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ABSTRACT

Linear and nonlinear radiating instabilities of an eastern boundary current are studied using a barotropic

quasigeostrophic model in an idealized meridional channel. The eastern boundary current is meridionally

uniform and produces unstable modes in which long waves are most able to radiate. These long radiating

modes are easily suppressed by friction because of their small growth rates. However, the long radiating

modes can overcome friction by nonlinear energy input transferred from themore unstable trappedmode and

play an important role in the energy budget of the boundary current system. The nonlinearly powered long

radiating modes take away part of the perturbation energy from the instability origin to the ocean interior.

The radiated instabilities can generate zonal striations in the ocean interior that are comparable to features

observed in the ocean. Subharmonic instability is identified to be responsible for the nonlinear resonance

between the radiating and trappedmodes, butmore general nonlinear triad interactions are expected to apply

in a highly nonlinear environment.

1. Introduction

Energetic mesoscale variability in the ocean interior

has long been observed (Wyrtki et al. 1976; Stammer

1997) and motivated many studies concerning its ori-

gins. The most direct mechanism is baroclinic instability

of the large-scale circulation. Gill et al. (1974) noted that

the potential energy of large-scale wind-driven gyres

in the ocean is several orders of magnitude larger than

their kinetic energy. The vast stores of potential energy

might be released through baroclinic instability to gen-

erate mesoscale eddies much stronger than the mean

circulation (Gill et al. 1974; Robinson and McWilliams

1974). Although theory suggests that the eddy energy

in weakly sheared zonal flows is limited by the shear

of the mean flow (Pedlosky 1975), an introduction of a

meridional component to the mean flow allows for eddy

kinetic energy exceeding that of the mean (Robinson

and McWilliams 1974; Spall 2000).

An alternative mechanism is related to the radiation

of mechanical energy from swift oceanic boundary cur-

rents, such as the Gulf Stream. Many studies represent

the Gulf Stream as a propagating northern boundary

(Flierl and Kamenkovich 1975; Pedlosky 1977; Harrison

andRobinson 1979;Malanotte-Rizzoli et al. 1987). These

results identify important mechanisms governing the en-

ergy radiation from strong ocean currents. Talley (1983)

derives the wave properties by solving for the stability of

a steady zonal flow and shows that instability radiation will

not occur unless there is a westward component in the

zonal current or the far field is made baroclinic. The main

argument is that the wave characteristics of eastward-

traveling instabilities do not match the dispersion relation

of the free Rossby waves in the far field.

Instability radiation occurs more easily for a nonzonal

current. Pedlosky (1993) studied a baroclinic shear flow

that is inclined with respect to a latitude circle. Although

the study focuses on the generation of a boundary current
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by the boundary trapping of two reflected unstablewaves,

it clearly demonstrates that a nonzonal flow is less stable

and its instabilities can reach out to the far region.

Kamenkovich and Pedlosky (1996, 1998a,b) explicitly

studied the influence of nonzonality on jet instability

and radiation. They found that even a slight nonzonality

in the mean flow can generate radiating instabilities,

which can significantly penetrate into the far field.

A meridional current is an extreme case of the non-

zonality. The instabilities generated by a meridional

western boundary current are able to radiate eastward

even in the presence of realistic dissipation (Fantini and

Tung 1987). Hristova et al. (2008) studied the radiating

instabilities of meridional boundary currents and com-

pared a western boundary current with an eastern bound-

ary current. They showed that an eastern boundary current

supports a greater number of radiating modes over a

wider range of meridional wavenumbers than a western

boundary current. However, these studies used a piece-

wise constant meridional velocity profile. This velocity

profile reduces the stability equation to an ordinary

differential equation with constant coefficients, which

is easier to solve, but leads to unrealistic shortwave be-

haviors. Wang et al. (2012) extended these previous

studies by considering a continuous velocity profile in

a barotropic quasigeostrophic model and demonstrated

that radiating instabilities can generate zonal striations

in the ocean interior. The nonlinear effects were shown

to be important in energizing the instability radiation.

As a follow-up study, we here discuss the mechanism

that governs the nonlinear radiating instabilities of an

eastern boundary current.

2. The model

We choose the simplest barotropic quasigeostrophic

(QG) model, as used in Fantini and Tung (1987) and

Wang et al. (2012), to focus on elementary nonlinear

dynamics. The model is described by the barotropic

vorticity equation:

›tq1 J(c,q)5F and

q5=2c1by , (1)

where c is streamfunction, q is potential vorticity, F is

an external forcing and friction, J is the Jacobian oper-

ator, and b is the meridional gradient of the Coriolis

parameter.

In a linear or weakly nonlinear state, the total field

can be decomposed into a basic steady state (denoted

by the overbar) and perturbations (denoted by the

prime),

c5c1c0 and

q5q1 q0 5=2c1by1=2c0 , (2)

where the perturbation field is much weaker than the

basic state. The basic state is assumed to be balanced by

a steady external forcing

F 5 J(c, q)[ 2cy=
2cx 1cx=

2cy1bcx , (3)

where the subscripts denote partial derivatives. Here, c

is not the time-mean streamfunction, and c 0 can have

a mean part; when we require means, we will denote

them specifically by a time integral. For a basic state with

only a zonal flow, no external forcing is needed as cx 5 0.

However, an external forcing is necessary to maintain

a basic meridional flow. It takes the form F 5by, where

(u, y)5 (2cy,cx) is the steady-state barotropic flow,

meaning a vorticity source or sink is needed to com-

pensate the planetary vorticity change caused by the

meridional movement of a water parcel.

After substituting Eqs. (2) and (3), Eq. (1) becomes

›tq
01 J(c,q0)1 J(c0,q)1 J(c0,q0)5F0 , (4)

where F0 represents frictional effects on perturbations.

This equation is solved numerically to investigate the

influence of nonlinearity on the instability of a meridi-

onal current. To study linear stability, the quadratic

term in c0 is neglected, resulting in the linear stability

equation

›tq
0 1 J(c,q0)1 J(c0, q)5F0 . (5)

In the following sections, we first study the linear and

then the nonlinear stability problem of an eastern

boundary current by numerically solving Eqs. (5) and (4),

respectively.

3. Linear radiating instability

a. Stability equation

Let us consider a basic state with a parallel meridional

eastern boundary current y(x). We set x 5 2Lx at the

western boundary and x 5 0 at the eastern boundary.

The linear stability Eq. (5) can be nondimensionalized

using the cross-stream length scale Lb and the velocity

scale V of the boundary current. After dropping primes

without causing confusion, the linearized Eq. (5)

becomes

(›t 1 y›y)=
2c1b*cx2 yxxcy2F (c)5 0, (6)
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where b*5bL2
b/V is the nondimensional beta, andF (c)

is the frictional damping on perturbations, which can be

specified as Laplacian diffusion of vorticity $ � AH$q,
whereAH is the horizontal viscosity. NonzeroAHwill be

used in the nonlinear simulations, but here we first

consider the inviscid problem as a first step in the study

of nonlinear instability. A normal mode solution is as-

sumed in y and t for perturbations,

c5f(x)eil(y2ct) 1 c:c., (7)

where l is meridional wavenumber, c is meridional phase

speed, and c.c. is the complex conjugate. Substituting

Eq. (7) into (6) results in a Sturm–Liouville eigenvalue

problem,

fxx 1
b*

il(y2 c)
fx2

�
l21

yxx
y2 c

�
f5 0. (8)

This is the stability equation for an inviscid, barotropic,

quasigeostrophic, meridional current. Previous studies,

for example, Fantini and Tung (1987) andHristova et al.

(2008), further simplify it to an ordinary differential

equation system by choosing a step function to represent

the boundary current y. The simplified stability equation

becomes easier to solve, but there is no shortwave cutoff.

The discountinuous velocity profile generates a delta

function in the background vorticity and supports in-

stabilities with infinitely large wavenumbers.

In this study, we use a continuous profile to represent

the boundary current to aid the comparison between

linear and nonlinear theories. The profile is similar to

Wang et al. (2012):

y(x)52V sech2
�
x2 x0
Lb

�
, (9)

where x0 is the location of the center of the boundary

current.

Two methods are used to solve the linear problem

with a continuous velocity y(x). The linear eigenvalue

problem represented by Eq. (8) with proper boundary

conditions discussed below is solved by a shooting

method. The second method considers an initial value

problem for both inviscid and viscous cases. The linear

model equation in Eq. (6) is initialized with a sine wave,

whose growth rates are calculated by fitting the time

series of the square root of the domain-integrated en-

ergy to an exponential curve. The boundary conditions

for the initial value problem are no-normal-flow at the

eastern and western solid boundaries and periodic con-

ditions in the meridional direction. The boundary con-

ditions needed for the shooting method are discussed as

follows.

b. Boundary conditions and radiating modes

The no-normal-flow boundary condition is applied at

the solid eastern boundary,

f(0)5 0. (10)

In the regions away from the boundary current, say

x 5 2Li, y approaches zero, so that perturbation ei-

genfunctions satisfy the free Rossby wave dispersion

relation and their zonal structures is proportional to eikx,

where the zonal wavenumber k satisfies

k2 1
b*

lc
k1 l25 0. (11)

The boundary condition at x 5 2Li is the radiation

condition

fx(2Li)5 ikf(2Li) , (12)

where k is one of the two solutions of Eq. (11). It is

chosen in such a way that it either represents a decay

structure or an outward (westward in this case) propa-

gation of wave energy. The two solutions of k, say k(1)

and k(2), have opposite-signed imaginary parts since

their product, k(1)k(2)5 l2 is real. The eigenfunctionf(x)

of an eastern boundary current decays westward, re-

quiring the imaginary part of k, that is, ki, to be negative.

Negative ki also corresponds to westward Rossby wave

group velocity in the limit of ci / 0 (Hristova et al.

2008).

Extra analysis is required to distinguish radiating

modes from trapped modes, as they both decay into the

far field. The decaying structure of an unstable radiating

mode is formed because the packets of perturbations

take finite time to propagate away into the interior with

relatively unchanged amplitude, meanwhile grow ex-

ponentially near the energy source. The amplitude of an

unstable radiating mode is always larger over the jet

region than in the interior. A necessary condition used

to identify a radiating mode is the so-called phase speed

condition, that is, the dispersion relation of a radiating

mode has to match the dispersion relation of the free

waves in the interior, Rossby waves in this case (Talley

1983).

c. Results

Figure 1 shows the linear growth rate lci and frequency

vr as a function of wavenumber l, where ci andvr are the

imaginary and real parts of c and v 5 lc, respectively.

Note that there are two unstable modes for a sech2 ve-

locity profile on an f plane, which are a sinuous mode

and a varicose mode, corresponding to symmetric and
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antisymmetric eigenfunction structures, respectively

(Lipps 1962). In our case, the beta effect and side boundary

effect alter the original eigenfunctions resulting in modi-

fied sinuous and varicose modes, which are indicated by

the solid and dashed lines in Fig. 1.

Figure 1a shows that the most unstable mode is a sin-

uous mode (solid line) at l5 1.05. The modified sinuous

mode has a shortwave cutoff at l 5 1.88. No unstable

sinuous modes are found for l , 0.706. Unstable modes

over the longwave range are modified varicose modes

(dashed line). Instabilities exist for 0.125, l, 1.04. The

calculation by the initial value method for the inviscid

case is shown by the stars. The good agreement between

the lines and the symbols validates both methods. Fric-

tional and nonlinear terms are added to the linear nu-

merical model used in the initial value problem to study

nonlinear effect in the next section.

Figure 1b shows the frequency vr. The lines indicate

vr5 lcr, while the symbols representvr 52bkr/(k
2
r 1 l2).

According to the phase speed condition, the two fre-

quencies at each l should be equal in order for in-

stabilities to radiate. For the modified varicose mode

(dashed line), the circles fall on the dashed line over

the wavenumber range l , 0.46, meaning the longwave

modes with l , 0.46 are expected to radiate. Similarly,

long sinuous modes (solid line) with l , 0.74 are also

expected to radiate, but only over a very narrow wave-

number range 0.706 , l , 0.74. The two critical wave

numbers separating the radiating and trappedmodes are

l5 0.46 for the modified varicose mode and l5 0.74 for

the modified sinuous mode (the two dotted vertical lines

in Fig. 1b).

One example of the eigenfunctions for radiating

mode and trapped mode are shown in Fig. 2. The

eigenfunctions show a wavy structure for the radiating

mode, but a fast-decay structure for the trapped mode.

The linear analysis shows that radiating instabilities

occur over the longwave end for each mode (sinuous or

varicose). It is qualitatively consistent with Kamenkovich

and Pedlosky (1996) and Hristova et al. (2008). Al-

though radiatingmodes are able to transfer energy away

from the unstable region to affect the interior, they have

smaller growth rates than the most unstable mode in this

inviscid linear theory. Friction can suppress the unstable

inviscid radiating modes, leaving the significance of the

radiating mode in question.

4. Nonlinear radiating instability

The exponential growth of an initially infinitesimal

perturbation slows down when the perturbation be-

comes finite and starts to feed back into the mean. Once

an initial small perturbation develops to finite ampli-

tude, linear theory fails and nonlinear interaction be-

comes important for the perturbation development. The

elementary mechanism for nonlinear interaction is the

triad resonance, which describes that a triad of waves are

resonant if their phases satisfy u1 6 u26 u3 5 0, which is

equivalent to both wavenumbers and frequencies satis-

fying l1 6 l2 6 l3 5 0 and v1 6 v2 6 v3 5 0 (Phillips

1960). Here we are interested in identifying the effect

of nonlinear interaction on the radiating instabilities

from the point of view of elementary triad resonance. To

FIG. 1. (a) The growth rates calculated by a shooting method

(lines) and an initial value method (stars) are shown. (b) The real

frequencies calculated from eigenvalues, vr 5 lcr (lines) and

vr 52b*kr/(k
2
r 1 l2) (symbols) are shown. In (a),(b), the dashed

lines represent modified varicose modes, and the solid lines rep-

resent modified sinuous modes. The two critical wavenumbers l 5
0.46 for the modified varicose mode and l 5 0.74 for the modified

sinuous mode are marked by the two dotted vertical lines.

FIG. 2. The real part of the eigenfunctions of the radiating

(dashed) and trapped (solid) modes as a function of x (x is nor-

malized byLb). The radiating mode has l5 0.4, k5 0.212 i0.0011,

and the trapped mode has l 5 0.82, k 5 0.32 2 i0.74.

1442 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 43



single out the nonlinear process among a wave triad, we

weakly force the model to generate only one linearly

unstable mode (denoted as the primary mode hence-

forth), suppress other modes by friction, and look for

a wave triad that is resonant. A case with a nonresonant

wave triad is presented in section 4d as a comparison.

The model is described by Eq. (4), where the damping

is provided by Laplacian diffusion of vorticity F 5
$ � AH$q (after dropping primes). Here, AH is strongly

increased at the western boundary to remove energy and

enstrophy as used in Fox-Kemper (2003):

AH 5Aw
H 2 (Aw

H 2Ae
H) exp

�
x

aLx

�
, (13)

where a controls the decay scale. This function changes

from approximately Aw
H at the western boundary to Ae

H

at the eastern boundary. Different values of a are tested

to confirm that our conclusions are not sensitive to

a as long as AH is approximately Ae
H over the eastern

boundary current region. The frictional effect in the

interior is not energetically important as the perturba-

tion field has a large horizontal scale (see the appendix

for the scaling argument). Bottom friction was also

tested to confirm that our conclusion about the non-

linear interaction between trapped and radiating modes

does not depend on the specific form of friction (not

shown). Cases with a5 0.15 are presented here. We use

Aw
H 5 104 m2 s21 and Ae

H 5 100m2 s21 in this study. The

perturbation energy budget over the eastern boundary

current region varies for different values of Ae
H .

The model domain is an Lx 3 Ly meridional channel

discretized using Nx 3 Ny grid points, which are speci-

fied in each following section. The boundary condi-

tions are periodic in the meridional direction, with

no-normal-flow and slip conditions along the solid walls.

The velocity profile is described by Eq. (9) with V 5
0.11m s21, Lb 5 50 km, and x0 5 2100 km. The speed

[O(10 cm s21)] and the width of the boundary current

are consistent with observations (Hickey 1979; Davis

1985; Brink and Cowles 1991). Other velocity profiles

were also tested without altering our final conclusions.

In the following, we first describe the methodology

for identifying discrete unstable modes, then show the

nonlinear evolution of the discrete modes in two sce-

narios. One scenario has a resonant wave triad, and the

other has no resonant wave triad. Results for different

scenarios are also discussed in terms of energetics.

a. Linear growth rates

To single out a discrete unstable mode, we first ex-

amine the linear growth rates calculated based on Eq. (5)

for the specified boundary current using the initial value

method with friction considered. This calculation uses

b 5 1.8 3 10211 (m s)21, Lx 5 Ly 5 5000 km, and Nx 5
Ny 5 256. The resulting spatial resolution 19.53 km is

sufficient for the most unstable mode, which has a me-

ridional wavelength about 350 km.

Themodel is initializedwith an infinitesimal sine wave

in y with a discrete wavenumber ‘n 5 2np/Ly, where n

is an integer varying from 8 to 20. The corresponding

wavelengths ln 5 2p/‘n range from 625 to 250 km given

Ly 5 5000 km.

Figure 3 shows the growth rate as a function of me-

ridional wavelength. There are longwave and short-

wave cutoffs at wavelength about 550 and 250 km,

respectively. The resolved most unstable mode has wave-

length about 350 km. According to the calculation in

Fig. 1b, the critical wavenumber dividing the radiating

and trapped modes is l 5 0.46 for the modified sinuous

mode and l 5 0.74 for the modified varicose mode,

corresponding to two critical wavelengths l5 683 and

l 5 425 km, respectively. As a result, modes with

a wavelength smaller than 425 km are trapped ones and

those with a wavelength larger than 683 km are able to

radiate. This is true for both modified varicose and

sinuous modes.

b. Case 1, nonlinear resonance

In this experiment, we use the same set of parameters

as those used in section 4a, but with Ly 5 700 km and

Ny 5 32 (the spatial resolution is reduced to 21.88 km

from 19.53 km). We can pick a limited number of un-

stable modes by reducing spectral resolution 2p/Ly

because instabilities are confined in a narrow range of

wavelength from 250 to 550 km. Given Ly 5 700 km,

the longest mode resolved in the model has a wave-

length l1 5 700 km. The second and third modes have

wavelength l25 350 and l35 233 km, respectively. The

FIG. 3. Linear growth rates normalized by V/Lb as a function

of meridional wavelength. The growth rates are calculated by

fitting the time series of the integrated perturbation kinetic

energy to exponential curves, EKE5Ce2vi t, where vi 5 lci is

growth rate.
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growth rate curve in Figure 3 shows that only the

second mode n 5 2 has a positive growth rate. In the

following, we set the model to support only one un-

stable mode, and test the two proposed scenarios.

Hereafter we refer the mode with wavenumber ‘n 5
2np/Ly as Mn.

Figure 4 shows the streamfunction of M1 (l1 5
700 km) and M2 (l2 5 350 km). Here, M1 is a radiating

mode with a streamfunction that decays very slowly

westward. The shorter wave mode M2, however, is

trapped around the boundary current region.

The frequencies for the first four modes are listed in

Table 1. It is clear that v2 1 2v1 5 0, meaning the fre-

quency relationship between M1 and M2 satisfies the

requirement for resonance. We also notice that the

frequencies of M2,3,4 are negative, corresponding to

negative phase speed. The longer mode M1, however,

has a positive frequency (equivalently a positive phase

speed), indicating it is a retrograde mode.

Here, M1 and M2 satisfy the nonlinear resonance cri-

teria as ‘2 5 2‘1 and v2 1 2v1 5 0. We now initialize the

nonlinear model with random noise, and integrate it in

time. Different linear modes can interact and the reso-

nance between M1 and M2 is expected.

Figure 5 shows an example of the time series of the

perturbation streamfunction at a fixed station in the

boundary region and two snapshots of perturbation

streamfunction at two developing stages. Three differ-

ent developing stages are clearly distinguishable in the

time series. The amplitude of the streamfunction over

stage I (t 5 0 . . . 4.5 nondimensionalized by 2p/vi) is

negligible compared to the finite amplitude at later time.

After a period of exponential growth, the second stage

(stage II) is reached and sustained between about t5 4.5

and t 5 38. There is another apparent transition period

around t5 38, after which perturbations reach the third

stage (stage III) with a stronger oscillation.

One should notice that distinguishable stages result

from the weakness of the forcing and the slow devel-

opment of the instability. The forcing scale and the

model spectral resolution are reduced to such a level

that the model supports only one unstable mode. The

slow development of the instability allows for the clear

illustration of the physical processes. The system will

reach equilibrium significantly faster if the forcing scale

or the spectral resolution is increased for the system to

support larger growth rates or more than one unstable

mode. In a test experiment (not shown) a 9% increase

in the amplitude of the basic state shortens the time

scale for the emergence of stage II to 0.6 from the

original 4.5.

FIG. 4. Streamfunctions at an arbitrary time corresponding to c1

with l15 700 km and c2 with l25 350km. They are normalized by

theirmaximum value as they are linearmodes. Only the subdomain

from x522500km to 0 is plotted to show a clearer streamfunction

structure.

TABLE 1. Frequencies and growth rates of the first four modes.

Mode index l (km) vr (cpy) vi (cpy)

1 700 1.44 20.1554

2 350 22.88 0.2630

3 233 26.48 20.1555

4 175 210.08 21.1945

FIG. 5. (a) The time series of the streamfunction at a fixed station

in the boundary region. The time axis is nondimensionalized by

2p/vi in which vi ofM2 is choosen. The streamfunction snapshots

at (b) t 5 20 and (c) t 5 50 are shown. Numerals I, II and III

indicate different stages. Unit m2 s21 is used in all panels.
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Two snapshots of the perturbation streamfunction

explain the different stages shown in the time series.

During stage II, onlyM2 is energetically significant. The

existence ofM1 with energy extending into the interior is

not evident in stage II but clearly shown in stage III

(Fig. 5c).

To identify the mechanism that governs the nonlinear

perturbation development, we study the time evolution

of enstrophy for each mode. The Fourier coefficients for

each mode are saved at each time step. The enstrophy

for each discretized mode is jq̂(n, t)j2, where q̂ is the

complex Fourier coefficient of vorticity, n represents

the mode index, and t represents time. The time series

of the enstrophy for each mode is shown in Fig. 6.

The initial linear development for each mode can be

clearly observed in the time series of enstrophy because

the parameters used in the integration produce small

linear growth rates. Before t5 0.7,M2 (solid line) is the

only growing mode, which is expected from the linear

study. It grows fastest and reaches nonlinear equilibrium

at about t 5 4.5.

The growth ofM4 (dashed line) after the initial period

of decay is caused by the self interaction of M2 as M4 is

the superharmonic of M2 in terms of wavenumber. This

is essentially a special case of the triad interaction de-

scribed in Phillips (1960). However, M4 is only a forced

mode by M2 without resonance because their frequen-

cies do not satisfy the resonance relation. The initial

decay ofM4 indicates the initial adjustment of themodel

to the random noise initialization.

The time series ofM1 andM3 are similar, but different

from those of M2 and M4. Here, M1 and M3 decay for

t , 4.5 with approximately the same negative growth

rate, which is consistent with the linear result shown in

Fig. 3. They, however, start to grow at t 5 4.5, when M2

reaches equilibrium. Linearly decaying modes become

nonlinearly unstable, and the linearly unstable mode

is eventually equilibrated by nonlinear interaction and

friction.

The growths of M1 and M3 are obviously caused by

their nonlinear interactions with M2. The nonlinear in-

teraction between M2 and M1 is what we expected as

their wavenumbers and frequencies satisfy the nonlinear

resonance relation (refer to Table 1). Here, M1 starts to

be resonant with the primary waveM2, afterM2 obtains

finite amplitude and equilibrates when the energy input

from the background mean jet balances the energy loss

to dissipation and radiation (quantified in the next sec-

tion). The growth of M3 is caused by the interaction

between M1 and M2 without resonance. During the

nonlinear growth, M1 and M3 have amplitudes that are

too small to feed back into the primary wave M2. The

nonlinear growth rates ofM1 andM3 stay constant, until

they reach nonnegligible amplitudes around t 5 38.

The fact thatM1 does not grow from the start but from

t 5 4.5 indicates an important parameter restriction re-

garding the resonant interaction in the weakly nonlinear

regime. For there to be a resonant interaction, the

growth rate of M2 and the decay rate of M1 must be

small. Mathematically, the growth rates of the unstable

modes have to be small to define fast and slow time

scales as done in Pedlosky (1970); intuitively, the growth

of each mode should be slower than its oscillation for

a wave triad to have enough time to interact and ex-

change energy before their amplitudes grow or decay

significantly. This condition is violated by the fast growth

of M2 during t , 4.5 (Table 1) resulting in a non-

resonance condition betweenM1 andM2. Instead, the

resonance starts after M2 stops growing at t 5 4.5. M1

starts to grow because the energy gain of M1 through

nonlinear energy transfer overcomes the energy loss by

the direct action of friction.

In the final equilibrium after t5 38, the whole system

reaches a new balance in which the main players areM2

and M1; M3 and M4 are several orders of magnitude

smaller than the two main modes because they are

passively forced modes. As the model is weakly forced,

the final state is still weakly nonlinear and the inter-

action between M1 and M2 is still clear. Otherwise, re-

sonance loses its meaning in a very nonlinear regime as

resonant interaction is no longer a privileged interaction

over others.

In summary, there is one primary wave, M2, growing

linearly during the initial adjustment period. A sec-

ondary instability occurs after the primary linear in-

stability reaches a nonlinear equilibrium and is driven

by the nonlinear resonance between the primary wave

M2 and the secondary wave M1. In the particular cir-

cumstance in this study, the secondary wave is the sub-

harmonic of the primary wave. The instability between

two harmonics is often referred to as subharmonic in-

stability, which is well studied in the context of internal

FIG. 6. The time evolution of the enstrophy (s22 in log scale) for

the first four modes, M1,2,3,4. The minipanel shows the normalized

M1,2 for t . 52.
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gravity waves (McComas and Bretherton 1977, e.g.), but

not for barotropic shear instability of meridional cur-

rents. Nonlinear self interaction of M2 and the triad

interaction that involvesM1 andM2 also produce growth

for other modes with larger wavenumbers, for example,

M3 andM4. Their amplitudes, however, are smaller than

M1 and M2.

The cause of the three stages observed in the time

series of perturbation streamfunction (Fig. 5a) is clear

in the time evolution of the enstrophy for individual

modes. During stage I, the primary wave M2 grows ex-

ponentially to gain finite amplitude. During stage II,M2

stops growing and starts to generate the secondary in-

stability resulting in the growth of M1. During stage III,

system reaches equilibrium with two energetic modes,

M1 and M2.

c. Energetics

The processes mentioned in the previous section can

be additionally illuminated by diagnosing the energy

budgets of the whole system and each normal mode.

Figure 7 shows the time series of the perturbation

kinetic energy integrated over the whole domain (thick

line) and over the eastern boundary domain (thin line).

During the first two stages, the radiatingM1 is negligible,

so that the energy is trapped close to the instability origin

around the eastern boundary current. During stage III,

the total perturbation energy increases, which is indi-

cated in the time series of the streamfunction at a fixed

station (Fig. 5a); the linearly stable but nonlinearly un-

stable long radiating mode M1 becomes energetic and

sheds a significant amount of energy from the unstable

region to the quiescent interior, which is dissipated at

the western boundary.

The energy flow can be scrutinized by explicitly

calculating the energy budget for each mode. For a

truncated model, we can write the vorticity and stream-

function as

c5 �
N

y
/2

n52N
y
/2

cn5 �
N

y
/2

n52N
y
/2

fn(x, t) exp(in‘y) and

q5 �
N

y
/2

n52N
y
/2

qn 5 �
N

y
/2

n52N
y
/2

zn(x, t) exp(in‘y) , (14)

where fn 5f2n* to make the variable c and q real (the

asterisk represents complex conjugate), the ‘ represents

the wavenumber of the longest model-resolved wave

defined as ‘5 2p/Ly, and zn5 (›xx2 n2‘2)fn. The linear

Jacobians in Eq. (4) become

J(c,=2c1by)1 J(c,=2c)

5 �
N

y
/2

n52N
y
/2

�
in‘

�
yzn 2

›2y

›x2
fn

�
1b

›fn

›x

�
ein‘y . (15)

The discretized Jacobian for perturbations becomes

J(c, q)5 �
m5N

y
/2

m52N
y
/2

�
j5N

y
/2

j52N
y
/2

�
ij‘

›fm

›x
zj2 im‘fm

›zj

›x

�
ei( j1m)‘y .

(16)

The terms with j1m5 n will act as new forcings to the

nth mode cn. As a result, Eq. (16) can be rewritten as

J(c, q)5 �
N

y
/2

n52N
y
/2

Jn exp(in‘y) and

Jn5 �
N

y
/2

m52N
y
/2

i‘

�
(n2m)

›fm

›x
zn2m 2mfm

›zn2m

›x

�
,

(17)

where Jn exp(in‘y) represents the new forcing on the nth

mode by nonlinear interaction. For example, for a trun-

cated model with only mode n 5 0, 61, 62, the non-

linear term for each mode becomes

J05 i‘
›

›x
(f1*z12f1z1*)1 i2‘

›

›x
(f2*z22f2z1*) , (18)

J1 5 i‘

�
›f0

›x
z12f1

›z0
›x

�
1 i‘

�
2
›f1*

›x
z21f1*

›z2
›x

2
›f2

›x
z1*2 2f2

›z1*

›x

�
, and (19)

J25 i2‘

�
›f0

›x
z2 2f2

›z0
›x

�
1 i‘

�
›f1

›x
z12f1

›z1
›x

�
. (20)

The terms in J0 represent the feedback of the pertur-

bations on the basic state. The terms in the first set of

FIG. 7. The perturbation kinetic energy integrated over the

whole domain (thick line) and 1000-km-wide eastern boundary

domain (thin line) both normalized by EKEtotal. The discrepancy

between these two lines implies the influence of the radiating

mode.
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parentheses in J1 and J2 represent the interaction of M1

and M2 with the basic state, respectively. The terms in

the second set of parentheses in J1 represent the in-

teraction between M1 andM2 acting as a new forcing to

M1. The terms in the second set of parentheses in J2
indicate that the self-interaction of M1 imposes a new

forcing to M2.

After substituting Eqs. (14), (15), and (17), Eq. (4)

becomes

�
N

y
/2

n52N
y
/2

Gne
in‘y , (21)

where Gn represents the governing equation for the nth

mode:

›zn
›t

1 Jn 1b
›fn

›x
5 in‘

�
fn

›2y

›x2
2 yzn

�

1AH

 
›2zn
›x2

2n2‘2zn

!
, (22)

where AH is assumed to be a constant. This assumption

simplifies but does not change the perturbation energy

equation shown next because AH mainly act on pertur-

bations with large amplitude and small scales over the

boundary current region where AH is approximately

constant.

The energy equation for the nth mode is (f2nGn 1
fnG2n)/2. After some algebra (see appendix for details),

the energy equation for the nth mode is

05

ð
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"
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2
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where h�i5Ly

Ð
t

Ð 0
2Li

dx dt, kf2k 5 ff*. [A]x52Li
rep-

resents the value of A in the interior, and J(A) repre-

sents the imaginary part of any complex number A.

Here, Li 5 20Lb is used but its specific value does not

matter much as long as Li is large enough to include the

boundary region. We use ‘‘flux,’’ ‘‘rey,’’ ‘‘fric,’’ and ‘‘non’’

to represent energy contributions resulting from fluxes,

Reynolds stress, friction, and nonlinear transfer, respec-

tively. The nonlinear interactions can lead to a rapid

energy redistribution among different modes.

The kinetic energy budgets integrated over the east-

ern boundary current region for the total field and M1

and M2 at different stages are listed in Table 2. We re-

scale all terms with respect to the total energy input by

Reynolds stress at each stage, resulting in the rey term

being 1 at both stages. The energy radiation only re-

distributes energy, but does not contribute to the ulti-

mate energy removal. Friction is the only energy sink in

a domain-averaged energy budget.

At stage II, the only dominate modeM2 is responsible

for 99.7% of the total energy input and for about the

same amount of energy that is dissipated. Here, M1 has

negligible contribution either in energy input or loss

because of its small amplitude. The nonlinear energy

transfer between these two modes is infinitesimal.

At stage III, both M1 and M2 play important roles in

the energy balance. About 30% of the total energy input

is done by M1 and 70% is done by M2. Overall, friction

accounts for 77.5% of the energy removal for the

boundary region. Most (73.5%) of this 77.5% is due to

M2. The remaining energy removal (out of the boundary

region) is done by radiation, mainly because of the di-

vergent term related to the beta effect (›/›x)(b/2)kck2
(not shown). The energy radiation is done by M1.

The energy budget for each mode is far from being

closed without considering the nonlinear energy transfer

between the two modes. More energy is needed for M1

to be steady. However, the nonlinear energy transfer has

TABLE 2. The kinetic energy budgets integrated over the eastern

boundary current region (21000 km , x , 0) at different stages.

All values are normalized by the total energy input by Reynolds

stress at their own stage. The longwave mode is weak at the first

stage, but it becomes significant at the second stage. It conse-

quently alters the route of energy transfer.

Budget

terms

Stage II Stage III

Total n 5 1 n 5 2 Total n 5 1 n 5 2

Rey 1 0.0002 0.997 1 0.3 0.7

Fric 21.0083 20.0001 20.98 20.7750 20.14 20.57

Flux 20.0016 20.0001 20.004 20.2597 20.25 20.007

Non — 1026 21026 — 0.1307 20.1316
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no net contribution to the total energy budget because

the energy gain in M1 corresponds to an equal energy

loss inM2. The total energy budget is closed within 3.5%

of the total energy gain.

The quantity M1 has a positive contribution to the

energy input during stage III. In the linear inviscid cal-

culation, the growth rate of M1 is positive: vi 5 0.045

corresponding to l 5 2p/(Ly/Lb) 5 0.45 (Fig. 1), which

means that M1 can draw energy from the basic state.

In the linear viscous calculation, the growth rate of M1

becomes negative (Table 1) because the energy loss by

friction surpasses the energy gain through Reynolds

stress, which is still positive. In the nonlinear simulation,

however, the energy gain of M1 through both nonlinear

energy transfer andReynolds stress surpasses the energy

drain by friction to yield a positive growth rate. OnceM1

reaches a finite amplitude, the energy gain of M1 by the

Reynolds stress becomes nonnegligible.

In addition, the characteristics ofM1 can be altered by

its nonlinear interaction with M2. We test this by an

extended experiment, in which the model is truncated to

have only the basic state andM1, starts from the state at

t 5 59.4 with the same parameters and stops at t 5 63.

Figure 8 shows the energy of M1 (Fig. 8a) and the

streamfunction of M1 at t 5 59.4 (Fig. 8b) and t 5 63

(Fig. 8c). Since there is no energy support from M2, M1

decays (Fig. 8a), which is qualitatively consistent with

the prediction by the linear theory (Fig. 3). The struc-

tures of M1 before (Fig. 8b) and after (Fig. 8c) the trun-

cation are different in terms of both zonal tilt and the

detailed structures over the boundary current region.

Because of the nonlinear interaction with M2, M1 can

alter its structure so that the energy transfer from the

mean switches from negative, which is predicted by the

linear viscous theory, to positive. This phenomenon is

clear in the energy budget in Table 2, where the rey (the

energy transfer from themean by theReynolds stress) of

M1 is positive and accounts for 30% of the total energy

input.

This experiment shows that, in a strict sense, Fourier

modes in the weakly nonlinear simulations are slightly

different from their linear equivalence. The unstable

mode can alter the long, stable mode. The longwave

mode at finite amplitude is not sustainable without the

support of the shortwave mode through nonlinear wave-

wave interaction.

Another nonlinear effect is that the finite amplitude

perturbations feed back into the mean [the term J0 in

Eq. (18)] to change the structure of the basic boundary

current. The modified boundary current will certainly

change the stability properties and yield different ei-

genmodes. The new eigenmodes do not satisfy the re-

quirement for triad-resonance, so that the two harmonics

decouple, leading to a weaker eddy field. The boundary

current will then relax to its unaffected state, generating

again the triad resonance to start a new cycle. This

mechanism can be detected from the minipanel in Fig. 6

where the energy in different modes oscillates during

stage III. The oscillations ofM1 andM2 are almost out of

phase, which can be a sign of changing state of resonance

between the two modes. Given less resonance between

the two modes, M1 decays and M2 grows for the less

nonlinear energy transfer fromM2 toM1. Similarly,M1

grows andM2 decays during more resonance state. This

oscillation can be dynamically similar to the finite-

amplitude oscillations shown in Pedlosky (1970), how-

ever, the detailed study of the oscillation mechanism is

beyond the scoop of this paper.

We summarize the route of the energy transfer at

stage III by the diagram shown in Fig. 9 as follows. The

mean boundary jet is supported by an external forcing. It

becomes unstable and transfers energy into the eddy

field.Here, 70%of this energy goes to themost unstable,

trapped mode M2, and 30% goes to the long radiating

mode M1. Of the energy that goes into M2, 57% is dis-

sipated locally, and 13% is injected into M1 through

nonlinear energy transfer. The quantity M1 drains 39%

FIG. 8. (a) The time series of the total perturbation kinetic en-

ergy (m2 s22) is shown. The model is truncated to only have the

basic state and M1. The nonlinear energy transfer from M2 to M1

is cutoff by the truncation, M1 decays in time. This eliminates

the possibility of the nonlinear energy transfer from M2 to M1.

The streamfunction (m2 s21) of M1 at (b) t 5 59.5 and (c) t 5 63.

Here, M1 is reconstructed from the total field using Fast Fourier

Transform.
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of total energy, of which dissipation accounts for 14%

and radiation for 25%. Overall, 57% of the total energy

loss is due to the trapped mode and 43% is due to the

radiating mode. Although the exact energy partition

shown here should not be regarded as an accurate

guideline for the eastern boundary currents in the real

ocean, this simulation clearly demonstrates that the lin-

early decaying radiating mode and the most unstable

trapped mode become almost equally important in the

energy budget for an eastern boundary region.

d. Case 2, nonresonant triad

We keep the same model setup used in the previous

section, but we increase b from 1.8 3 10211 to 2 3
10211 (m s)21. The change of b alters the frequency of

the radiatingmodeM1, so that the frequency requirement

for nonlinear resonance, v2 5 2v1, is not satisfied.

Figure 10 shows the time series of the perturbation

streamfunction at a random location in the boundary

current (Fig. 10a), a snapshot of the perturbation field in

the equilibrium state (Fig. 10b), and the time evolutions

of enstrophy for the first four modes (Fig. 10c). The

evolution of enstrophy shows that the unstable modeM2

quickly stands out from the initial random noise and

dominates the system after that. Here,M1 andM3 decay

until their values reach machine precision, and M4 is

sustained by the nonlinear self-interaction of M2 but

with a negligible amplitude.

The frequencies for the first four modes are listed in

Table 3, showing a substantial mismatch between v2 and

2v1. As a result, the resonance criterion is not satisfied,

and no significant nonlinear interaction happens between

these two modes.

The energy budget for this case is similar to the stage

II in the previous case, so is not repeated here.

5. Conclusions and discussion

The energy radiation from swift oceanic currents can

potentially contribute to the energy in the ocean interior.

The orientation of the currents plays an important role

in the radiating capability of the instabilities generated

by unstable currents. Motivated by previous studies, we

investigated the nonlinear radiating instability of a baro-

tropic eastern boundary current.

It is found that the linearly decaying and radiating

modes can resonate with an unstable trapped mode to

become nonlinearly unstable. These long radiating waves

play an important role in the energy budget of an eastern

boundary current, as well as in exporting energy into the

ocean interior. In our experiment, 25% of total energy

gained by instabilities is radiated into the ocean interior.

In our specific model setup, the nonlinear process is

related to subharmonic instability, which is caused by

the nonlinear resonance between two harmonics. We

identify this process by reducing model spectral resolu-

tion to single out one unstable mode, then by varying

the nondimensional beta to look for wave triad that is

FIG. 9. The schematic diagram showing the route of energy transfer

at stage III.

FIG. 10. (a) The time series of the streamfunction (m2 s21) at

a random location inside the boundary current, (b) a snapshot

of the perturbation streamfunction with a contour interval of

200m2 s21 at t 5 40, and (c) the time evolution of the enstrophy

(s22 in log scale) of the first four modes.

TABLE 3. Frequencies and wavelenths for the first four modes

(case 2). No resonant wave triad exists.

Mode index l (km) vr (cpy)

1 700 2.16

2 350 22.88

3 233 26.48

4 175 210.08
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resonant. A nonresonant case is also presented as a

comparison.

It is noteworthy that the longwave mode is a linearly

unstable in an inviscid environment but is suppressed by

friction in a viscous environment. It vanishes without

nonlinear energy transfer in a viscous setup, as the total

energy sink through the radiation and frictional dissi-

pation is greater than its energy gain from the basic state.

Its structure is also modified when it nonlinearly in-

teracts with the unstable shortwave mode.

One application of this study is to explain the ob-

served quasi-zonal striations in the ocean interior dis-

covered from satellite altimeter data (Maximenko et al.

2005), some of which extend westward from the eastern

boundary. Wang et al. (2012) demonstrated that the

nonlinear radiating instabilities of an eastern boundary

current can produce zonal striations in the ocean interior

with a magnitude that is comparable to the observed

values. The interior velocity produced by the radiating

instability is about 5 cm s21, which is comparable to

6.9 cm s21 found in Maximenko et al. (2005) for mid-

latitudes (208–408). The main point is that even a very

idealized eastern boundary current can produce nearly

zonal interior flows roughly consistent with observations.

Several phenomena not considered here might also

be important for eastern boundary current stability and

energy radiation. Baroclinicity can become important

and increases the nonlinearity of the system by adding

an additional energy source. It is unclear what the char-

acteristics of the radiating baroclinic instabilities are,

and whether they obey similar mechanisms so one could

extend previous studies of the baroclinic instability of

a meridional boundary current by considering a contin-

uous velocity profile with a vertical shear, and also by

nonlinear simulations. Furthermore, it is unknown what

are the characteristics of the radiating instabilities of

a highly nonlinear eastern boundary current with iso-

lated eddies or turbulence embedded.

Eddies and turbulence over the eastern boundary

current region may be associated with transient wind

forcings. The radiated energy could also come from the

inverse cascade of turbulence. If the inverse cascade is

a very important process for the energy budget of an

eastern boundary current, the beta effect can also become

important by radiating the energy of the larger-scale

perturbations away from the coastal region. Although

it does not destroy energy, the radiation process can drain

energy out of a local system. If the energy sink by the

radiating instabilities is large, models on an f-plane

approximation become inappropriate for studies of

coastal dynamics.

The baroclinicity in the ocean interior is also impor-

tant in modifying the radiating instabilities. The Rossby

wave propagation is often constrained by geostrophic

contours. In this barotropic study without interior gyres,

the geostrophic contours are simply by. No significantly

curved wave rays are evident. However, baroclinic in-

terior gyres associated with sloped isopycnals can modify

the PV contours. The instabilities radiated from an

eastern boundary current are expected to show different

behaviors when they propagate westward depending on

their wave characteristics, such as the baroclinic struc-

tures. The geostrophic contours in the ocean interior can

also be altered by bottom topography, which then in-

fluences the wave rays of the radiating instabilities emit-

ted from an eastern boundary current. Furthermore, a

sloping bottom topography within the boundary region

can also be important in modifying the vertical structure

of the boundary current in a baroclinic environment

(Spall 2010) and by localizing instabilities.
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APPENDIX

The Energy Budget for the nth Mode

The vorticity equation of the nth mode Gn, that is,

Eq. (22), is

›

›t

 
›2fn

›2x
2 n2‘2fn

!
1 Jn 1b

›fn
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5 in‘

"
fn

›2y
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2 y
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2 n2‘2fn
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1AH

 
›4fn
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2 2n2‘2
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›x2
1 n4‘4fn

!
. (A1)

The energy equation can be derived by multiplying fn*

on both sides of Gn. Note that the energy equation in

real space is 0:5(fn*Gn 1fnGn*), which is equivalent to

0:5(f2nGn 1fnG2n) where f2n is fn* and G2n 5Gn*. It

is also the real part of f*Gn denoted as <(f*Gn).

Some terms of fn*Gn are reorganized as (after drop-

ping the subscript n in fn, and using the subscripts to

denote partial derivatives):
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f*(fxx2 n2‘2f)t 5f*(fxxt 2 n2‘2ft)52(fx*fxt 1 n2‘2f*ft)1 (f*fxt)x,

f*in‘(fyxx2 yfxx 1 n2‘2yf)5 in‘f*fyxx 2 in‘(yf*fx)x1 in‘yxf*fx1 in‘ y(fx*fx1 n2‘2f*f), and

f*AH(fxxxx 2 2n2‘2fxx 1 n4‘4f)5AH(f*fxxx2fx*fxx 2 2n2‘2f*fx)x, 1AH(fxx* fxx1 2n2‘2fxfx*1 n4‘4f*f) .

The energy equation for the nth mode in real space

0:5(f2nGn 1fnG2n) can be written as:

Et 5<
�
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2
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2fx
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whereE5 1/2(kfxk2 1 n2‘2kfk2), kf2k5ff*, andJ(A)

represents the imaginary part of a complex number A.

Taking the time and domain integration over the

eastern boundary current region
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for a meridionally periodic domain, the energy equation

then becomes
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flux

2hJ(n‘yxf*fx)i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rey

2AHhkfxxk21 2n2‘2kfxk21 n4‘4kfk2i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fric

1 h<(f*Jn)i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
non

, (A2)

where the boundary conditions: f 5 0 and fx 5 0 at

the side boundary x5 0, and y5 0 in the interior (Li5
20Lb in this case) are used. We use ‘‘flux’’ to denote

the contribution of fluxes by pressure, radiation, and

friction, ‘‘rey’’ the effect of Reynolds stress, ‘‘fric’’

the energy dissipation by friction, and ‘‘non’’ the non-

linear energy transfer. After substituting the sub-

script n for f, the energy budget equation becomes

Eq. (23).

The energy equation can be further simplified by

dropping the frictional fluxes, which are negligible in the

interior comparing with the beta effect because of the

high-order horizontal derivatives. The parameter mea-

suring the importance of friction is

E5O
 
AH /L3

b

!
,

which isO(1024) given b5 1.83 10211 (m s)21,AH5 100

(m2 s21), and the typical meridional scale of the per-

turbation field L 5 700km in the interior. Here, E be-

comes even smaller if the interior perturbation zonal scale

L’ 2000km is used. As a result, the frictional fluxes in the

interior are negligible, the energy equation then becomes

05

ð
t
2<
�
f*fxt 1

b

2
kfk2

�
x52L

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
flux

2hJ(n‘yxf*fx)i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rey

2AHhkfxxk2 1 2n2‘2kfxk21 n4‘4kfk2i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fric

1 h<(f*Jn)i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
non

. (A3)

The energy budget discussed in the text is calculated

based on Eq. (A2), but the one based on Eq. (A3) is

approximately the same.
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