 

may not accurately reflect winds at Cape Halkett, the above statistical result should be 

considered to be semi-quantitative. Nonetheless, this result along with the observations in 

Figures 3 and 4, indicate that northwestward-flowing shelf waters driven by easterly 

winds inhibit significant eastward intrusion of warm Bering/Chukchi waters from Barrow 

Canyon onto the inner western Beaufort shelf. 

 



 

Currents during winds from the northeast 

 

ADCP velocity stick plots (lines 1-5) show that moderate (~3.5 – 7.5 m s-1) northeasterly 

winds (upwelling-favorable within Barrow Canyon) are sufficient to significantly alter 

the local circulation (Figure 6). The northeasterly winds promote sea level set down along 

the Chukchi coast, the result of which is to weaken and displace the ACC jet (~0.25-0.50 

m s-1) away from the coast toward the northern side of Barrow Canyon thereby allowing 

northwestward flowing currents on the Beaufort shelf to turn southwestward at Pt. 

Barrow and flow up-canyon into the Chukchi Sea. Such flow reversals in Barrow Canyon 

have been reported by a number of authors (e.g. Mountain et al., 1976; Weingartner et al., 

1998).  The twin temperature cores intersecting lines 1-5 in the upper ~20 m, along with 

the counter current flows depicted in the velocity stick plots for lines 1, 2, and 5 suggest 

that the warm core associated with the southwestward-flowing currents represents, in 

part, a return branch of the displaced ACC. The temperature cross-sections for lines 3 and 

5 show the warmest waters were encountered well off shelf, near the outer ends of the 

respective section lines.  

 

Results from a barotropic numerical model study of wind driven circulation in the 

Chukchi and Beaufort Seas (Winsor and Chapman, 2004) are largely supported by the 

observations described above. Principal among these results were that east-northeasterly 

winds drive northwestward currents on the Beaufort shelf and reverse flow in Barrow 

Canyon.  

 



 

Currents during weak wind conditions 

 

Figure 7 shows paired plots of ADCP velocity stick plots (lines 2, dogleg 4, and 6), a 

geostrophic velocity plot (line 8), and corresponding temperature/salinity cross sections 

along transect lines occupied during weak (<2 m s-1) wind conditions. Collectively, these 

plots indicate that the circulation response to weak winds from any direction is a strong 

ACC jet (maximum speed ~1 m s-1) that follows the shelf break in Barrow Canyon and 

western Beaufort Sea and weak-to-moderate southeastward shelf currents carrying warm 

Bering/Chukchi-origin waters well onto the outer shelf. An example of the spatial extent 

of a warm-water, on-shelf intrusion during weak wind conditions is illustrated by the 23 

Aug 2007 MODIS sea surface temperature image (Figure 8). In this example, warm (~6-

8°C) water has occupied the outer Beaufort shelf to ~250 km east of Pt. Barrow.  

 

Currents during winds from the southwest 

 

The MODIS SST image for 09 August 2003 (Figure 9) shows conditions during 

southwesterly winds following weeks of winds from predominantly the western quadrant. 

Winds from the southwest promote coastal convergence and sea level set up along the 

Alaskan Chukchi coast narrowing the distribution of warm water (6 – 8°C) in the 

Chukchi Sea to the vicinity of the coastline as Barrow is approached. The majority of the 

warm water turns to the southeast at Pt. Barrow intruding along the inner Beaufort shelf 

 



more 300 km east of Pt. Barrow. This coastal pathway differs from the outer shelf 

pathway followed during weak wind conditions (cf. Figure 8).  

 

Model Results 

 

High-resolution numerical circulation models can be useful tools to provide broader 

temporal and spatial contexts for interpreting limited observational data sets. Figure 10a 

shows a Hovmoller plot of daily surface current velocities normal to the West Shelf Line 

for September 1999. Daily model output from September 1999 is an arbitrary choice as 

there is no output for model years after 2004 to directly compare with 2005-2007 

observations. Hovmoller plots of September daily output from other model years (not 

shown here) depict wind-current relationships similar to those described below. 

The corresponding time series of September daily projected ECMWF winds (E-W wind 

component is solid; NE-SW component is dotted) are shown to the right of the 

Hovmoller plot. Surface currents over the upper slope and outer shelf become stronger 

(>25 cm s-1) when winds are weak or from the southwest. The surface expression of this 

shelf break jet appears to become poorly defined when winds are from the NE. Shelf 

currents flow to the east-southeast (max speed ~15 cm s-1) when projected winds are from 

the W-SW. Flow over the shelf reverses to flow west-northwestward (~-15 cm s-1) when 

the winds are from the E-NE. Close comparison of the daily currents depicted in the 

Hovmoller plot and the concurrent winds show that the currents lag the winds by about a 

day. The linear response of the surface currents to changes in the projected winds is 

summarized in the plot of coefficients for correlations between the time series of along-

 



shore surface currents at each grid point and the time series of projected winds (Figure 

10b). The correlation plot indicates that, over the entire shelf, more than 50 % (R2 > 0.5, 

current lags wind by one day) of the day-to-day changes in surface currents is explained 

by day-to-day changes in projected NE/SW winds. Correlations are weaker seaward of 

the shelf break.  

 

These relationships between winds and modeled daily currents are consistent with the 

observed relationships between winds and currents over the shelf and slope. Monthly 

mean results are a convenient measure to present a multi-decadal record of year-to-year 

changes in shelf currents and, by inference, intrusions of Bering/Chukchi origin waters 

onto the western Beaufort shelf. 

 

Figure 11a shows a Hovmoller plot of August-September averaged upper layer (surface 

to bottom or 33 m) model current velocities normal to the West Shelf Line for model 

years 1979-2004.  The core of the ACC lies seaward of the shelf break and flows east-

southeastward at velocities ranging from ~5 cm s-1 to 25 cm s-1. Flow over the shelf is 

generally east-southeastward at speeds less than 10 cm s-1 with most of the few reversals 

occurring near the coast. The corresponding 1979-2004 time series of August-September 

averaged projected ECMWF winds (E-W wind component is solid; NE-SW component is 

dotted) are shown to the right of the Hovmoller plot. The linear response of the upper 

layer currents to changes in the projected winds is summarized in the plot of coefficients 

for correlations between the time series of along-shore currents at each grid point and the 

time series of projected winds (Figure 11b). The correlation plot indicates that, over the 

 



much of the shelf, more than 50 % (R2 > 0.5) of year-to-year changes in averaged 

summer currents is explained by year-to-year changes in the averaged local winds from 

the E/NE and W/SW octants. Variations in ACC velocities are less tightly coupled to 

changes in these local winds. This diminished response of the ACC is attributable, in 

part, to non-local forcing. Figure 11c shows the linear response of the upper layer heat 

transport across the west shelf line to the same projected winds. Year-to-year changes in 

heat transports are less well correlated with changes in the winds than are surface 

velocities. This relationship indicates that the heat content of the surface layer is 

influenced by processes other than advection driven by local winds.  Because heat 

transport is itself a function of the current velocity field, the best correlations between 

wind and heat transport tend to occur at locations where the correlations between the 

current velocity field and the wind are elevated. 

 

4.  Discussion and Summary  

 

There are important limitations to the preceding analyses. Owing to the modest size of 

the vessel used, the safe acquisition of vessel-based hydrographic and towed-ADCP 

current measurements was not possible in sea conditions associated with prolonged winds 

exceeding about 10 m s-1. As a consequence, the vessel-based measurements reflect a 

bias toward more benign oceanographic conditions. The loss of bottom tracking by the 

towed ADCP in water depths greater that ~120 m limited the off-slope extent to which 

the velocity structure of the ACC jet could be described to the shelf and the upper 

continental slope. Descriptions of changes to the current regime in Barrow Canyon were, 

 



therefore, not spatially comprehensive. Measurements of wind speed and direction at 

Barrow may not accurately reflect wind conditions elsewhere along the Alaskan north 

slope (e.g. at Cape Halkett). However, Figures 5, 10, and 11 suggests that Barrow winds 

are satisfactory for assessing qualitative wind-driven changes to currents on the Beaufort 

shelf within ~150 km of Pt. Barrow. Sea surface temperature imagery does not 

necessarily serve as a proxy for subsurface conditions and, in the absence of in situ 

measurements, inferred circulation should be viewed with some caution.  

 

Perhaps the most significant limitation to the model skill in simulating the regional 

circulation is that the ~9 km grid is not sufficiently fine to adequately resolve the ACC. 

The observations and analyses described above reflect late summer conditions. The 

distribution and concentration of sea ice will influence the transfer of wind energy to the 

ocean and may lead to current regimes that differ somewhat from those discussed herein. 

Finally, our descriptions of the wind-current relationships for the western Beaufort shelf 

are largely derived from observational (hydrography, currents, satellite imagery) 

snapshots acquired as components of projects whose focus was investigation of Bowhead 

whale feeding hotspots. Accordingly, a directed observational program to refine our 

understanding of the wind-current relationships in this region is likely warranted. 

 

In spite of these limitations, the in situ measurements, satellite observations, and model 

results described above permit some broad generalizations relating late summer wind 

forcing and the trajectory of (warm) Bering/Chukchi-origin waters in the western 

Beaufort Sea to be drawn. When winds are moderate from the east or east-southeast, the 

 



ACC jet is relatively strong and flows adjacent to the shelf break along the southern flank 

of Barrow Canyon. These easterly winds drive inner shelf currents northwestward along 

the Beaufort shelf where they oppose significant eastward intrusions of warm water from 

Barrow Canyon onto the shelf. Because these easterly winds promote sea level set down 

over the Beaufort shelf and upwelling along the Beaufort slope, the ACC jet necessarily 

becomes weaker, broader, and displaced seaward from the Beaufort shelf break upon 

exiting Barrow Canyon (e.g. Figure 4). When winds are from the northeast, intrusion of 

warm waters onto the western Beaufort shelf does not appear to occur (cf. Figure 6). 

However, moderate northeast winds cause separation of the ACC from the southern flank 

of Barrow Canyon and establish an up-canyon current along the southern flank that is fed 

in part by waters from the western Beaufort shelf. When winds are weak (cf. Figures 5, 7 

and 8) or from the southwestern quadrant (Figure 9), warm Bering/Chukchi waters are 

able to intrude onto the western Beaufort shelf.  

 

Comparison of Barrow winds and currents at Cape Halkett showed that inner shelf 

currents reversed to the southeast when the east-northeasterly component wind speed fell 

below 1.8 m s-1. This threshold wind speed is essentially the same as that reported by 

Hufford (1973) who observed that eastward flow in opposition to the wind occurred on 

the Beaufort shelf when the wind speed fell below 2 m s-1. A corollary to this observation 

is that any wind with a component from the west will promote intrusion of warm water 

onto the western Beaufort shelf.  

 

 



Daily output from the NPS model was shown to reasonably simulate the relationship 

between changes in winds from the eastern quadrant and the associated response of along 

shore currents on the western Beaufort shelf (cf. Figure 10). The Hovmoller plot of 

average August-September monthly mean model output (cf. Figure 11) extends the 

observational data and daily model results to suggest that there is significant year-to-year 

variability in the amount of heat carried onto the Beaufort shelf. It can easily be inferred 

that changes in heat transported onto the historically under sampled western Beaufort 

shelf may influence both the timing and progression of sea ice melt in late spring-early 

summer as well as the timing and progression of sea ice formation in the fall.  
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Figure Captions 
 
 
Figure 1 Map of the Barrow study area showing hydrographic transect locations 

(blue) occupied in 2005-2007. Line 4 was changed to a dogleg (red) in 2007. Not all 

transects were occupied in each year. The asterisk denotes the location of the Cape 

Halkett current meter mooring. Model results are from the West Shelf Line (black).  

 

Figure 2 Summary of vector-averaged daily winds for August-September 2005-

2007 at Barrow. (top panels) Histograms of vector-averaged daily wind direction, 

(middle panels) average wind speed as a function of wind direction, (bottom panels) 

histograms of vector-averaged daily wind speeds 

 

 



Figure 3a  Currents and water column temperatures and salinities observed along 

Line 3 during winds from the east. Paired plots of towed ADCP-measured surface (3-20 

m averaged) current vectors (top panel of pair) and the cross section of the associated 

temperature/salinity fields (bottom panel of pair). Isotherms are drawn as solid black 

contours and isohalines are drawn as dotted gray contours. Gaps in ADCP-measured 

currents occur where the bottom depth was greater than the depth range of the instrument 

(~120 m). The annotated arrow in the upper right corner of the ADCP vector plot 

indicates vector averaged wind speed and direction for the 24 hour period preceding and 

including that day’s transect. The sinuous dashed line in the ADCP vector plot delineates 

the shelf break location identified from the hydrographic surveys. The horizontal lines 

across the top of the temperature cross sections identify the extent of towed Acrobat 

measurements whereas the carets indicate locations of individual CTD casts. 

 

Figure 3b Same as Figure 3a only for Line 4 dogleg. 

 

Figure 3c Same as Figure 3a only for Line 6. 

 

Figure 4 MODIS sea surface temperatures for 10 August 2007, 2335 UT.  

 

Figure 5 (a) Time series of depth-averaged U (black) and V (grey) current 

components at Cape Halkett. Positive U and V velocities indicate eastward and 

northward flow, respectively. (b) stick plot of winds at Barrow, (c) wind direction at 

 



Barrow, and (d) wind speed at Barrow. Grey shading is used to highlight northwestward 

flowing currents and concurrent winds. 

 

Figure 6a Currents and water column temperatures and salinities observed along 

Line 1 during winds from the northeast. Paired plots of towed ADCP-measured surface 

(3-20 m averaged) current vectors (top panel of pair) and the cross section of the 

associated temperature/salinity fields (bottom panel of pair). Isotherms are drawn as solid 

black contours and isohalines are drawn as dotted gray contours. Gaps in ADCP-

measured currents occur where the bottom depth was greater than the depth range of the 

instrument (~120 m). The annotated arrow in the upper right corner of the ADCP vector 

plot indicates vector averaged wind speed and direction for the 24 hour period preceding 

and including that day’s transect. The sinuous dashed line in the ADCP vector plot 

delineates the shelf break location identified from the hydrographic surveys. The 

horizontal lines across the top of the temperature cross sections identify the extent of 

towed Acrobat measurements whereas the carets indicate locations of individual CTD 

casts. 

 

Figure 6b Same as Figure 6a only for Line 2. 

 

Figure 6c Same as Figure 6a only for Line 3. 

 

Figure 6d Same as Figure 6a only for Line 4 

 

 



Figure 6e Same as Figure 6a only for Line 5. 

 

Figure 7a Currents and water column temperatures observed along Line 2 during 

weak winds. Paired plots of towed ADCP-measured surface (3-20 m averaged) current 

vectors (top panel of pair) and the cross sections of the associated temperature and 

salinity fields (bottom panel of pair). Isotherms are drawn as solid black contours and 

isohalines are drawn as dotted gray contours. The annotated arrow in the upper right 

corner of the ADCP vector plot indicates vector averaged wind speed and direction for 

the 24 hour period preceding and including that day’s transect. The sinuous dashed line in 

the ADCP vector plot delineates the shelf break location identified from the hydrographic 

surveys. The horizontal lines across the top of the temperature cross sections identify the 

extent of towed Acrobat measurements whereas the carets indicate locations of individual 

CTD casts. 

 

Figure 7b Same as Figure 7a only for Line 4 dogleg. 

 

Figure 7c Same as Figure 7a only for Line 6. 

 

Figure 7d Same as Figure 7a only for Line 8. The ADCP malfunctioned in 2005 so 

the top panel for Line 8 depicts the baroclinic geostrophic velocity (east-southeastward 

flowing currents are drawn as dotted contours; west-northwestward flowing currents are 

drawn as solid contours; the contour interval is 5 cm s-1). The level of no motion is 60 m 

and represents the maximum sampling depth of the Acrobat towed vehicle. 

 



 

Figure 8 MODIS sea surface temperatures for 23 August 2007, 2340 UT.  

 

Figure 9 MODIS sea surface temperatures for 09 August 2003, 0005 UT.  

 

Figure 10 NPS coupled sea ice-ocean model results along the West Shelf Line. a) 

Hovmoller plot of September 1999 daily surface velocities normal to the West Shelf 

Line. Positive (negative) velocities are directed to the ESE (WNW). Time series of 

September 1999 daily ECMWF projected winds are shown to the right of Hovmoller plot. 

Wind velocity component parallel to the E-W axis (solid line). Wind velocity component 

parallel to the NE-SW axis (dotted line). Winds to the E and to the NE are positive. b) 

Coefficients for correlations between the time series of along-shore currents at each grid 

point and the time series of projected winds, computed for currents lagging winds by one 

day (solid, E-W projected wind; dotted, NE-SW projected wind; dashed, SE-NW 

projected wind). A horizontal line corresponding to R = 0.707 (R2 = 0.50) is included.  c) 

depth profile along the West Shelf Line. 

 

Figure 11 NPS coupled sea ice-ocean model results along the West Shelf Line. a) 

Hovmoller plot of August-September monthly mean, averaged upper layer (surface to 

shallower of bottom or 33 m) velocities normal to the West Shelf Line. Positive 

(negative) velocities are directed to the ESE (WNW). Time series of August-September 

averaged ECMWF projected winds are shown to the right of Hovmoller plot. Wind 

velocity component parallel to the E-W axis (solid line). Wind velocity component 

 



 

parallel to the NE-SW axis (dotted line). Winds to the E and to the NE are positive. b) 

Coefficients for correlations between the time series of along-shore currents at each grid 

point and the time series of projected winds (solid, E-W projected wind; dotted, NE-SW 

projected wind; dashed, SE-NW projected wind). A horizontal line corresponding to R = 

0.707 (R2 = 0.50) is included.  c) Coefficients for correlations between the time series of 

heat transport at each grid point and the time series of projected winds (solid, E-W 

projected wind; dotted, NE-SW projected wind; dashed, SE-NW projected wind). A 

horizontal line corresponding to R = 0.707 (R2 = 0.50) is included.  d) depth profile along 

the West Shelf Line. 
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	Winds

	Daily vector averaged winds at Barrow for August-September 2005-2007 are summarized in Figure 2. The top panels show that late summer winds were predominantly from the southeast in 2005, from the east-northeast in 2006, and from the east in 2007. The middle panels show that the highest wind speeds were generally associated with these prevailing winds. The bottom panels show the corresponding distributions of wind speeds. In this study, we characterize wind speeds less than 2 m s-1 as weak, wind speeds between 2 m s-1 and 8 m s-1 as moderate, and wind speeds greater than 8 m s-1 as strong.
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