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Wind-driven flow over topography

by Michael A. Spall1,2

ABSTRACT
The space and time scales over which wind forcing can directly drive flows over regions of closed

topographic contours are explored using an idealized numerical model and theory. It is shown that
stratification limits the vertical scale of the mean flow but also results in an enhanced recirculation
strength in shallow water by distorting the isopycnals in the bottom boundary layer. Time-dependent
forcing can drive flows that extend deeper than the mean flow because the initial response is primarily
barotropic. This response is limited at low frequencies by baroclinic Rossby wave propagation. It is
expected that these wind-driven flows might be important in the vicinity of islands and over large-scale
topographic features.
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1. Introduction

The foundational theory for the wind-driven flow by Sverdrup (1947) did not consider
topography. Welander (1968) extended the Sverdrup theory to include topography and found
that regions of closed f/h (linear, barotropic potential vorticity) contours subject to weak
forcing and weak dissipation could support strong horizontal recirculations, particularly
for unstratified cases. This is essentially a result of conservation of potential vorticity, thus
rendering closed potential vorticity contours as free advective pathways. Similar strong
recirculations within regions of homogeneous potential vorticity arise in the theory of Young
and Rhines (1982), where in this case the closed contours are a result of wind-driven
deformation of the density interfaces rather than from deviations in bottom topography. de
Szoeke (1985) used some ideas from Young and Rhines (1982) to modify the Sverdrup
relation to include large-scale topography and stratification, also finding that regions of
closed contours of f/h could support strong recirculations. For linear stratified flows,
these recirculations are only found if the flow penetrates deep enough to directly feel the
bottom topography. Dewar (1998) developed a theory for the eddy-driven circulation over
deep topography that can result even if the directly wind-driven flow is trapped in the main
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thermocline. The previously discussed theories address the mean circulation forced by wind
stress curl in either unstratified models or in models with very few vertical layers.

One may also think of these recirculations as being required to close the mass balance.
If there is a net wind-driven Ekman transport into a closed contour, this mass must exit
somewhere below the surface Ekman layer. For linear flows, in which Reynolds stresses
can be neglected in the interior, the most likely means to export this mass is in a bottom
Ekman layer. The recirculation along f/h contours is required to drive this bottom boundary
layer. This balance was used by Kamenkovich (1962) to develop a model of the Antarctic
Circumpolar Current, where it was demonstrated that the current transport was inversely
proportional to the bottom friction coefficient. A similar constraint was applied to the regions
of closed f/h contours in the Arctic Ocean and Nordic Seas (Nøst and Isachsen 2003).
Time-dependent, equivalent barotropic versions of this theory were applied to the Nordic
Seas (Isachsen et al 2003) and the Caspian Sea (Ghaffari, Isachsen, and LaCasce 2013) and
gave favorable comparisons with the observed ocean currents.

The present study revisits these ideas of wind-driven flows over closed f/h contours.
Although the results are broadly relevant to stratified, time-dependent flows, the primary
motivation is the strong wind stress curl that is often found in the vicinity of islands.
This curl arises as the atmospheric winds navigate around the orography of the island.
Some region of closed f/h contours will be found near the island, and, as the topography
gets shallow, it is expected that even strong stratification will not be able to shield the
flow from the bottom. The net Ekman pumping within any closed topographic contour
will also, in general, be nonzero and time dependent, so it is also expected that strong
recirculations will result. These results are also relevant for submerged banks, such as
Georges Bank, Browns Bank, the Zapiola Rise, and the Kerguelen Plateau, that may be
subject to mean or time-dependent wind stress curl. The primary goal of this study is to
identify the space and time scales for which such wind stress can force ocean circulations.
The basic ideas are developed and tested with a configuration utilizing very idealized forcing
and topography.

2. Mean transport

The theoretical development makes use of simple forms of forcing, topography, and
stratification in order to allow for closed form solutions and to most clearly expose the
dominant scaling that controls the magnitude and spatial and temporal variability of the
currents. The wind stress used throughout most of the article is uniform in space, although
it can vary in time. Because the problems are configured on a beta plane, this uniform wind
stress provides a nearly uniform Ekman pumping velocity, which gives rise to the basic
constraint of closing the mass balance within regions of closed f/h contours. Such large-
scale forcing may also be relevant for deep, large-scale topographic rises found in the open
ocean, such as the Zapiola Rise in the South Atlantic. However, the main results found here
relate to the dominant depth and time scales, which will remain relevant for all situations
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in which there is a net Ekman pumping into regions of closed f/h contours, whether it be
driven by variations in the Coriolis parameter or variations in the wind stress.

Consider a uniformly stratified fluid subject to a spatially uniform wind toward the west.
There will be a poleward Ekman transport given by

VE = − τ

ρ0f
, (1)

where τ < 0 is the surface wind stress, f = f0 + βy is the Coriolis parameter, y = 0 at the
central latitude of the bottom topography, and ρ0 is a reference density. Because the Coriolis
parameter increases with increasing latitude, the northward Ekman transport decreases, and
there is a downwelling of strength:

w = τβ

ρ0f
2
0 (1 + βy/f0)2

≈ τβ

ρ0f
2
0

. (2)

Using the previous approximation, which is good for βy/f0 � 1, the net downwelling
within any radius r is then

W =
∫ 2π

0

τβr

ρ0f
2
0

dθ = πr2τβ

ρ0f
2
0

. (3)

The starting point is the linear, barotropic shallow-water equations on a beta plane,
although some baroclinic effects will be considered subsequently.

∂ �u
∂t

+ �k × �uf0(1 + βy/f0) + Cd �u/H = −∇p/ρ0 + �τ
ρ0H

(4)

The hydrostatic pressure is given by p, and Cd is a linear bottom drag coefficient. An
estimate for the strength of the recirculation along the topographic contours can be derived
using a circulation integral of the momentum equations around a closed contour C. A
detailed derivation can be found, for example, in Nøst and Isachsen (2003).

∂

∂t

∫
C

�u · dl +
∫

C

Cd �u/H · dl =
∫

C

�τ(t)
ρ0H

· dl (5)

The along-contour direction is l. The integral of the Coriolis term around contour C has
been neglected. This is a good approximation if the geostrophic flow is dominated by a
recirculation along contour C. So, in the steady state, the downward mass flux forced by
the meridional Ekman transport (right-hand-side term) is balanced through an export of
mass in the bottom boundary layer (second term on the left-hand side). Similar constraints
have been used by Young and Rhines (1982), Dewar (1998), Nøst and Isachsen (2003), and
Isachsen et al (2003).

The average along-topography velocity U is defined as

U = 1

2πr

∫
C

�u · dl. (6)
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If the closed contour C is chosen to follow an f/H contour, then, on that contour, H =
H0(1+βy/f0). Making use of the approximation 1/H ≈ (1−βy/f0)/H0 on the right-hand
side of equation (5), which is valid for βy/f0 � 1, the solution for U subject to steady wind
forcing of τ = τ0 is

Ub = τ0βr

2ρ0f0Cd

, (7)

where the subscript b indicates that this is the bottom velocity. It has also been assumed that
the radius of contour C is constant. This is a good assumption when the potential vorticity
gradient provided by the topography greatly exceeds the planetary vorticity gradient such
that their ratio, γ = αf0/βH , where α is the bottom slope, is much greater than 1. For
typical parameters, α = 10−3, f0 = 10−4 s−1, β = 2 × 10−11 m−1 s−1, H = 200 m,
and γ = 25. This simplification results in the potential vorticity contours being coincident
with topographic contours and, to leading order, a mean geostrophic flow that is along
topographic contours. This solution could also be derived by balancing the export of mass
in the bottom Ekman layer, which is 2πrCdUb/f0 with the downward Ekman pumping
from the wind stress given by equation (3). The velocity is linearly proportional to the wind
stress, is inversly proportional to the bottom drag, and increases linearly with radius.

For simplicity, a conical topography is used that extends from the surface at y = 0 and
slopes uniformly to a depth of H at radius r with slope α = H/r . The depth-integrated
barotropic transport streamfunction (subscript BT ) can then be calculated as

ΨBT =
∫ r

0
UbH dr = τ0αβr3

6ρ0f0Cd

= f0H

6πCd

W. (8)

The strength of the recirculation is given by the Ekman pumping transport within the region
of closed f/H contours, W , with a scale factor proportional to the ratio of the damping
timescale H/Cd to the inertial timescale f −1

0 .

a. Numerical example

The magnitude, horizontal and vertical extent, and vertical structure of the velocity field
forced by net downward Ekman pumping are the primary quantities of interest. The previ-
ous derivation required the assumption that the flow is linear and that stratification is not
important. The transport predicted by equation (8) will be compared with that produced
by the Massachusetts Institute of Technology general circulation model (Marshall et al
1997) for both stratified and unstratified configurations on a beta plane, thus allowing for
evaluation of these assumptions. The model solves the hydrostatic, primitive equations of
motion on a staggered Cartesian C-grid with a partial cell treatment of the bottom topogra-
phy. Most model calculations are configured in a closed domain of 2,000 km zonal extent
and 2,000 km meridional extent. The bottom topography is a cone with slope α = 10−3

and maximum depth of 500 m at a radius of 500 km. The model is configured on a beta
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plane with f0 = 10−4 s−1 and β = 2 × 10−11m−1 s−1. The linear bottom drag coefficient
Cd = 2 × 10−4 m s−1. The horizontal grid spacing is 5 km for most of the calculations
and uses 30 levels in the vertical, 10 m thick over the upper 100 m, and 20 m thick over
the deepest 400 m. The time-dependent calculations were carried out at 10 km resolution;
comparison between a few calculations at 5 km and 10 km grid spacing confirms that the
lower resolution is sufficient to capture the basic response.

The Gent McWilliams (GM) (Gent and McWilliams 1990) parameterization for tracer
transport is included with a diffusion coefficient of 10 m2 s−1. Although the model resolves
the first baroclinic deformation radius very well, it will be shown subsequently that the
downslope flow leads to a steepening of the isopycnals in the bottom boundary layer, which
is O(20) m thick. This would likely give rise to very small-scale baroclinic instabilities that
would oppose this steepening. The model grid of 5 km is not sufficient to represent these
instabilities, and so they are parameterized here. The GM parameterization has not been
tested for bottom boundary layers over a sloping bottom, and it is likely that it is missing
important aspects, such as the influence of bottom slope on instability. Thus, the use of
GM, both in the numerical model and the accompanying theory, should be viewed only as
a qualitative demonstration of the influence of the bottom boundary layer on the large-scale
circulation.

The model is initialized at rest with either no stratification or a uniform stratification of
N2 = 2.5 × 10−5 s−2 (internal deformation radius NH/f0 = 25 km) and an initial surface
temperature of 10◦C. The stratification is restored toward this uniform initial stratification
within 100 km of the model outer boundary in order to suppress influences of the lateral
boundaries in the model. Most calculations with steady forcing have been carried out for
10 years simulation, although a few required integrations out to 20 years to arrive at steady
state. The model is forced with a uniform zonal wind stress of τ0 = −0.1 N m−2. The wind
stress, stratification, β, f0, GM diffusion coefficient, bottom slope, and forcing frequency
will all be varied from the central values used here (see Table 1).

The mean transport streamfunction for the final year of integration for the central case
with stratification is shown in Figure 1 (run 1 in Table 1). The flow is dominated by an
anticyclonic recirculation around the topography. The maximum transport is 1.02 Sv, with
typical horizontal velocities of several centimeters per second. Because of the southward
Sverdrup flow in the basin interior, the recirculation is shifted slightly toward the east
relative to the topography. There are also boundary layers along the northern, southern, and
western boundaries of the domain, away from the topography, that will not be considered
here. The damping regions within 100 km of the boundaries introduce density gradients that
are baroclinically unstable, as indicated by the eddies along the western boundary region.
Topographic contours are indicated by the white lines, and the red contour is the radial
extent expected for the recirculation based on the scaling given subsequently. The strength,
extent, and time dependence of this anticyclonic recirculation is the focus of this study.

The azimuthally averaged horizontal velocities and temperature are shown in Figure 2.
The radial velocity is dominated by flow toward shallow water in the surface layer and flow
toward the deep water near the bottom, at least out to a radius of approximately 250 km. At
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Table 1. Parameters for the steady model calculations and symbols used in Figure 5.

τ0 f0 β N2 κ

Run (N m−2) (10−4 s−1) (10−11 m−1 s−1) (10−5 s−2) (m2 s−1) α Symbol

1 −0.1 1 2 2.5 10 0.001 Asterisk
2 −0.1 1 1 2.5 10 0.001 Circle
3 −0.1 1 3 2.5 10 0.001 Circle
4 −0.1 1 2 0 10 0.001 Circle
5 −0.1 1 1 0 10 0.001 Circle
6 −0.1 1 0.5 0 10 0.001 Circle
7 −0.1 1 2 1 10 0.001 Triangle
8 −0.1 1 2 0.5 10 0.001 Triangle
9 −0.1 1 2 4 10 0.001 Triangle
10 −0.05 1 2 2.5 10 0.001 Diamond
11 −0.15 1 2 2.5 10 0.001 Diamond
12 −0.1 0.75 2 2.5 10 0.001 Cross
13 −0.1 1.25 2 2.5 10 0.001 Cross
14 −0.1 1 2 2.5 5 0.001 Square
15 −0.1 1 2 2.5 20 0.001 Square
16 −0.1 1 2 2.5 40 0.001 Square
17 −0.1 1 2 2.5 10 0.0025 Star
18 −0.1 1 2 2.5 10 0.005 Star
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Figure 1. Mean depth-integrated transport streamfunction over the final year of integration. White
lines mark the topographic contours; the red line is the scaling estimate of the maximum radius of
recirculation Rm given by equation (10).
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Figure 2. Azimuthally averaged (a) radial velocity (m s−1), (b) azimuthal velocity (m s−1), (c)
temperature (◦C), and (d) azimuthal velocity (m s−1) for an unstratified calculation. The bold line
is the zero contour for velocity.

larger radii, there is a weak flow toward the shallow water near the bottom. There is a net
surface flow toward shallow water because the Ekman transport toward the shoal is larger
south of the island than is the Ekman transport away from the shoal north of the island
as a result of the f −1 dependence of the Ekman transport. This is what gives rise to the
net Ekman pumping in the domain. Over shallow topography, the flow toward the shallow
water in the upper boundary layer is balanced by a flow toward deep water in the bottom
boundary layer. This balance no longer holds over deep water. The parameters that control
this transition will be discussed in detail subsequently. The azimuthal velocity is negative
(anticyclonic) with a maximum value of approximately 3 cm s−1 at a radius of 200 km.
The stratification is essentially the same as in the initial state over the deep topography,
but the isotherms bend downward in shallow water as the sloping bottom is approached.
This is a result of the downward flow in the bottom boundary layer advecting the buoyant
water downslope. The GM parameterization opposes this isopycnal steepening and results
in the equilibrated slopes shown here. It is this horizontal gradient of density in the bottom
boundary layer that gives rise to the vertical shear in the azimuthal velocity.
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Figure 3. Mean transport as a function of radius for the following: blue dashed line, barotropic theory
(equation 8); blue solid line, barotropic model; black dashed line, baroclinic theory (equation 13)
for r < Rm, and red dashed line for r > Rm; and black solid line, baroclinic model.

An otherwise identical calculation was carried out with no stratification. The resulting
azimuthal velocity is shown in Figure 2(d). There are several differences compared with
the stratified case. The velocity remains anticyclonic and increases in strength out to near
the edge of the sloping topography. The velocity is also independent of depth. Finally, the
velocity increases more slowly with increasing radius than for the case with stratification.

The average transport streamfunction as a function of radius is shown in Figure 3 for
both of these calculations. The transport for the unstratified case (solid blue line) compares
well with the theory (equation 8) (dashed blue line). However, the model transport for the
stratified case increases more rapidly than for the unstratified case at small radii and then
increases only very slowly beyond approximately 250 km radius (solid black line), consistent
with the velocity in Figure 2(b). The barotropic theory will now be reconsidered to explain
these two major differences, the radial extent of the recirculation and the magnitude of the
transport in shallow water.

b. Influences of stratification

It is well known that stratification acts to limit the vertical penetration of vertical velocity
in the ocean. Young and Rhines (1982) estimated the depth of penetration of a wind-
driven flow assuming that the flow follows a linear vorticity balance (βv = f0wz) and that
the change in planetary vorticity with changing latitude is balanced by stretching [βy =
(f0/N)2ψzz]. Combining these two constraints, they derived the vertical scale D of the
wind-driven flow to be
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D = f0w
1/3

(βN)2/3
. (9)

Utilizing equation (2) for w, the vertical extent of the flow driven by Ekman pumping is

D =
[

τ0f0

ρ0βN2

]1/3

= αRm, (10)

where Rm is the maximum radius at which the flow feels the bottom topography. It is
interesting to note that the depth (and radius) of the wind forcing depends on the strength of
the wind, it is not an inherent scale of the ocean. For the present calculation, Rm = 269 km,
in general agreement with the extent of the transport in the baroclinic model in Figure 3 (see
also the red line in Fig. 1). This explains why the transport in the stratified case does not
increase much beyond this radius despite the fact that the topographic contours are closed.

The other major discrepency between the stratified case and the theory is that there is a
vertical shear in the velocity resulting from the bottom boundary layer. This is the reason
why the transport in the baroclinic case increases more rapidly than that predicted by the
barotropic theory. This effect can be incorporated into the theory by assuming that the
downslope advection of density by the Ekman transport is balanced by an upslope transport
driven by the GM parameterization of eddy fluxes. This can be written as

CdUb = κf0s = κf 2
0 Uz

N2
, (11)

where Ub is the azimuthal velocity at the bottom, κ is the GM diffusion coefficient, and
the subscript z indicates partial differentiation. The final expression on the right-hand side
assumes that the vertical shear of the azimuthal velocity is in geostrophic balance with the
isopycnal slope s. It is assumed that the azimuthal velocity throughout the water column
is the sum of the velocity at the bottom, Ub, and the change in velocity over the bottom
boundary layer depth, Uzδ. Solving for Uz from equation (11), the azimuthal velocity is

U = Ub

(
1 + CdN

2δ

κf 2
0

)
= τ0βr

2ρ0f0Cd

(
1 + CdN

2δ

κf 2
0

)
, (12)

where it has been assumed for simplicity that H � δ.
The transport streamfunction for the stratified case (subscript BC), including the effects

of the bottom boundary layer, is then

ΨBC =
∫ r

0
UH dr = τ0αβr3

6ρ0f0Cd

(
1 + CdN

2δ

κf 2
0

)
. (13)

This prediction is shown on Figure 3 by the dashed black line. This compares very well with
the model result out to the radius Rm. Beyond that radius, the theory predicts that the Ekman
pumping no longer penetrates to the bottom so that the Sverdrup transport simply flows to
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Figure 4. Mean transport as a function of radius for variations in (a) stratification (runs 1, 4, 7), (b)
β (barotropic, runs 4, 5, 6), (c) β (baroclinic, runs 1, 2, 3), and (d) Coriolis parameter (runs 1, 12,
13). Solid lines are the model (plotted to 0.8Ψmax), dashed lines are the theory (equation 8 or 13),
plotted to Rm. Blue, red, black indicate increasing value of the relevant parameter.

the south over the topography. As a result, there is no further increase in the recirculation
around the topography, in general agreement with the numerical results.

The maximum transport can be calculated for r = Rm to be

Ψm = 1

6α2Cd

(
τ0

ρ0N

)2
(

1 + CdN
2δ

κf 2
0

)
. (14)

c. Parameter sensitivities

The inclusion of the bottom boundary layer and consideration of the influence of strat-
ification on the vertical scale over which Ekman pumping is felt provides for a simple
theoretical prediction of the transport as a function of radius for stratified flows. A series
of model calculations with steady forcing have been carried out to test equations (10) and
(13), as summarized in Table 1. The azimuthally averaged streamfunction as a function
of radius is shown in Figure 4(a) for three values of N2. The solid lines are diagnosed
from the numerical model, and the dashed lines are from equation (13). For clarity, the
model curves for those cases with stratification are plotted only out to the radius at which
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Ψ = 0.8Ψmax, where Ψmax is the maximum transport. The theory is plotted only out to
Rm. The model and theory agree well, both in terms of the magnitude of the transport and
the radius at which the transport ceases to increase, confirming the scaling (equation 10)
and the balance (equation 5). It is interesting to note that although the transport over shal-
low water decreases with decreasing stratification, because the wind-driven flow penetrates
deeper into the water column at low stratification the maximum strength of the recirculation
increases with decreasing stratification, as predicted from equation (14).

Variations in β, for cases with no stratification, show a systematic decrease in the transport
with decreasing β (Fig. 4b). This is as expected because the forcing (Ekman pumping) is
linearly related to β (equation 2). In all cases, the transport increases all the way to the edge
of the topography. Transport sensitivity to changes in β for N2 = 2.5 × 10−5 s−2 shows a
similar ordering such that the rate of increase in transport decreases with decreasing β, but
the radius over which the bottom topography is felt increases (Fig. 4c). The rate of decrease
goes as β1/3, whereas the rate of increase because of deeper penetration goes as β−1/3 so that
the total transport is independent of β, also consistent with equation (14). This is surprising
as it is soley because of β that the uniform wind stress drives an Ekman pumping. This result
of the transport being independent of β will cease once Rm exceeds the topographic radius.

The final sensitivity shown in Figure 4(d) is because of changes in the Coriolis parameter.
Decreasing f0 decreases the depth of influence, which causes a decrease in the transport,
but it increases the velocity as f −1

0 . These offset so, absent the bottom boundary layer, the
barotropic transport would be insensitive to changes in f0. However, thermal wind shear in
the bottom boundary layer goes as f −1

0 , resulting in an increase in transport for decreasing
f0. These trends are well represented in the numerical model.

The radius at which the transport is 80% of its maximum transport has been diagnosed
from each of the model runs3 in Table 1 and plotted against Rm from equation (10) in
Figure 5(a). There is generally good agreement for each of the sets of parameter variations.
The radius of wind influence is smallest for steep topography, high stratification, weak
winds, and small Coriolis parameter.

The shear factor resulting from the bottom boundary layer, (CdN
2δ)/(κf 2

0 ), is plotted as
a function of the model Ψmax in Figure 5(b). The thickness of the bottom boundary layer δ is
taken to be the model layer thickness of 20 m because essentially all of the Ekman transport
is contained within the deepest model level. Except for the unstratified cases (circles), the
shear term increases the transport by between 25% and 200%. This shear term is most
important for small κ (square), small f0 (cross), and large N2 (triangle).

A comparison between the maximum predicted transport without the bottom boundary
layer shear term and that diagnosed from the series of 18 model runs is shown in Figure 5(c).
Although some of the model results agree well with the theory, the theory underpredicts the
transport for all cases with stratification. There is a set of calculations for which the theory,
absent the shear term, predicts 0.32 Sv and the model produces a range between 0.5 Sv

3. The unstratified cases are plotted at the radius of maximum transport.
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Figure 5. Comparison between model and theory for the series of calculations in Table 1. (a) Radius
at which Ψ is 80% maximum in the model compared with Rm from equation (10). (b) Shear term.
(c) Maximum model transport versus barotropic theory (equation 8). (d) Maximum model transport
versus baroclinic theory (equation 14).

and 1.2 Sv. Including the shear term, as in equation (14), greatly improves the comparison
(Fig. 5d). The root-mean-square (RMS) variability of the transport over all calculations is
1.1 Sv. The RMS difference between the model and theory without the shear term is 0.42 Sv,
so the theory absent the bottom boundary layer does have some predictive skill. However,
with the shear term included the RMS variability between model and theory is reduced to
0.19 Sv.

This topographic influence on the wind-driven circulation can affect not only the circu-
lation around the topographic contours but also the circulation far from the island. Strong
wind stress curl is often found in the lee of many islands. A linear vorticity balance requires
that meridional advection of planetary vorticity balance the vertical stretching induced by
the Ekman pumping. For a dipolar pattern of wind stress curl, this results in a pair of
recirculating gyres that extend from the forcing region toward the west. Such recircula-
tions are commonly referred to as a beta plumes (Stommel 1982). These basic dynamics
have been used to explain the Hawaiian Lee Counter Current (Belmadani et al. 2013), the
Azores Current (Jia 2000), and recirculation in the Labrador and Irminger Seas (Spall and
Pickart 2003). A dipolar patch of wind stress curl was placed along the western half of an
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island, with and without a topographic skirt (Fig. 6). To the west of the island, the wind is
zonal with a maximum eastward stress of 0.05 N m−2 at y = 1,000 km, which linearly
decreases in latitude to zero at y = 500 km and y = 1,500 km, which is the meridional
extent of the bottom topography. This gives a region of uniform positive wind stress curl
in the region 1,500 km < x < 2,000 km and 1,000 km < y < 1,500 km. A similar
region of uniform negative wind stress curl lies between 1,500 km < x < 2,000 km and
500 km < y < 1,000 km. The patch represents the wind stress anomaly that is often found
in the lee of islands embedded in a westward wind. The large-scale westward wind stress
has been removed in order to not conflate the influences of the uniform westward wind (as
previously discussed) and the wind stress curl in the vicinity of the island.

The streamfunction after 10 years of integration is shown in Figure 6(b) for the case
with a flat bottom of 500 m depth. As expected, the circulation is dominated by a pair of
counterrotating gyres, cyclonic to the north and anticyclonic to the south, that extend all
the way to the western boundary. There is a strong zonal flow approaching the island from
the west. The same wind stress applied over the linearly sloping bottom topography results
in two recirculation gyres aligned to the west of the northern and southern flanks of the
topography that are separated by a region of nearly quiescent flow. The flow where the
topography is less than the scale depth D is also very weak compared with the flat bottom
case. This is because the topographic slope dominates the planetary vorticity gradient such
that the linear potential vorticity balance is satisfied with very weak flow because of the
strong vertical velocity induced at the bottom (Spall 2001). The topographic beta effectively
kills the beta plume where the circulation interacts with the bottom. The recirculation around
the closed topographic contours is weak because the net Ekman pumping into the closed
contours is nearly zero, so there is no role for the bottom Ekman layer to play in closing the
mass budget. This results in only very weak flow toward the island from the west. Thus, the
consequences of the local shallow-water dynamics reach far into the interior to the west of
the topography by reducing the flow in the Rossby wake of the island and shifting the zonal
jets to the northern and southern limits of the topography where the flow no longer reaches
the bottom.

3. Time dependence

The circulation response to time-dependent forcing is also of interest. The initial response
of a stratified ocean to changes in the wind stress is an excitation of the barotropic mode
through changes in the gradient of the sea surface height. The flow perturbation remains
barotropic until baroclinic waves can alter the isopycnal slope in the interior of the water col-
umn (Anderson and Killworth 1977). These waves communicate information about bound-
ary conditions or inhomogeneity of the wind or topography along the characteristics of the
system, typically from east to west for linear, stratified flow over a flat bottom. The flow
arrives at its steady state asymptotically as higher and higher baroclinic modes pass by. It is
this initial barotropic response that gives the expectation that potentially large recirculations
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Figure 6. (a) Zonal wind stress (colors) and bottom topography (contours, contour interval 100 m).
Transport streamfunction after 10 years for (b) flat bottom, (c) sloping topography shown in panel
(a) (contour interval 0.4 Sv).
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Figure 7. (a) Strength of the topographic recirculation gyre (in Sv) as a function of time. (b) Pertur-
bation transport streamfunction as a function of time. (c) Perturbation transport streamfunction as a
function of nondimensional time, scaled by the time it takes a baroclinic Rossby wave to propate the
diameter of the topography. The bold line is the central case (run 1 in Table 1), and the dot-dashed
line is an otherwise identical calculation in a domain 4,000 km by 3,000 km.

could be driven by time-dependent winds and closed topographic contours, at least for a
time, even in the presence of strong stratification.

The strength of the topographic recirculation gyre is plotted as a function of time in
Figure 7(a) for seven calculations that were started from rest. The central calculation is
given by the bold line; the other lines are for model runs with faster and slower baroclinic
Rossby wave speeds or different-sized islands and domains. The general pattern is the
same for each run. The recirculation spins up to a maximum recirculation strength and then
slowly decays to its steady value. The magnitude of the steady circulation varies between
calculations, as expected from the theory in the preceeding section. However, the time to
reach the steady solution also varies. In order to better compare the spin-up times, the
deviation of ψ from its steady value, normalized by the maximum deviation, is plotted as a
function of time relative to the time of the maximum transport (Fig. 7b). Simply stated, the
nondimensional perturbation streamfunction Ψ′ decays from 1 at time 0 toward 0 over the
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decay timescale. The decay rate varies between the calculations such that it takes between
approximately 4 years and 10 years for ψ′ = 0.25.

Based on the results of Anderson and Killworth (1977) for the spin-up of a wind-driven
basin, we expect the adjustment to be achieved by the propagation of baroclinic Rossby
waves. There are two possible length scales that, together with the baroclinic wave speed,
potentially determine the adjustment time: the domain size and the scale of the topography.
The case with a zonally elongated domain (dot-dashed line), so that the eastern boundary
is 3,000 km to the east of the center of the topography, reaches equilibrium at about the
same time, and at the same value, as the central case in which the eastern boundary is 1,000
km from the topography. Thus, the spin-up does not appear to be achieved by information
propagating from the eastern boundary of the domain. The other length scale inherent to
the problem is the zonal extent of the topography. The time it takes for a baroclinic Rossby
wave to propagate across the island is given by

P = 2f 2
0

βαN2H
. (15)

The perturbation streamfunction is plotted as a function of time nondimensionalized by
P in Figure 7(c). The decay rates now nearly collapse onto a single curve, with ψ′ = 0.25
for five of the seven runs clustered around t/P = 2. Two calculations show a slightly longer
decay scale of t/P ≈ 4, but both of these have a weaker secondary maximum in the recircu-
lation strength early in the calculation. It is not clear why this occurs, but it appears to delay
the decay toward the steady solution. The decrease in the transport around the topography
reflects a decrease in the circulation at r > Rm, where the steady theory predicts weak flow.
So the initial response to variations in the wind is for a barotropic circulation to develop over
all closed f/h contours. Over the timescale it takes a baroclinic wave to propagate across
the topography, the outer barotropic circulation decays, leaving only the inner circulation
in the region where the bottom topography remains important. Based on this analysis, it is
anticipated that significant barotropic recirculations over the deep topography can be forced
by time-dependent winds for timescales less than approximately 2P .

For a periodic forcing as τ = τ0(1+τ′ sin ωt), where τ′ is nondimensional, the barotropic
transport streamfunction can be calculated from equation (5) to be

Ψ(t) =
∫ r

0
UH dr = τ0αβr3

6ρ0f0Cd

[
1 + τ′ sin(ωt + φ)

(1 + (ωH/Cd)2)1/2

]
, (16)

with

φ = tan−1
(−ωH

Cd

)
. (17)

This solution is the same as equation (8) with a sinusoidal term scaled by a factor that
depends on the amplitude and frequency of forcing. At frequencies much less than Cd/H ,
the transport will be in phase with the wind forcing at a magnitude close to its steady value
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Figure 8. Transport streamfunction as a function of radius and time for the following: (a) full field, (b)
mean subtracted at each radius, and (c) theory (equation 16 with mean subtracted at each radius).

for that strength wind. However, for higher frequency forcing the amplitude of the transport
variability decreases and the phase of the maximum transport lags the phase of the maximum
wind stress. For the central calculation given previously, the transitional frequency at the
maximum radius of the topography is Cd/H = 4×10−7s−1 or a forcing period of 0.5 years.
This suggests that seasonal variations in the wind stress, where there is a lot of energy, might
force significant recirculations over topographic features in the ocean.

The calculation discussed in detail in the preceeding section (run 1) was extended for
a period of 720 days with time-dependent forcing of τ = τ0(1 + 0.5 sin ωt), where ω =
2 × 10−7 s−1 (a forcing period of 360 days). The depth-integrated transport streamfunction
as a function of radius and time over the final period of forcing is shown in Figure 8(a).
The transport at small radii shows only weak variation in time, but the flow over deep
topography is dominated by variability at the forcing frequency. The net transport at radius
500 km changes sign even though the wind stress is always westward and there is always a
net downward Ekman pumping. The signal because of the time-dependent forcing is more
clearly indicated by subtracting the time-mean at each radius (Fig. 8b). The variability is
strongest in deep water with a magnitude exceeding 0.7 Sv. The time-dependent part of the
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Figure 9. Time-dependent (a) amplitude and (b) phase for a series of model runs (circles) and the
theory (black lines) as a function of forcing frequency. Blue, long Rossby wave phase speed
c = 0.03 m s−1; black, c = 0.0125 m s−1; and red, c = 0.00625 m s−1. Asterisks indicate
frequency for which a baroclinic Rossby wave would propagate a distance equal to the radius of
the topography.

theoretical prediction (equation 16) is shown in Figure 8(c). The radial structure, magnitude,
and phase all agree reasonably well with that diagnosed from the model.

The model was run with the same initial conditions but with forcing periods that varied
between 36 days and 10 years. The amplitude and phase of the azimuthally averaged vari-
ability at r = 500 km was diagnosed for each of the model runs and is plotted against the
theory (equations 16 and 17) in Figure 9 (black circles). The amplitude of the oscillation has
been scaled by (τ0τ

′αβr3)/(6ρ0f0Cd), so the maximum value is 1. The model and theory
agree reasonably well at high frequencies, but the model amplitude is significantly lower
than that predicted by the theory at low frequencies. The model and theory begin to disagree
at a forcing period of 2 years (ωH/Cd = 0.25). The phase found in the model also agrees
well with the theory, especially so for the higher frequency cases.

Two other sets of calculations were carried out at the same forcing frequencies but with
different values for the first mode baroclinic wave speed through changes in β and N2. For
the standard case, the baroclinic wave speed c = β(NH/f0)

2 = 0.0125 m s−1. Calculations
with a slower wave speed of 0.00625 m s−1 (β = 10−11 m−1 s−1) are indicated by the red
circles. The amplitude and frequency are very close to the standard calculations (and theory)
at high frequencies but now agree more closely with the theory at low frequencies as well.
There is beginning to be a drop-off in amplitude at the lowest frequencies tested. A third set
of calculations with c = 0.03 m s−1 (β = 3 × 10−11 m−1 s−1, N2 = 4 × 10−5 s−2) shows a
larger decrease in amplitude with decreasing frequency, starting at frequencies less than 0.5
years. This transition from an amplitude that matches the theory for high-frequency forcing
to a smaller amplitude at low-frequency forcing occurs roughly at frequency 2πc/R, where
R is the maximum radius of the topography and R/c is the time it takes a baroclinic Rossby
wave to propagate the radius of the topography. This frequency is marked in Figure 9 by
the colored asterisks along the abscissa. This is consistent with the baroclinic adjustment
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process in which the initial barotropic response is unbalanced and the transition to the steady
circulation is achieved by baroclinic wave propagation. Thus, it is expected that strong
time-dependent recirculations can be forced over large topographic features, particularly in
regions of slow baroclinic wave speeds.

4. Summary

The primary objective of this study is to better understand the space and time scales over
which wind forcing can drive recirculations over regions of closed topographic contours.
For unstratified flows, the dynamics reduce to the well-known balance between Ekman
transport in the surface boundary layer into the region being balanced by Ekman transport
in the bottom boundary layer out of the region (or vice versa). To achieve a net bottom
boundary layer transport out of a closed topographic contour requires a recirculation along
the contour. The addition of stratification introduces two changes. First, the depth to which
the surface Ekman pumping can penetrate is limited (equation 9), consistent with the scaling
of Young and Rhines (1982). This will generally reduce the strength of the recirculation.
Second, the downslope flow in the bottom boundary layer distorts the isopycnals near the
bottom, introducing sloping isopycnals that support a vertical shear in the velocity along
the topography. This can result in an increase in the strength of the recirculation by more
than a factor of 2.

Time-dependent solutions take the form of a forced damped harmonic oscillator. There
are two inherent frequencies in the problem. The first is given by the frictional timescale,
which is the bottom depth divided by the linear bottom drag coefficient. For forcing at
frequencies less than this the flow approaches a quasi steady state in balance with the
forcing. At higher frequencies, the amplitude of the circulation is reduced and the phase
lags that of the forcing. The second frequency in the problem is given by the time it takes for
a baroclinic Rossby wave to propagate across the region of closed topographic contours. For
forcing frequencies higher than this, the circulation is primarily barotropic and the amplitude
and phase are well predicted by the barotropic time-dependent theory. However, at lower
frequencies the amplitude of the circulation is reduced compared with that predicted by the
theory. This is because the circulation at depths greater than the vertical penetration scale D

has begun to spin down by Rossby wave radiation. The combination of these two timescales
results in an optimal forcing frequency that provides the largest amplitude response.

The approach taken here is very idealized and designed to expose the underlying space
and time scales that govern the time-dependent response to wind forcing over regions of
closed geostrophic contours provided by bottom topography. The vertical penetration of the
wind forcing can result in strong recirculations if there is a net Ekman pumping into the
region of closed contours, or it can shut down beta-plume recirculations that would result
over a flat bottom if there is no net Ekman pumping. This latter effect will influence the
circulation far to the west of the forcing region, so this is more than a local topographic
effect. It is expected that strong mean recirculations might be forced around islands, where
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there is often large wind stress curl and closed f/h contours. Seasonal variations in wind
stress may also force strong recirculations over large-scale topographic features in both the
coastal and deep ocean, especially in regions with slow baroclinic wave speeds.
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