
NOVEMBER 1998 2275S P A L L A N D C H A P M A N

q 1998 American Meteorological Society

On the Efficiency of Baroclinic Eddy Heat Transport across Narrow Fronts*

MICHAEL A. SPALL AND DAVID C. CHAPMAN

Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

(Manuscript received 12 August 1997, in final form 2 February 1998)

ABSTRACT

A simple theory is developed that relates the amplitude of eddy heat (or density) flux across a narrow front
to the basic frontal parameters. By assuming that heat is transported primarily by baroclinic eddy pairs, an
analytical expression for the cross-front eddy heat flux is derived as

u9r9 5 ceVmDr,

where u9 and r9 are deviations from the temporal or spatial mean cross-front velocity and density, Dr is the
density change across the front, Vm is a scale for the alongfront velocity (which may be interpreted as the
maximum alongfront velocity for a front with density change Dr over a horizontal scale of the deformation
radius, assuming a deep level of no motion), and ce is an efficiency constant. Similar expressions for the eddy
heat flux have been proposed previously, based on scaling or energetics arguments, but neither an a priori
estimate for the value of the efficiency constant ce nor a clear dynamical understanding of what determines its
value has been forthcoming. The theory presented here provides a dynamically based means of estimating the
efficiency constant, which may be approximately interpreted as the ratio of the speed at which eddies propagate
away from the front to the alongfront velocity, resulting in ce ø 0.045. Eddy-resolving numerical models are
used to test this theoretical estimate for both unforced and forced frontal problems. For a wide range of parameters
the cross-frontal heat transport is carried primarily by heton-like eddy pairs with values of ce between 0.02 and
0.04, in general agreement with the theory. These values of ce are also consistent with numerous previously
published laboratory and numerical studies.

1. Introduction

An understanding of how eddies transport tracers is
of intrinsic importance because eddies constitute a fun-
damental component of the general oceanic and atmo-
spheric circulations. There has been much recent work
related to parameterizing the transport of passive and
active tracers by mesoscale eddies (e.g., Gent and
McWilliams 1990; Larichev and Held 1995; Visbeck et
al. 1996, 1997; Treguier et al. 1997), which has been
at least partially motivated by the desire to represent
small-scale processes in large-scale climate models
without the need to explicitly resolve the variability on
mesoscale time and space scales. It is well known that
the eddy field in the ocean is spatially nonhomogeneous,
with increased eddy variability generally found in the
vicinity of strong lateral density gradients, that is, nar-
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row fronts (Treguier et al. 1997). This correspondence
has led to the development of parameterizations of the
eddy fluxes in terms of the local properties of the large-
scale flow (Green 1970; Stone 1972; Gent and Mc-
Williams 1990; Treguier et al. 1997; Visbeck et al.
1997). These parameterizations vary considerably in
their details (e.g., isopycnal vs diapycnal, see Visbeck
et al. 1997), but they typically represent the eddy fluxes
as a diffusion down the mean property gradient. Green
(1970) (see also Stone 1972) used energetics arguments
to suggest that the magnitude of the horizontal eddy
diffusivity K is proportional to a length scale squared
and inversely proportional to the Eady timescale for
exponential growth,

K 5 ce fL2/ Ri,Ï (1)

where f is the Coriolis parameter, L is the length scale
of the large-scale baroclinic flow, and Ri 5 N 2/ is2V z

the Richardson number of the large-scale flow with
buoyancy frequency given by N and vertical shear of
the alongfront velocity given by Vz. The nondimensional
scale factor ce, which we call the efficiency constant to
avoid possible confusion with the various definitions of
similar proportionality constants that have previously
appeared in the literature, is unknown and presumed by
Green (1970) to be constant. This proportionality con-
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stant can be thought of as a correlation coefficient be-
tween the swirl velocity of the eddies and the density
anomaly, typically much less than 1.

If the lateral eddy heat flux is assumed proportional
to the product of the diffusivity and the large-scale den-
sity gradient, then, using the thermal wind relation, the
eddy heat flux can be written as

u9r9 5 K]r/]x 5 ceVmDr, (2)

where u9 and r9 are deviations from the large-scale time
and/or spatial average mean quantities, Dr is the cross-
front change in density over a horizontal length scale
L, and Vm is a scale for the alongfront velocity, which
may be interpreted as the maximum alongfront velocity
for a front with density change Dr over a horizontal
scale of the deformation radius (assuming a deep level
of no motion).1 Note that (2) is independent of the length
scale L, and that the eddy heat flux u9r9 is in the x
direction, perpendicular to the mean flow V (the direc-
tion of the mean flow is assumed here to be uniform
with depth).

Several recent studies have made use of this formal-
ism to parameterize the lateral heat transport by baro-
clinic eddies (e.g., Visbeck et al. 1996, 1997; Legg et
al. 1996; Chapman and Gawarkiewicz 1997; Jones and
Marshall 1997). Configurations in which buoyancy is
extracted from the surface of an initially resting ocean
develop strong baroclinic rim currents that are very
nearly in geostrophic balance with the density gradient
that develops around the edge of the cooling region. For
forcing regions large compared to the deformation ra-
dius, the rim currents are baroclinically unstable and
shed eddies, leading to a quasi-equilibration between
the lateral (and vertical) heat transport carried by the
eddies and the heat loss to the atmosphere. The prop-
erties of the cooling region (depth and density) have
been predicted by applying the eddy heat flux param-
eterization proposed by Green (1970). The efficiency
constant ce, an unknown in the problem, has been es-
timated by empirical fit to the data. Visbeck et al. (1996)
found that ce ø 0.025 (with variability between 0.014
and 0.056) over a wide range of forcing parameters in
both numerical and laboratory experiments.2 Applica-
tions of similar ideas to shallow convection in coastal
regions (Chapman and Gawarkiewicz 1997; Chapman
1998), unforced baroclinic frontal zones, and wind-

1 Strictly speaking, (2) defines an eddy density flux, not an eddy
heat flux. However, for simplicity, we assume the density is linearly
proportional to the temperature and independent of salinity. Thus, (2)
is equivalent to an eddy heat flux.

2 Visbeck et al. (1996) used a velocity scale in their scaling ar-
guments for deep convection that is three times the actual estimated
vertical change in geostrophic velocity associated with the rim current
[see Jones and Marshall’s (1997) Eq. (2.4)]. Therefore, ce used here
in (2) is three times the a9 defined by Visbeck et al. (1996).

forced periodic channels (Visbeck et al. 1997) all pro-
duce similar values of ce. These results suggest that the
formulation proposed in (2) is valid (at least for the
problems tested) and that the efficiency constant ce is
independent of all external parameters. While this form
is dimensionally consistent, there is no reason a priori
that ce should be independent of external parameters
(such as the Burger number or the Richardson number),
nor has there been a physical justification for the nearly
constant value of ce.

The purpose of this study is to derive a quantitative
estimate of the eddy heat flux in frontal zones and to
provide a physical interpretation of what controls the
magnitude of the heat flux and its dependencies on the
basic frontal parameters. For simplicity, we restrict our
attention to narrow fronts, that is, those whose cross-
front length scale is of the order of the internal defor-
mation radius. We show that an estimate of the heat flux
derived explicitly from a model of eddy interactions and
heat transport results in a form similar to that proposed
by Green (1970). Perhaps the most important result of
this study is that the simple model used to estimate the
magnitude and dependencies of the eddy heat flux also
provides a physically based means to calculate the ef-
ficiency constant ce. The theoretical estimate is tested
by comparison with eddy-resolving models in two dif-
ferent flow configurations.

2. Isopycnal heat transport by baroclinic eddies

Our goal is to estimate the isopycnal eddy heat flux
across a baroclinic front. Diapycnal mixing could also
be added, but we view this as a separate process from
the isopycnal transport carried by coherent vortices, as
discussed by Gent and McWilliams (1990) and Visbeck
et al. (1997). The eddy heat flux u9r9 could, in principle,
be calculated directly as the space and/or time average
of the product of the perturbation velocity and the per-
turbation density. However, it is difficult to estimate u9r9
a priori because it involves an unknown correlation be-
tween the two quantities that is typically much less than
one. Furthermore, a variety of complicated dynamical
mechanisms may contribute to the time-dependent and
spatially varying motions, including propagation of co-
herent vortex structures, nonlinear waves and wave
breaking, and small-scale turbulence and mixing. Nev-
ertheless, considerable progress can be made if we assert
from the outset that the dominant mechanism of eddy
heat transport across baroclinically unstable fronts is
through the formation and propagation of individual ed-
dies with length scale on the order of the internal de-
formation radius. This is consistent with the previous
studies mentioned in the introduction, and it allows the
relatively simple interpretation that the heat flux carried
by each eddy is the product of the average density anom-
aly of the eddy and its propagation speed away from
the front.

We are interested only in the eddy heat flux across
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the front, so we assume that all eddies are formed at
the front, move away and never return. This is approx-
imately true in the model calculations, although some
eddies do eventually return to the frontal zone after
formation. We do not try to parameterize their ultimate
decay and disappearance. In keeping with this perspec-
tive, we limit the analysis to narrow fronts, that is, those
whose cross-front length scale is approximately the in-
ternal deformation radius (L ø Ld). This view is also
motivated by previous laboratory and numerical mod-
eling studies, and the observation that the largest eddy
activity in the ocean is found in the vicinity of narrow
fronts. Furthermore, we expect that wider fronts may
introduce additional complications because another
length scale is introduced into the problem and the prop-
erties of the eddies (i.e., density, propagation speed) will
depend on their origin and mixing along their path.

Spatial and temporal averaging of the heat flux carried
by eddies will necessarily be reduced compared with
that carried by an individual eddy. Spatial averaging
along the front over a wavelength immediately reduces
the heat flux by one half. Temporal averaging is more
difficult to quantify. Eddy shedding typically occurs
quasiperiodically with some time required for the front
to develop large amplitude meanders between eddy
shedding events. The theory developed here is appro-
priate for the large amplitude meandering regime. The
fraction by which the eddy heat flux will be reduced
due to temporal averaging can be approximated by

1
, (3)

1 1 t /tl nl

where t l is a linear growth timescale and t nl is a non-
linear timescale, which we interpret as the time it takes
eddies to form and propagate away from the front. While
it is difficult to define these timescales precisely, the
numerical calculations in section 3 (Fig. 4a, for ex-
ample) can be used to obtain a rough estimate of (3),
suggesting a modest reduction in the eddy flux of
O(35%). However, because these estimates are difficult
to quantify a priori, and because we are primarily in-
terested in gaining a simple phenomenological under-
standing of what controls the amplitude of the eddy heat
flux, we do not attempt to formally incorporate this
effect in our estimate of ce. Our estimate should thus
be viewed as an upper bound in this regard.

The large space- and timescale average eddy heat flux
may now be written

1
u9r9 5 u r , (4)e e2

where ue is the propagation speed of an eddy away from
the front, and re is the density anomaly of the eddy
relative to the mean stratification of the motionless
ocean on one side of the front. The primary advantage
of this formulation is that it implicitly removes the need
to know the correlation between the eddy swirl velocity

and the density anomaly. For narrow frontal regions the
density anomaly of the eddies will be either Dr or zero,
depending on which side of the front they originate. If
density is conserved following the Lagrangian path of
an eddy, the density anomaly of that eddy does not
change in time (as we have defined it here), although
its density anomaly relative to the ambient fluid may
change.

Combining (2) and (4), the efficiency constant ce may
now be written in terms of the eddy propagation speed as

uec 5 . (5)e 2Vm

The task is now to determine ue. In order for (2) to be
valid, ce must be independent of all frontal parameters;
that is, ue 5 ue(Vm).

We consider a large-scale flow that is uniform in the
alongfront direction. Variations in both bottom topog-
raphy and planetary vorticity are ignored. The most like-
ly mechanism by which baroclinic eddies transport heat
along isopycnals in such a flow is by eddy–eddy inter-
actions, or self propagating eddy pairs. Hogg and Stom-
mel (1985) first noted the rapid and efficient heat trans-
port resulting from the pairing of upper-layer and lower-
layer eddies of opposite sign, which they called hetons.
Pedlosky (1985) found this structure to be the preferred
orientation of the fastest growing mode based on a linear
stability analysis of strong frontal regions. Legg et al.
(1996) demonstrated that the heton model provides a
useful approximation for the spread of heat away from
a cooling region by baroclinic eddies. Therefore, we
make use of the heton mechanism to estimate ue.

For simplicity, we assume that the frontal region and
surrounding ocean are represented by two layers of dif-
ferent density with a reduced gravity g9 5 g(r2 2 r1)/r0,
where r0 is a reference density for seawater (Fig. 1a). For
narrow fronts of width Ld 5 g9H/ f, the maximum along-Ï
front velocity (assuming no motion in the deep layer) is
Vm 5 g9h h/H, where H is a scale height for the meanÏ Ï
stratification and h is the vertical displacement of the in-
terface across the front.

It is assumed that the eddies are quasigeostrophic so
that the perturbation of the interface in the eddies is
small compared to the resting layer thickness. This as-
sumption is clearly not satisfied in some of the previous
numerical and laboratory experiments where the density
surfaces outcrop, but we make this assumption here in
order to obtain a quasi-analytic solution. The large am-
plitude regime is investigated numerically in section 3.
We assume that the eddies represent isolated volumes
of water that originated from the other side of the front
and have been transported across the front by large-
amplitude baroclinic wave events and resulting ageo-
strophic cross-front velocities accompanying baroclinic
instability (Spall 1995), a reasonable assumption for
fronts of width Ld. In this case, the eddies have uniform
potential vorticity dictated by the thickness of each layer
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FIG. 1. Schematic diagrams of (a) vertical section through the bar-
oclinc front and (b) plan view of a heton eddy pair.

on the original side of the front. Thus, the thickness
anomaly of the eddies will be of different sign in the
upper and lower layers, giving rise to one cyclonic vor-
tex and one anticyclonic vortex [see Pedlosky (1985)
and Spall (1995) for a discussion on the formation of
hetons from baroclinic fronts]. We assume that the ed-
dies are axisymmetric with radius r0 and that their struc-
ture is unaffected by the presence of the eddy in the
other layer. Stronger eddies tend to be more elliptical
but have only slightly slower propagation speeds (Pol-
vani 1991).

The self-propagation speed of baroclinic eddy pairs
driven by the interaction between upper- and lower-layer
eddies in a quasigeostrophic ocean on an f plane may
be written as (Pakyari and Nycander 1996)

xJ(c , c ) dAE 1 2

u 5 , (6)e

(c 2 c ) dAE 1 2

where x is the distance perpendicular to the front, cn is
the quasigeostrophic streamfunction in layer n, and
J(c1, c2) 5 (]c1/]x)(]c2/]y) 2 (]c2/]x)(]c1/]y) is the
Jacobian operator. The integrals are taken over the hor-

izontal area A, assumed to encompass the entire eddy
pair. As shown by Pakyari and Nycander (1996), the
propagation speed is a function of the horizontal dis-
tance between the eddy centers, that is, the offset d (see
Fig. 1b). If there is no offset and the upper-layer eddy
is of the same structure and opposite in sign to the lower-
layer eddy, the Jacobian vanishes and there is no self-
propagation. If the offset is small, Pakyari and Nycander
state that the propagation speed increases linearly with
d/r0 and with the eddy swirl velocity. For eddies of finite
radius, in which the velocity goes to zero outside of the
radius r0, we anticipate that the eddy–eddy interaction
will decrease at large d because the area over which the
eddies overlap will decrease; J(c1, c2) → 0 [the de-
nominator in (6) does not depend on the offset].

An approximate closed form solution for ue, and
hence the resulting eddy heat flux and ce, can be ob-
tained if we assume that the relative vorticity is uniform
within each eddy and that the decrease in propagation
speed as the offset increases arises solely as a result of
the decreasing area of interaction between the eddies.
An approximate solution may be derived from the small
offset limit, for which, following Pakyari and Nycander
(1996), (6) can be written in terms of the lateral offset
d, the swirl velocity in each layer y n, and the quasi-
geostrophic streamfunction as

d y y dAE 1 2

u 5 . (7)e

2 (c 2 c ) dAE 1 2

For quasigeostrophic, uniform relative vorticity ed-
dies, the velocity profile is linear with radius, y(r) 5
y mr/r0, where y m is the maximum swirl velocity of the
eddy. The quasigeostrophic streamfunction for each
eddy is then quadratic with radius,

cn 5 (21)n11(g9h/f)(1 2 r2/ ),2r0

where h is the thickness anomaly at the center of the
eddy [assumed here to be the same as the interface
displacement across the front, this approximation is val-
id for B 5 (Ld/r0)2 K 1, Spall (1995)]. Substituting for
the velocity and streamfunction, (7) may be written as

2 2d f y r dAm E
u 5 . (8)e

2 24g9h (r 2 r ) dAE 0

The eddies are presumed to have been generated through
baroclinic instability of the frontal zone, so the eddy
radius is taken to be a function of the deformation ra-
dius, r0 5 2 2Ld (see Killworth 1983 and Spall 1995Ï
for similar discussions). This gives a Burger number for
the eddies of B 5 0.125 [direct numerical integrations
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FIG. 2. (a) Efficiency constant ce as a function of vortex offset d/r0. Solid line: formal estimate from (5) and (6) for uniform potential
vorticity eddies. Dashed line: approximate closed form solution (12). (b) Efficiency constant ce as a function of Burger number B 5 (Ld/
r0)2 and interface displacement h/H from (5) and (6), assuming d/r0 5 1.

of (6) show that ce is only weakly dependent on B, as
shown below]. The maximum swirl velocity is obtained
from y 5 cr evaluated at r 5 r0, resulting in y m 5
2 g9h2B/H 5 2 BVm. The propagation speed of theÏ Ï
eddy, in the small offset limit, is estimated by integrating
(8) to give

Ï2 Ï2d d
u 5 Ïg9hÏh /H 5 V . (9)e m4 r 4 r0 0

For large offsets, we assume that the propagation
speed of the eddy pair decreases in proportion to the
decreasing area of overlap. Using a truncated series ap-
proximation to estimate the area of overlap, the prop-
agation speed ue for large offsets is then estimated to be

Ï2 d
3/2u ø (1 2 d/2r ) V , (10)e 0 m4 r0

and the eddy heat flux becomes

Ï2 d
3/2u9r9 ø (1 2 d/2r ) V Dr. (11)0 m8 r0

While this solution is not a formal limit of the integral
relation (6), it does indicate several important properties
of the way in which the eddy pairs transport heat. First,
(11) supports the assertion of Green (1970) that the eddy
heat flux is linearly related to the product of the density
change across the front and the alongfront velocity. The
eddy flux is reduced for weak frontal zones because the
propagation speed of the heton pair depends on the
change in interface thickness over the eddy radius (h),
while the size of the eddies is related to the mean strat-
ification H through the deformation radius. For h K H
the eddies propagate more slowly than similar sized

eddies with h 5 O(H) (see definition of Vm). For the
convection problems discussed by Visbeck et al. (1996),
Jones and Marshall (1997), Chapman and Gawarkiewicz
(1997), and Chapman (1998), the interface displacement
h is the same as the resting depth of the interface H
because the interface outcrops. Equation (11) also dem-
onstrates that the eddy heat flux increases with increas-
ing density change across the front by two mechanisms:
the eddies have a larger density anomaly relative to the
surrounding water and their propagation speed increases
as Dr1/2 through Vm.

Combining (11) with (2) provides a quantitative es-
timate of the efficiency constant ce,

Ï2 d
3/2c ø (1 2 d/2r ) , (12)e 08 r0

which indicates that the efficiency constant ce is inde-
pendent of all external parameters and depends only on
the relative offset of the upper- and lower-layer eddies.
Thus, the efficiency of the eddy heat flux across a narrow
frontal region is essentially determined by the ratio of
the propagation speed of the eddies to the alongfront
velocity.

The value of ce from (12) is shown in Fig. 2 by the
dashed line. For small vortex offsets (d/r0 K 2), ce

increases linearly with d/r0, as suggested by Pakyari
and Nycander (1996). As d/r0 increases, the area of
interaction decreases and the vortex propagation speed
decreases, eventually vanishing as d/r0 → 2 (the finite
radius eddies no longer interact when d/r0 . 2). The
maximum value of ce can be calculated directly from
(12) as ce 5 0.064, which occurs at an offset of d/r0 5
0.8.



2280 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

A more accurate estimate of the eddy propagation
speed, and hence the efficiency constant ce, can be ob-
tained directly from (6) using the streamfunction derived
from the uniform potential vorticity solutions given in
Spall (1995). The parameters required to fully define
the eddy structure, and cn in (6), are the layer thick-
nesses on both sides of the front and the Burger number
B 5 (Ld/r0)2. For purposes of comparing the integral
solution with the approximate solution for ce we initially
take B 5 0.125, h 5 0.5H with H1 5 H2 5 H. The
streamfunction is assumed to be constant (zero hori-
zontal velocity) outside of the maximum radius of the
eddies.

The value of ce estimated directly from (5) and (6)
is shown by the solid line in Fig. 2a as a function of
the lateral offset between vortex centers d/r0. The in-
tegral solution compares reasonably well with the ap-
proximate closed form solution (12), confirming that the
primary cause of the decrease in propagation speed for
increasing offsets is the decreasing area of overlap be-
tween the eddies. Point vortex models will thus over-
estimate the efficiency of the lateral heat transport by
finite radius heton pairs. This may partially explain the
larger value of ce found by Legg et al. (1996) for heat
transport carried by point vortex hetons when compared
to high-resolution numerical simulations. The maximum
propagation speed occurs for offsets close to the radius
of the eddies (d/r0 ø 1).

In general, the vortex offset d/r0 remains an unknown
parameter. The linear stability analysis of Pedlosky
(1985) provides a physically based means of estimating
the offset expected in the vicinity of the frontal region.
His analysis shows that the maximum growth rate occurs
for a heton pair with an offset of d/r0 ø 1, close to the
offset that produced the maximum propagation speed
for the isolated vortex pair found above (Fig. 2). This
value may be interpreted as a phase shift between the
upper layer and the lower layer of 908, as expected for
baroclinically unstable waves. We assume here that the
offset in our frontal eddies is determined by the behavior
of the linearly most unstable mode as derived by Ped-
losky (1985) and take d/r0 5 1. We note that ce is not
strongly dependent on our choice of d/r0 in that ce .
0.04 for 0.4 , d/r0 , 1.1.

The approximate solution suggests that the value of
ce, as defined in (2), is independent of all other param-
eters. This need not be so, however, as additional non-
dimensional factors involving h/H or B might be in-
volved. The value of ce calculated from (5) and (6) with
d/r0 5 1 is shown in Fig. 2b as a function of the interface
displacement across the front h/H and the Burger num-
ber of the eddies. The value of ce is nearly constant for
wide ranges of both the eddy radius and the interface
displacement, reinforcing the functional relationship
suggested by the approximate solution (11). We take as
our estimate for the efficiency constant the average over
all values of h/H at B 5 0.125, resulting in ce 5 0.045
(averaging over all values of B gives ce 5 0.043).

Our estimate of ce is essentially independent of all
model parameters; the only provision is that rotation is
important to the dynamics. This implies that the heat
flux carried by the eddies does not depend on how the
frontal region is maintained, provided that the front is
baroclinically unstable. It should be kept in mind, how-
ever, that many simplifying assumptions have been
made in obtaining this estimate, so we present numerical
calculations in the next section to provide support for
the theory.

3. Numerical model results

High-resolution numerical models are now used to
evaluate (2) for the lateral heat transport by baroclinic
eddies. The purpose of these calculations is twofold: 1)
to confirm that the dominant mode of lateral heat trans-
port is characterized by baroclinic dipole pairs (hetons)
and 2) to quantify the rate at which these eddy pairs
transport heat perpendicular to the front. Although sim-
ilar calculations have already been reported in the lit-
erature (as summarized in the introduction and also be-
low), we briefly present two sets of calculations in which
the efficiency of the eddy heat fluxes is calculated in a
manner consistent with the definition (2) for both weak
and strong fronts. This allows for a quantitative eval-
uation of the theoretical estimate of the eddy heat trans-
port, and also demonstrates the applicability of this ide-
alized model of eddy heat transport to a range of situ-
ations.

a. Spindown of an unforced front

The first application is that of the spindown of an
initially narrow frontal region in the absense of any
external forcing (as in Spall 1995). Small perturbations
initialized along the frontal region grow in time, even-
tually reaching sufficient amplitude to form separated
vortices that can transport heat across the front. Spall
(1995) noted that the eddies can pair up with eddies in
the opposite layer to form baroclinic dipole pairs that
transport heat away from the frontal region. The struc-
ture of these eddy pairs is in general agreement with
the heton model of Hogg and Stommel (1985) and the
linear stability theory of Pedlosky (1985). Calculations
similar to those reported here have also been analyzed
by Visbeck et al. (1997); however we extend the analysis
into the small h/H limit not investigated in the previous
convection problems.

Only a brief review of the model is given here; for
a more complete description the reader is referred to
Spall (1995) and the references therein. The model
solves the primitive equations of motion in isopycnal
coordinates. Calculations are carried out with both two
and three layers in the vertical with a reduced gravity
between each of the layers of 0.003 m s22. The domain
is 500 km 3 500 km square with horizontal grid spacing
of 2 km (251 3 251 grid points). The Coriolis parameter
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f 5 1024 s21 and is constant. The stratification is such
that each of the layers is Hn 5 H 5 400 m thick on the
anticyclonic side of the front. The interface between
layers 1 and 2 is displaced by an amount h over a hor-
izontal scale of L 5 Ld 5 g9H/ f 5 10 km such thatÏ
the thickness of layer 2 (1) is greater (less) on the cy-
clonic side of the front than it is on the anticyclonic
side of the front. For the cases with three layers, the
interface between layers 2 and 3 is initially flat. The
reference level is chosen so that there is initially no flow
in the deepest layer. Mass exchange is not allowed be-
tween layers. Subgrid-scale mixing is parameterized by
a Laplacian thickness diffusion with amplitude 10 m2

s21. The frontal region is initialized with small pertur-
bations of wavelengths between 25 and 250 km. From
these initial conditions the model is integrated for at
least 500 Ri/ f, where Ri can be written as H/h.Ï Ï

The horizontal velocity together with the potential
vorticity for layers 1 and 2 on day 14 are shown in Figs.
3a and 3b. This calculation has only two layers and was
initialized with h 5 100 m, or 25% of the resting layer
thickness. The structure of the growing meanders is es-
sentially the same as predicted by the linear theory of
Pedlosky (1985), and whose large amplitude develop-
ment is described in detail by Spall (1995). On the an-
ticyclonic (warm) side of the front, troughs of cyclonic
(high) potential vorticity extend away from the initial
frontal position. In the second layer, there are deep an-
ticyclonic vortices of low potential vorticity adjacent to
the upper-layer cyclones. The deep anticyclones are po-
sitioned just upstream of the cyclones with an offset d/
r0 ø 1, consistent with the most unstable mode predicted
by Pedlosky (1985). This hetonic structure is self-prop-
agating so that these density anomalies are advected
away from the frontal region. Similar structures are
found for all values of h tested. These results confirm
that for the flat-bottom, f -plane cases studied here the
heat transport is carried primarily by baroclinic eddy
pairs.

The efficiency constant ce can be estimated directly
from the model fields by making use of (2),

u9h9 1 u9h91 1 2 2c 5 , (13)e V hm

where is the alongfront average of the eddy thick-u9h9n n

ness flux perpendicular to the front for layer n.
The value of ce fluctuates in time as individual cycles

of meander growth and vortex formations take place.
This is illustrated in Fig. 4a by a typical time series of
the efficiency constant ce calculated at the middle of the
channel using (13). As expected, the value of ce is small
early in the calculation because the initial meanders take
some time to form. The eddy flux peaks as the baroclinic
waves reach large amplitude, producing a maximum val-
ue of approximately 0.05 at about day 37. This peak
value is similar to, but slightly larger than, the theo-
retical value of 0.045 derived in the previous section.

The amplitude of the eddy heat flux then fluctuates as
cycles of eddy growth and propagation away from the
front continue. Eventually, the calculated ce decreases
over a longer-time scale because the potential energy of
the front is reduced as a result of the eddy heat flux and
a narrow front no longer exists. This late stage appears
more turbulent than the early fields in Fig. 3, however
the eddies still propagate through the formation of
heton-like pairs.

An objective measure of the amplitude of ce in the
narrow-front regime is obtained by taking the maximum
of a running average over a time period t 5 200 Ri/Ï
f. For reference, the Eady linear growth timescale based
on a channel width of 2Ld is approximately 6 Ri/ f.Ï
This approach smooths the high-frequency variations in
the eddy flux associated with individual instability cy-
cles and thus gives a value representative of the average
eddy heat flux. The running average is indicated by the
dashed line in Fig. 4a and has a maximum value of ce

5 0.031. While different averaging procedures produce
slightly different estimates of ce, all methods tested give
similar results.

While our primary objective is to estimate the eddy
heat flux in (2), the intermediate relations relating the
eddy flux to the eddy propagation speed, (4) and (5),
can also be tested. The propagation speed of an eddy
pair for a case with an outcropping front was calculated
by Spall (1995) to be ue 5 3.5 cm s21. With the model
parameters h 5 100 m and g9 5 0.003 m s22, Vm 5

g9h 5 55 cm s21, resulting in ce 5 0.032, very closeÏ
to the values estimated from a direct calculation of the
eddy heat flux in (13). It is difficult to apply this estimate
in a general sense to the fully evolving frontal region,
particularily in the large amplitude turbulent regime,
because of the difficulties with identifying and tracking
individual eddies in the vicinity of the front.

A series of spindown front calculations using both
two and three layers have been carried out in which the
initial thickness change across the front has been varied
from h 5 0.125H to h 5 H (outcropping front). The
maximum value of ce taken from the running time mean
over a time period t 5 200 Ri/ f is shown in Fig. 4bÏ
as a function of the thickness change across the front
h/H. The efficiency constant ce for both two and three
layers varies between 0.030 and 0.046 over all ranges
of the frontal strength. The average value of ce taken
from all of the two layer calculations is 0.035, within
35% of the theoretical estimate of 0.045 and similar to
the value found by Visbeck et al. (1996, 1997) of 0.025.
The average for the three layer calculations is 0.036.

Additional calculations have been made in which the
Coriolis parameter was reduced or increased by a factor
of 2 and they resulted in similar values of ce, ranging
between 0.025 and 0.039. Introducing a cross-front gra-
dient in f of magnitude b 5 2 3 10213 cm21 s21 gave
essentially identical results to the f -plane results shown
here.



2282 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

F
IG

.
3.

H
or

iz
on

ta
l

ve
lo

ci
ty

(p
lo

tt
ed

ev
er

y
ot

he
r

gr
id

po
in

t)
an

d
po

te
nt

ia
l

vo
rt

ic
it

y
on

da
y

14
ov

er
a

su
br

eg
io

n
of

th
e

m
od

el
do

m
ai

n
fo

r
th

e
tw

o
la

ye
r

sp
in

do
w

n
fr

on
t

pr
ob

le
m

w
it

h
h/

H
5

0.
25

:
(a

)
la

ye
r

1
an

d
(b

)
la

ye
r

2.



NOVEMBER 1998 2283S P A L L A N D C H A P M A N

FIG. 4. (a) Time series of the efficiency constant ce for the two layer case with h/H 5 0.25
calculated from the model fields using (13). The solid line is the daily value; the dashed line
is a running average over a time period of 200 Ri/ f 5 93 days. (b) Maximum value of theÏ
space and time averaged (over 200 Ri/ f ) ce as a function of the interface displacement acrossÏ
the front h/H for both the two layer cases (squares) and the three layer cases (stars).

b. Equilibration of local surface cooling

A second set of high-resolution numerical calcula-
tions is now considered in which the strong frontal re-
gion results from spatial inhomogeneities in the surface
buoyancy flux. These calculations complement the un-
forced spindown calculations from the previous section
in several ways. First, the forced problems approach a
statistical equilibrium in which a strong frontal region
is maintained, whereas the unforced front loses consid-
erable potential energy over the course of integration.
Second, the front in the forced problems is generated
by a very different mechanism than in the unforced
problems. Third, the eddies that form in the forced prob-
lem have a strong barotropic component and do not look
much like the two-layer hetons of the unforced prob-
lems. Finally, in the forced problems the two primary
parameters, the alongfront velocity Vm and the cross-
front density difference Dr, change in time, with their
values at equilibrium being determined by the efficiency
of the lateral eddy heat transport, while in the spindown
configuration these parameters are set by the initial con-
ditions. Therefore, the forced problem provides a test
of the generality of the theoretical ideas presented in
section 2.

The forced problems follow the shallow convection
calculations described by Chapman (1998). A constant
negative buoyancy flux B0 (i.e., cooling) is applied with-
in a circular region of radius L0 at the surface of a
resting, homogeneous ocean of depth H. The forcing
abruptly vanishes outside the radius L0. This is not ter-
ribly realistic, but it is a case that has received consid-
erable attention and it ensures that a narrow front forms,
that is, with the horizontal scale of the internal defor-
mation radius. Initially, the dense water produced be-
neath the buoyancy flux mixes rapidly to the bottom,
so the density anomaly increases linearly with time. A
front is established around the edge of the forcing re-
gion, which begins to slump radially outward at the

bottom and inward at the surface, adjusting toward geo-
strophy. This generates a rim current flowing around the
edge of the forcing region, cyclonic at the surface and
anticyclonic at the bottom. The rim current is baroclin-
ically unstable, so waves grow rapidly into eddies that
break away from the rim current and exchange dense
water from beneath the imposed buoyancy flux with
ambient water. Eventually a quasi equilibrium is ap-
proached in which the loss of buoyancy at the surface
is balanced, in a statistical sense, by the eddy exchange
across the rim current. By assuming such an equilibrated
state, Visbeck et al. (1997) derived expressions for the
equilibrium density anomaly within the forcing region
and the time required to reach equilibrium in the shallow
convection case, based on externally imposed parame-
ters,

2/3 2/3 1/321 r 1 L0 02/3Dr 5 (B L ) ; t 5 ,f 0 0 f1 2 1 2 1 22c gH 2c Be e 0

(14)

where ce is defined as in (2). Visbeck et al. (1997) did
not actually test (14), but Chapman (1998) has shown
that (14) is reasonable, at least for a few examples.3

Therefore, we use the same basic model configuration
as Chapman (1998) to estimate ce for several parameter
combinations. The model is the semispectral primitive
equation model described by Haidvogel et al. (1991).
The model domain is a straight channel with periodic
boundaries at the open ends. The boundaries are placed
far enough from the forcing region that they have neg-
ligible influence during the model calculations. A rect-

3 Note that Chapman (1998) used the surface velocity in his der-
ivation of the equilibrium quantities, rather than the total vertical
change in geostrophic velocity over the depth H, as used here to
define Vm in (2). Consequently, Chapman’s eddy exchange coefficient
a is twice our efficiency constant ce for the shallow convection case.
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angular grid is used in the horizontal with either 1-km
or 1.5-km resolution in each direction, depending on
the parameter choices. Nine Chebyshev polynomials are
used to resolve the vertical structure. A convective ad-
justment scheme mixes the density field whenever it is
statically unstable, and small lateral Laplacian subgrid-
scale mixing is used to ensure numerical stability. The
model is run until the density anomaly below the center
of the forcing region approaches a quasi-steady value.
Further model details may be found in Chapman (1998).

The horizontal velocity together with the density
anomaly at both the surface and the bottom are shown
in Figs. 5a and 5b for a typical calculation as equili-
bration is approached. Several large eddies can be seen
moving away from the forcing region (indicated by the
solid circle). Their surface velocities are clearly cyclonic
(Fig. 5a) with a weaker cyclonic signature at the bottom
(Fig. 5b). Careful examination of the bottom velocities
shows that each cyclonic eddy has an anticyclonic part-
ner that is horizontally offset and has little, if any, sig-
nature at the surface. Cross sections of density or ve-
locity (not shown) reveal that the eddy pairs are tilted
in the vertical and overlap, somewhat like those de-
scribed for the two-layer system (section 2), despite their
barotropic nature. Time sequences of the velocity and
density fields show that the eddy pairs indeed propagate
away from the forcing region, much like the eddy pairs
in the unforced problem described above. We might then
expect the overall behavior to be consistent with the
theoretical development in section 2.

The efficiency constant ce can be estimated from cal-
culations like that shown in Fig. 5, as the system ap-
proaches equilibration, by solving (14) for ce

3/2 3/2B L r 10 0 0c 5 . (15)e 1 2 1 22 gH Drf

As stated above, the density anomaly beneath the buoy-
ancy flux initially increases linearly with time. After the
eddies have grown large enough to break away from
the rim current (as in Fig. 5), the density anomaly os-
cillates about a quasi-equilibrium value, from which Drf

is estimated by averaging the surface density anomaly
within a small area in the center of the forcing region.
Table 1 shows estimates of ce from (15) for five model
calculations along with other model parameters. The
estimates of ce fall within the range 0.02–0.03, close to
the value obtained by Visbeck et al. (1996) for deep
convection and not far from the values obtained for the
unforced problems in section 3a. The uncertainty in ce

represents the effects of individual eddy formation
events. The values are somewhat smaller than the the-
oretical value of 0.045, but considering the numerous
assumptions in section 2 that are not strictly applicable
to these calculations, the agreement is quite good.

It is interesting to point out that eddies form prior to
equilibration, but these eddies are smaller than those
formed during equilibration (because of the smaller in-

ternal deformation radius), and the heat flux they carry
is not sufficient to balance the surface cooling. There-
fore, the density anomaly continues to increase. Because
ce is limited in magnitude by the eddy–eddy interactions,
as discussed in section 2, the system can only approach
equilibration when the density anomaly has increased
sufficiently to form larger eddies, which propagate faster
and carry more mass.

4. Summary

We have derived a quantitative means to estimate the
amplitude of lateral heat transport by baroclinic eddies
generated in narrow frontal zones in terms of the prop-
erties of the mean flow. The theory predicts that the
eddy heat flux is linearly related to the product of the
alongfront velocity scale and the cross-front density gra-
dient as

u9r9 5 ceVmDr, (16)

where ce is an efficiency constant, Vm 5 g9h h/H isÏ Ï
the maximum alongfront velocity for a front of defor-
mation radius width, Dr is the density change across
the front, h is the isopycnal displacement across the
front, and H is the resting depth of the isopycnal. This
expression for the eddy heat flux is similar to the form
proposed by Green (1970) to parameterize eddy fluxes
in the atmosphere and applied more recently to the ocean
by Visbeck et al. (1996, 1997), Jones and Marshall
(1997), Chapman and Gawarkiewicz (1997), and Chap-
man (1998).

Our approach in deriving this relationship is quite
different from the energetic arguments used by Green
(1970), and the scaling approach of Jones and Marshall
(1997). The eddy heat flux is interpreted as the product
of the average density anomaly of an eddy and its prop-
agation speed away from the front, as given by (4). The
advantage of this approach is that it eliminates the need
to estimate the correlation between the eddy swirl ve-
locity and the perturbation density (typically much less
than one) as required for the traditional definition of the
eddy heat flux. The problem then becomes that of de-
termining the propagation speed of an eddy in terms of
the frontal parameters where the eddy was formed. By
developing the theory based explicitly on the way eddies
interact and transport heat, we are able to analytically
calculate the efficiency constant ce that determines the
amplitude of the cross-front heat flux, or the efficiency
of the heat flux relative to the strength of the front. The
efficiency constant ce may be thought of as the ratio of
the eddy propagation speed to the alongfront velocity.
If it is assumed that the heat transport is carried pri-
marily by quasigeostrophic eddy pairs of uniform po-
tential vorticity, the efficiency constant ce can be rep-
resented in simple integral form, which produces a the-
oretical estimate of ce 5 0.045.

This estimate was tested using three-dimensional,
eddy-resolving, primitive equation models for two flow
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TABLE 1. Parameters and efficiency constant ce for the forced nu-
merical calculations discussed in section 3b. For each calculation,
the initial density is r0 5 1000 kg m23, and the depth is H 5 50 m.
Units are m2 s23 for B0, km for r0, s21 for f, m2 s21 for the lateral
viscosity nu.

Run
B0

(31027) r0 f (31024) nu ce

1
2
3
4
5

8
4
4
4
4

40
40
20
20
20

1.3
1.3
1.3
0.65
1.3

25
25
25
25
10

0.026
0.020
0.020
0.019
0.028

configurations. One set of calculations was initialized
with a narrow frontal region and allowed to evolve in
the absense of external forcing. The second set of cal-
culations applied a region of surface cooling (negative
buoyancy flux) over an initially motionless, homoge-
neous ocean, which develops a narrow front along the
edge of the cooling region. In both cases, the alongfront
current is baroclinically unstable, leading to lateral heat
transport by baroclinic eddies. The quantitative value of
ce derived from these eddy-resolving numerical models
varied between 0.02 and 0.04 over a wide range of
model parameters. This compares reasonably well with
the theoretical estimate of ce 5 0.045. The reduced ef-
ficiency in the numerical models probably arises from
the finite width of the baroclinic fronts and the time it
takes for meanders to reach large amplitude; both effects
are neglected in the theory. Despite the quantitative dif-
ferences, these results clearly support the form for the
eddy heat flux in (2) and also indicate that ce is basically
independent of external parameters.

The theory was derived assuming flat-bottom, f -
plane, quasigeostrophic dynamics, although the theo-
retical estimate is found to be reasonably accurate well
beyond the formal quasigeostrophic limits. Allowing for
either a sloping bottom or a variable Coriolis parameter
introduces another length scale into the problem, l 5

U/b, where b is the cross-front variation in the back-Ï
ground vorticity. For the surface intensified, narrow
frontal problems studied here, the influences of bottom
topography or variations in the Coriolis parameter are
negligible because the cross-front potential vorticity
gradient is dominated by the change in stratification
across the front. These effects may become more im-
portant for wide frontal regions, for weak stratification,
or for estimating the eddy heat flux far from a narrow
front. Even in these cases, however, baroclinic eddy
pairs may remain a primary heat transport mechanism
(with modifications due to b), although not necessarily
the only one, and, if so, the general arguments presented
here should remain relevant.

It has been assumed that the frontal region remains
narrow and baroclinically unstable, and that the sur-
rounding waters are not strongly populated with eddies.
We recognize that steep bottom topography, planetary
vorticity gradients, and large-scale confluent flows can

stabilize even strong baroclinic fronts and inhibit the
formation of eddies, resulting in regimes for which the
present theory is not appropriate. Further, the present
theory may need modification when applied to wider
frontal regions because the properties of the eddies (e.g.,
density anomaly) will depend on their origin and mixing
along their path. However, it is encouraging that Chap-
man (1998) found eddy heat fluxes to be only weakly
dependent on the width of the baroclinic zone, so the
essential mechanisms of eddy heat transport may not be
strongly dependent on this length scale.

We have assumed that all eddies formed at the front
propagate away from the front and never return. We
have not attempted to predict their ultimate evolution
and fate. That is, we do not attempt to predict the di-
vergence of the eddy heat flux (or equivalently the eddy
flux far away from the frontal region), a quantity that
is perhaps of more practical interest for large-scale cli-
mate models. While the correspondence between large
eddy energies and variations in the mean flow (Treguier
et al. 1997) suggests that eddies decay rapidly away
from their source region, the relationship between the
divergence of the eddy flux and the mean flow is not
clear. The present local parameterization of the eddy
flux does not consider nonlocal sources, such as advec-
tion of eddy variance by the mean flow or coherent
vortices generated at distant regions (such as meddies
or Agulas rings).
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