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ABSTRACT

The general problem of exchange from a shallow shelf across sharp topography to the deep ocean forced by

narrow, cross-shelf wind jets is studied using quasigeostrophic theory and an idealized primitive equation

numerical model. Interest is motivated by katabatic winds that emanate from narrow fjords in southeast

Greenland, although similar topographically constrained wind jets are found throughout the world’s oceans.

Because there is no net vorticity input by the wind, the circulation is largely confined to the region near the

forcing. Circulation over the shelf is limited by bottom friction for weakly stratified flows, but stratification

allows for much stronger upper-layer flows that are regulated by weak coupling to the lower layer. Over the

sloping topography, the topographic beta effect limits the deep flow, while, for sufficient stratification, the

upper-layer flow can cross the topography to connect the shelf to the open ocean. This can be an effective

transport mechanism even for short, strong wind events because damping of the upper-layer flow is weak. A

variety of transients are generated for an abrupt onset of winds, including short topography Rossby waves,

long topographic Rossby waves, and inertial waves. Using parameters representative of southeast Greenland,

katabatic wind events will force an offshore transport ofO(0.4) Sv (1 Sv[ 106m3 s21) that, when considered

for 2 days, will result in an offshore flux of O(5 3 1010) m3.

1. Introduction

The high-latitude North Atlantic and Arctic Ocean

represent an important source of freshwater for the

global ocean (Carmack et al. 2016). Because the primary

sources of this freshwater are from rivers in the Arctic

Ocean and from runoff and ice melt on Greenland, it

enters the North Atlantic over the shelf along the east

coast of Greenland. It has long been recognized that this

low-salinity water has the potential, should it get trans-

ported into the deep convection sites in the Greenland

and Labrador Seas, to disrupt the large-scale thermo-

haline circulation (Stommel 1961). Such behavior has

since been found in numerical models spanning a wide

range of complexity (Manabe and Stouffer 1988;

Rahmstorf et al. 2005; Hawkins et al. 2011). However,

none of these basin-scale models had sufficient spatial

resolution to correctly resolve the physics that govern

the exchange of the low-salinity waters between the

shelf and the open-ocean convection sites. Thesemodels

circumvent this problem by directly introducing fresh-

water at the surface in the basin interior. In some re-

gions, such as the Southern Ocean, the compensating

transport of warm offshore waters onto the shelf, where

it canmelt ice, is also of great climatic importance. Thus,

key unknowns in the link between the freshwater cycle

and the stability of the meridional overturning circula-

tion are the mechanisms that control the exchange of

waters between the shelf and the open ocean.

The transition between the shelf and the open ocean is

important and dynamically interesting because it is

generally marked by a rapid change in bottom depth at

the shelf break. Because flow tends to be along constant

depth contours, the shelf break provides a strong barrier

to exchange. There are many mechanisms that may lead

to exchange across the shelf break, including wind

forcing, eddy fluxes, filamenting and small-scale mixing,

dense bottom plumes, and transport in the bottom

boundary layer.

We focus here on one particular mechanism of

exchange–episodic cross-shelf winds that are charac-

terized by a relatively short along-shelf length scale

and a long across-shelf length scale. Such asymmetric

forcing is common adjacent to gaps in coastal mountain

ranges, as is found near the glacial fjords in southeast

Greenland. Downslope flow off the ice sheets results

in intense along-fjord wind events called piteraqs.

They have mean wind speeds of 20m s21 and durationsCorresponding author: Michael Spall, mspall@whoi.edu
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of O(1) day (Oltmanns et al. 2014). There are typically

4–8 such events per year, primarily in winter (Oltmanns

et al. 2014; Jackson 2016; Spall et al. 2017). Similar

orographically constrained atmospheric winds are found

throughout the world’s oceans, including in the south-

east Pacific Ocean (McCreary 1989), the Red Sea (Zhai

and Bower 2013), the Adriatic Sea (Belusic et al. 2013),

and the South China Sea (Wang et al. 2008). The Gulf of

Tehuantepec in the southeast Pacific Ocean is probably

the most studied in terms of the ocean response to gap

wind forcing. McCreary (1989) developed a 1.5-layer

linear theory and nonlinear numerical model of the

upper-ocean response to a localized wind jet. The pri-

mary response is the development of a dipole with a

strong current directed downwind, flanked by weaker

onshore flow on both sides. The basic pattern remains in

the nonlinear regime, but mixing weakens the cyclonic

side of the dipole and enhances the offshore propagation

speed. The important limitation of this study, with re-

gards to the southeast Greenland shelf, is the neglect of

bottom topography.

While our motivation is exchange along the southeast

coast of Greenland, the common nature of such wind

jets justifies a wider understanding of the general prob-

lem of how isolated wind jets across the shelf to the open

ocean can force exchange across the steep topography

that characterizes the transition from shelf to open

ocean. A linear, 2-layer quasigeostrophic theory and key

nondimensional numbers are developed in section 2. A

fully nonlinear primitive equation model is used to test

the basic predictions from the theory in idealized, but

representative, conditions in section 3, including a more

extensive investigation of the time-dependent response

to the wind. Final discussion and summary is given in

section 4.

2. Theory

We consider in this section a linear, quasigeostrophic

(QG) model of the circulation of a fluid driven over the

shelf and slope topography shown in Fig. 1. The shelf,

with a flat bottom, occupies the region l # y # L, while

the slope region lies in 0 # y # l. The y axis is directed

onshore, and the x axis is parallel to the coast, forming a

right-handed coordinate system with the y axis while z is

measured upward.

a. Homogeneous fluid

We begin by considering a linear theory for the re-

sponse of a homogenous fluid. Standard QG leads to a

vorticity equation for the geostrophic streamfunction

c obtained by first analyzing the Ekman layers on the

free surface and bottom and incorporating the vertical

velocity expelled from the Ekman layers into the vor-

ticity balance, leading to the governing equation

›=2c

›t
1 �=2c1b

T

›c

›x
5

curlt

r
0
H

, (1)

where � is the inverse spindown time, and bT is the to-

pographic beta term caused by the bottom slope and

which is nonzero only in the interval 0 # y # l. The in-

verse spindown time is given byH/(dEf ), where dE is the

Ekman layer thickness. In terms of the slope of the

bottom ›hb/›y, the topographic beta parameter is bT 5
( f/H)›hb/›y and is zero on the shelf and a constant on

the slope. In QG theory the mean thicknessH is treated

as a constant. The interval in x is infinite in both positive

and negative x. The wind stress curl that drives the cir-

culation is chosen to represent the wind forcing of a

localized outflow of air from a narrow fjord that exits

onto the shelf and slope on the interval 2x0 # x # x0.

For simplicity, the curl is chosen to have the form

curlt5

(
(t

0
/x

0
) sin(px/x

0
) , jxj, x

0

0, jxj$ x
0

. (2)

Note that the integral of the curl over the interval on

which it acts is zero, that is, there is no net production of

vorticity. On occasion we will employ a different rep-

resentation of the forcing for analytical convenience but

always a forcing that shares the property of no net

vorticity input.

1) HOMOGENEOUS MODEL, STEADY SOLUTIONS

We start by considering the steady, unstratified so-

lutions of (1). We recognize the limitations of these

simplifications for the problem of interest but find it

FIG. 1. The geometry of the shelf and slope.
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useful to lay the foundation for the theoretical approach

before moving on to consider stratification and time

dependence.

Over the shelf the steady state is governed by

�=2c
sh
5 curlt/(r

0
H) . (3)

It is clear from (3) that this will yield a value of the

streamfunction of order �21. The subscript sh in this

section will refer to the shelf solutions, while a subscript

sl will refer to the solution over the slope.

On the other hand, for small � � bTx0, the steady

solution on the slope will be seen to be much smaller

than the steady solution on the shelf and will be of order

�/bTx0 smaller. It follows that the solution on the shelf

must vanish at y5 l to the order of that parameter. Thus,

c
sh
52

t
0

�r
0
x
0
H

x20
p2

sinp
x

x
0

3

�
12

sinhp(y2 l)/x
0

sinh(L2 l)/x
0

2
sinhp(y2L)/x

0

sinhp(l2L)/x
0

�
. (4)

In the slope region, with �� bTx0, the solution follows

from a Sverdrup-like balance of the forcing with the

topographic term. With the solution equal to zero to the

right of the forcing region, that is, for x . x0, we obtain

c
sl
5

2t
0

b
T
r
0
x
0
H

x
0

p
[11 cos(px/x

0
)] . (5)

Note that the solution vanishes for x 6 x0 as a con-

sequence of the lack of a net vorticity input over the

interval of the forcing.

The solution over the shelf represents a circulation

consisting of two counterrotating cells, while the solu-

tion over the slope consists of a single cell. The two-cell

regime over the shelf is limited to the shelf; that is, (4)

shows that the flow, to that order, does not extend over

the slope. The very weak slope flow in the y direction

will produce a small, and so negligible, correction to the

shelf flow, but imposing the condition that the derivative

of the streamfunction with y is continuous at the shelf

break, y 5 l, will produce a nonnegligible correction to

the flow over the slope in a boundary layer of width

db 5 (�x0/bT)
1/2. Introducing new, nondimensional

boundary layer variables h5 (l2 y)/db and s5 12 x/x0
leads to the diffusion equation for the correction fsl(s, h)

in the boundary layer region near y 5 l:

›2f
sl

›h2
5

›f
sl

›s
. (6)

Here, s is the timelike variable, and its positive direction

is toward2x. The boundary condition for fsl on y5 l is

that its derivative in ymatches the same as the derivative

of csh at that point. The boundary condition that forces the

solution, which is zero at s5 0, and vanishes for large h is

›f
sl

›h
5 d

b

›c
sh

›y
52d

b
U sinps h5 0, and (7a)

U 5
t
o

�r
0
x
0
H

x
0

p

�
2

1

sinhp(L2 l)/x
0

1
coshp(L2 l)/x

0

sinhp(L2 l)/x
0

�
.

(7b)

The analytic solution to (7a) can be found by the use

of a Laplace transform in s. The form of the solution is

rather opaque and is given as the convolution of two

functions. It is more revealing to replace the sine func-

tion in (7a) with two Dirac delta functions of equal and

opposite sign, so that (7a) is replaced by

›f
sl

›h
52d

b
(U/x

0
)[d(s)2 d(s2 2)] (8)

in the expectation that far from the forcing region the

detailed structure of the forcing will be of minor im-

portance and only its principal property, that is, of

having no net integral in x, is of importance.

The use of the Laplace transform in the direction of

increasing s leads to the more transparent solution

f
sl
5 d

b

U

p1/2

"
e2h2/4s

s1/2
H(s)2

e2h2/4(s22)

(s2 2)1/2
H(s2 2)

#
, (9)

whereH(x) is the Heaviside function, which is equal to 1

for positive values of its argument and is otherwise zero.

The solution is valid in the region s. 0, that is, in the

region that includes the forcing and the region to the left

of the forcing, where s is greater than 2. In that region

the boundary layer consists of both terms in (9), which

are of opposite sign and so the solution clearly goes to

zero for large s. In fact, although each term in (9) di-

minishes like s21/2, the combination of the two terms

can be shown to diminish at least as rapidly as s23/2.

Therefore, the extent of the flow is limited to a region

along the shelf break that is of the order of the forcing

width. Figure 2a shows the rapid decay of the solution

for x , x0 that could be anticipated by a simple group

velocity argument. For a disturbance that has a scale in y

of the order of the thin boundary layer, the group ve-

locity in the x direction would be of the order bTd
2
b.

Since the boundary layer width is db 5 (�x0/bT)
1/2, this

yields a group speed toward positive s, that is, negative x

of order �x0, and so in a time of the order of the decay

time �21, the disturbance moves a distance of the order

of the forcing width x0. The fact that the two vorticity
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sources are equal and opposite in sign leads to further

interference and decay and in fact this is the major cause

of the spatial limitation, as shown in Fig. 2a. Figure 2b

shows the zonal velocity scaled by dbU/p1/2 as a function

of the boundary layer coordinate. Note the rapid decay

away from y 5 l (h 5 0), and note in particular the

change in sign of the zonal velocity, indicating a re-

circulating boundary layer flow over the slope.

Thus, in the steady state there are three distinctly

different regimes of flow produced by the forcing.

The two-cell circulation on the shelf is the strongest,

and there the transport streamfunction cshH is order

(t0x0)/(�r0p
2). Taking typical parameters t0 5 1Nm22,

�5 1026 s21, and x05 105m gives a transport ofO(10) Sv

(1 Sv [ 106m3 s21). At the shelf break the boundary

layer flow is next in order of size, although it is a factor

(�/bTx0)
1/2 smaller than the flow on the shelf. This

boundary layer flow is not a direct continuation of the

shelf flow over the slope. As its derivation shows, it is

driven instead by the diffusion of the vorticity of the

shelf flow onto a narrow region over the slope. The size

of the streamfunction of the directly wind-driven flow

over the slope is yet another factor (�/bTx0)
1/2 smaller

than the boundary layer flow and a factor (�/bTx0)

smaller than the flow over the shelf. Taking typical pa-

rameters f5 1024 s21, �5 1026 s21, ›hb/›y5 0.005,H5
250m, and x0 5 105 gives (�/bTx0) 5 1022, and so the

diffusively driven flow over the slope is much weaker

than the directly wind-driven flow over the shelf.

2) HOMOGENEOUS MODEL, TIME DEPENDENCE

Over the shelf, the solution (4) is the steady solution

reached after the wind stress acts on the fluid. If we

define that steady solution as csh, the full solution, which

represents the approach to that steady state, is

c
sh
5c

sh
(12 e2�t) . (10)

The approach to steady state over the slope is dynam-

ically more complex and reflects topographic Rossby

wave dynamics. Since the steady solution is purely a

function of x outside boundary layers on the slope, the full

solution outside the boundary layer can be written as

c
sl
(x, t)5c

sl
1f

sl
(x, t). (11)

Here, csl refers to the steady solution given by (5). The

problem for the deviation can most easily be written for

ysl 5 ›fsl/›x:

›2y
sl

›x›t
1 �

›y
sl

›x
1b

T
y
sl
5 0, and (12a)

y
sl
(x, 0)52curlt/b

T
r
0
H, (12b)

where (12b) is the initial condition.

The problems (12a) and (12b) can be most easily

solved by using Laplace transforms and again simplify-

ing the form of the forcing to

curlt/r
0
H5

t
0

r
0
H

[d(x2 x
0
)2 d(x1 x

0
)] . (13)

It can be shown that the solution for x. x0, that is, to the

right of the forcing region is

y
sl
(x, t)5

t
0

r
0
H
e2�t(b

T
(x1 x

0
)21/2

t1/2J
1
f2[b

T
(x1x

0
)t]1/2g

2b
T
(x2 x

0
)21/2

t1/2J
1
f2[b

T
(x2 x

0
)]t1/2g) ,

(14)

where J1 is the Bessel function of order one. Using (14) it

can be shown that at any fixed time t, the solution decays

FIG. 2. (a) The value of the streamfunction in the boundary layer over the shelf at (L2 y)/d5 0.9 in response to

the forcing by two delta functions of opposite sign. The dashed curve shows the response for a single delta function

at x 5 x0, while the solid line shows the result of the interference of the two. (b) The form of zonal flow u as

a function of h in the region to the left of the forcing. Note the recirculating flow.
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like (x0/x)
3/2 for x � x0. An example of this eastward

propagation is given by the streamfunction as a function

of x at time t 5 2/bTx0 in Fig. 3. Of course this transient

also decays in time at the scale-independent spindown

rate after which the solution is the steady solution csl.

Nevertheless there is temporarily a limited propagation

of short topographic Rossby waves in the positive x di-

rection whose range is again limited by the absence of a

net vorticity forcing.

b. Stratified model

The interaction of the wind-driven flow with the bot-

tom topography and the bottom boundary layer has a

powerful influence on the circulation. It is natural to

wonder what changes would occur in the presence of a

stable stratification. More precisely, what stratification

would be required to isolate the flow from the bottom?

We will consider the standard quasigeostrophic two-

layer model with the addition of a mixing term that

couples the two layers by specifying a cross-isopycnal

velocity across the interface between the two layers that

is proportional to the displacement of the interface. If

w* is the cross-isopycnal velocity and h0 is the upward

displacement of the interface, we will model the diabatic

mixing of the layer with the simple relationship

w*5 gh0, (15)

where g is a constant, which tends to damp interface

anomalies. This can also be thought of as a crude pa-

rameterization of baroclinic instability, which also

transfers momentum in the vertical and reduces the

isopycnal slope.

The geostrophic streamfunction in each layer is re-

lated to the pressure perturbation in the usual manner,

that is, cn 5 pn/r0f and n 5 1, 2, where the index n here

refers to the upper and lower layer, respectively. At the

same time the interface displacement can be written in

terms of the pressure difference between the layers so

that h0 5 f(c2 2 c1)/g
0, where g0 is the reduced gravity

between the two layers.

The linear, quasigeostrophic vorticity equation can

then be written as

›

›t

�
=2c

1
2

f 2

g0H
1

(c
1
2c

2
)

�
1 g

f 2

g0H
1

(c
2
2c

1
)

5 curlt/r
0
H

1
2 �

i
=2c

1
, and (16a)

›

›t

�
=2c

2
2

f 2

g0H
2

(c
2
2c

1
)

�
1 g

f 2

g0H
2

(c
1
2c

2
)

1b
T

›c
2

›x
52�=2c

2
. (16b)

The topographic b term is defined as before in terms of

the bottom slope but with the mean layer thickness of

the lower layer, namely, bT 5 ( f/H2)›hb/›y. The pa-

rameter � is the inverse spindown time of the lower layer

alone. The parameter �i is an admittedly artificial pa-

rameterization that provides an internal dissipation

process for the upper layer. Throughout, we will assume

�i � �, g.

1) STRATIFIED MODEL, STEADY SOLUTIONS

As in the case of the homogenous model, we first ex-

amine the solution over the flat shelf region. For steady

motions, the equations reduce to

g(c
2
2c

1
)F

1
5 curlt/r

0
H

1
2 �

i
=2c

1
, (17a)

g(c
1
2c

2
)F

2
52�=2c

2
, and (17b)

F
n
5 f 2/g0H

n
, n5 1, 2. (17c)

Multiplying (17a) and (17b) each by the layer thickness

Hn leads to the barotropic balance, ignoring a small term

proportional to �i:

�=2c
2
5 curlt/r

0
H

2
. (18)

Thus, in the steady state the vorticity imposed by the

wind stress curl must be expunged by the bottom

boundary layer. This gives an estimate of the steady

response of the lower layer over the shelf. If the hori-

zontal scale is x0, that estimate is

FIG. 3. The form of the radiation of short Rossby waves over the

slope to the right of the forcing region for t 5 2/bTx0. The abrupt

jumps reflect the delta function forcing, but note the rapid decay of

the wave amplitude caused by the interference of the two source

terms of opposite signs.

JANUARY 2018 S PALL AND PEDLOSKY 167



c
2
5O

�
curlt

�r
0
H

2

x20

�
, and (19a)

c
1
5c

2
2

curlt

gF
1
r
0
H

1

, (19b)

where (19b) makes use of (17a),

The ratio of the first term on the right-hand side of

(19b) to the second term is given by the parameter P:

P5
g

�

f 2x20
g0H

2

5
g

�

x20
R2

d2

. (20)

If this parameter is small the magnitude of the stream-

function in the upper layer will be far greater than that for

the flow in the lower layer, even though the lower layer is

essential in eventually balancing the vorticity input. It is

clear from (20) that this will occur either when the

stratification is great so that the deformation radius for

the lower layer Rd2 5 (g0H2)
1/2/f is much greater than the

scale of the forcing and/or when the dissipation of the

motion in the bottom layer occurs more rapidly than

vertical mixing by the cross-isopycnal flow, that is, when

g � �. If the inequality is reversed the response to the

forcing will be essentially barotropic and governed by the

dynamics outlined in the previous sections. Thus, either

weak stratification or very strong cross-isopycnal flowwill

recover the barotropic dynamics of the previous sections.

Otherwise the dominant flow is in the upper layer and is

determined independently of the bottom boundary layer.

Over the slope region, the barotropic component of

the flow is derived by multiplying each layer’s equation

by its basic constant thickness and adding, yielding

(again assuming the smallness of �i)

b
T

›c
2

›x
52�=2c

2
1 curlt/r

0
H

2
. (21)

Thus, if bTx0 � �, the topographic equivalent of the

Sverdrup regime, our estimate of the magnitude of the

streamfunction in the lower layer would be

c
2
5O

�
curlt

r
0
b
T
H

2

x
0

�
, (22)

while (17a) again yields (19b). It follows from that re-

lation and (22) that the ratio of the streamfunction of the

lower layer with respect to its counterpart in the upper

layer is of the order of the parameter

P
bT

5
g

b
T
x
0

x20
R2

d2

, (23)

so that, once again, if the stratification is large enough to

make the deformation radius of the lower layer much

larger than the horizontal scale of the forcing, the upper-

layer motion will be much larger than that of the lower

layer. This also occurs when the topographic Rossby

constraint dominates the vertical mixing caused by the

cross-isopycnal flux so that PbT is much less than one.

This ratio may also be interpreted as the forcing length

scale divided by the distance a topographic Rossby wave

would propagate over the damping time scale.

Thus, in the strongly stratified case, with c1 � c2, both

over the slope and over the shelf the dominant upper-

layer flow outside any lateral boundary layers, is given by

c
1
52

curlt/r
0
H

1

gF
1

, (24)

with c2 given by (22).

2) STRATIFIED MODEL, TIME DEPENDENCE

We can discuss the response to an abrupt switch on of

the forcing by the same approach as in our treatment of

the barotropic problem. We write the total stream-

function as a sum of its steady solution, (22) and (24),

and add a time-dependent term fn(x, y, t) that has as

initial condition minus the steady solution. Our treat-

ment in this section is limited to quasigeostrophic dy-

namics. In section 3, the numerical solution will also

describe higher-frequency responses to abrupt forcing.

The functions fn satisfy (16a) and (16b). To obtain a

qualitative idea of the nature of the approach to equi-

librium, it is sufficient to look for solutions that are

wavelike with a total wavenumber K, which we will

suppose has the order of magnitude x21
0 .

Over the shelf, the critical parameter isP, given by (20).

When P is large the fluid behaves much like a homoge-

neous fluid and so the interesting case in dealing with the

stratified case is when P is small. To simplify the algebra

we will assume equal layer depths so that F1 5 F2 5 F.

Searching for solutions of (16a) and (16b) of the form

f
n
5A

n
estF

n
(x, y), and (25a)

=2F
n
52K2F

n
, (25b)

where s is an eigenvalue and F is a structure function,

we obtain for the perturbations on the shelf:

A
1
52A

2
(11 �/s), and (26a)

(s1 �)[s(K2 1F)1 gF]5F(g1F) . (26b)

The first equation is obtained from the barotropic mode,

while to obtain the dispersion relation we use (26a) and

the equation for the upper layer (16a) to derive (26b).

For the case of small P, for which the steady solution

in the upper layer is much greater than the stream-

function in the lower layer, there are two approximate
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roots. The first root has s 5 2�, and from (26a) this

implies that the disturbance is limited to the lower layer

where the dissipation is greatest. The lower layer thus

adjusts more rapidly than the upper layer and reaches its

relatively small steady flow state sooner than the more

vigorously moving upper layer. This follows from the

second root of the dispersion relation for which

s 5 2gF/K2 and c2 5 0. These estimates depend on

assuming that Fx20 � 1, that is, that the stratification is

strong enough to make the deformation radius much

larger that the length scale of the forcing.

A similar dynamic holds over the slope. One mode,

in the case of small P and PbT, has a decay rate in which

the mode is limited to the upper layer and so has a

decay rate, as over the shelf, of s 5 2gF/K2, while the

second mode, limited to the lower layer, under the

same parameter restriction, has s ’ 2� 1 ibTk/K
2.

Again these limits rely on a deformation radius much

larger than the scale of the forcing, which we identify

with K21 5 O(x0). Thus, for strong stratification the

strongest motion is limited to the upper layer, while

the lower layer spins down in this limit much more

rapidly while propagating, briefly as a topographic

Rossby wave.

3. Numerical model

The basic ideas developed with the quasigeostrophic

theory in the previous section are now tested in an ide-

alized configuration of the MITgcm primitive equation

model (Marshall et al. 1997). In particular we seek to

evaluate how effective strong, short pulses of wind stress

directed across the shelf break are at transporting

buoyant surface waters across the sloping topography

and into the basin interior. The model uses Cartesian

coordinates on a staggered C grid in the horizontal and

fixed-depth coordinates in the vertical with a partial cell

treatment of the bottom topography. The basic config-

uration shown in Fig. 1 is similar to that used for the

theory in section 2. The domain extends 1080km in the

along-shelf direction and 576km in the cross-shelf di-

rection. The shelf is 226km wide and 200m deep,

roughly modeled after the shelf along the east coast of

Greenland (the results are not sensitive to the width of

the shelf, provided that it is much wider than the internal

deformation radius). There is a 50-km-wide region of

uniform bottom slope down to 1000-m depth (bottom

slope 5 0.016). The offshore region is 300 km wide and

has a flat bottom. The model domain has either closed

boundaries on all sides (a 5 0) or periodic boundary

conditions in the zonal direction (a. 0), with no slip and

no normal flow on the solid boundaries. The Coriolis

parameter is 1.23 1024 s21 and constant. The horizontal

grid spacing for most calculations is 3 km (those with

narrow wind forcing of 10 km or less have a horizontal

grid spacing of 500m in the region of wind forcing). The

model has 30 levels in the vertical, with 20m thickness

over the upper 460m, gradually increasing to 130m at

the deepest level. Horizontal viscosity is parameterized

with a Smagorinsky deformation–dependent Laplacian

viscosity with nondimensional coefficient of 2.5 and a

linear bottom drag with coefficient 4 3 1024m s21.

Vertical mixing is parameterized with the KPP scheme

(Large et al. 1994) and background viscosity and diffu-

sivity of 1025m2 s21. Some calculations also include a

term that restores salinity toward the initial resting

profile with a time scale g21. This is equivalent to the

mass transport between layers in the QGmodel because

it restores the density surfaces to their initial spatially

uniform stratification.

The initial conditions are specified in terms of salinity,

surface height, and an along-shelf flow in geostrophic

balance with zero velocity at the bottom as

S(y, z)5 S
0
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This vertical profile approximates a 2-layer system with

the transition at depth z0 over thickness dz. The surface

salinity over the shelf is Ss, the salinity at the bottom is Sm,

and the surface salinity offshore of the shelf break is S0.

For a 5 0, the stratification is horizontally uniform (QG

theory; surface salinity is Ss everywhere), while for a� 1

the offshore stratification goes to zero while the stratifi-

cation over the slope remains unchanged. An example of

the initial conditions fora5 1.25 is shown in Fig. 4, where

the positive a results in an increase in the upper-layer

salinity across the shelf break with a balancing westward

geostrophic flow;a. 0 is expected for the eastGreenland

region because the low-salinity waters originate on the

shelf. The transition in stratification takes place over the

slope in the upper layer, so that the density below z0 is

uniform across the slope and density at the surface tran-

sitions from Ss to S0 over a horizontal scaleLf, centered at

the shelf break y 5 l. This is balanced in the initial con-

ditions by a westward, surface-intensified geostrophic

flow above the shelf break: a shelfbreak jet. Density

is related to salinity by a linear equation of state as r 5
r0 1 aS(S 2 Ss) and aS 5 0.8kgm23.

The model is forced by a surface wind stress directed

across the shelf toward the deep ocean. The wind is

confined to a narrow jet, defined as
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ty 5 0:5t
0
[cos(px/x

0
)1 1] jxj# x

0
, and (28a)

ty 5 0 jxj. x
0
, (28b)

where the maximum wind stress is t0, and x0 is the

horizontal decay scale of the wind. The stress yields a

curl of the same form as our analytical model, so it shares

the property of no net vorticity input. For calculations

without the background restoring of density (g 5 0), the

wind is held constant for 1 day and then turned off and

the model is run for an additional 5 days. For those

calculations with nonzero g, the wind is held constant

and the model is run until the transport across the

sloping topography equilibrates. For the weakest re-

storing cases, this is 30 days. While this is not realistic

with respect to the wind events along the east coast of

Greenland, such long integrations allow us to more fully

evaluate the underlying dynamics of the 2-layer system

and its coupling to the bottom topography.

For the central case thewind stress t05 1Nm22,Ss5 31,

Sm 5 33, a 5 0, z0 5 100m, dz 5 20m, and x0 5 50km,

which is typical of what is found over the east Greenland

shelf in winter (Jackson 2016). This gives a baroclinic

deformation radius over the shelf of Rd 5 [gaS(Sm 2 Ss)

z0/r0]
1/2/f 5 10.3 km. Thus, this case falls in the range

where the forcing length scale is large compared to the

internal deformation radius. Cases with a . 0 will be

considered later in this section. The depth-integrated

transport streamfunction at the end of the 1-day forcing

period with g 5 0 is shown in Fig. 5. The flow is domi-

nated by dipole pairs over both the shelf and flat interior,

with only weak offshore transport connecting the two

regions across the sloping topography (not evident at

this contour level; see Fig. 7). The offshore-directed flow

is confined to the region of offshore winds, with the

onshore return flow extending over a larger horizontal

scale to each side of the wind.

There is a suggestion of weak, closed recirculations

over the slope, which are best revealed by the depth-

integrated streamfunction as a function of x and time

over the slope (y 5 15km; Fig. 6). There are several

different time-dependent features indicated in this fig-

ure. The first is the strong negative streamfunction that

develops under the wind forcing during the first day.

This is a result of the Ekman suction and pumping on

either side of the jet. The initial response is symmetric in

the x direction, but the high pressure signal rapidly

propagates to the west along the topography. The low

pressure also propagates westward and a short distance

toward the east. After the wind is turned off we find

short topographic Rossby waves radiating toward the

east, as seen in our analytical model (eastward group

speed, westward phase speed). Once the short waves

have propagated east of the forcing region, a jet is left

behind that transports water from the shelf toward the

open ocean with return flows on both sides. This jet

slowly drifts westward. There are also inertial waves that

oscillate with a period of 0.6 days that stay trapped

within the offshore jet.

The vertical structure of the flow across the slope over

the final day of integration is shown in Fig. 7. The flow in

the deep layer is close to zero while there is offshore flow

centered under the wind jet with onshore flow flanking

on both sides. The isopycnals are displaced vertically

under the regions of maximum Ekman pumping and

suction, such that the thermal wind shear balances the

cross-slope flow. It is the combination of the bottom

slope shutting down the deep flow together with this

vertical displacement of the isopycnals that determines

the cross-slope transport.

The offshore transport in the upper and lower layers,

defined by salinity less than or greater than 32, is shown

in Fig. 8. We define offshore transport as the integral of

all flow with y, 0 at y5 15km. The net transport across

FIG. 5. Depth-integrated transport streamfunction (Sv) after 1

day of wind forcing. The solid white lines are the bottom topog-

raphy (contours 300, 500, 700, and 900m). The white dashed lines

are the limits of the wind forcing; the pattern is indicated by the

white vectors.

FIG. 4. Meridional section through the initial salinity (white

contours; contour interval5 0.25) and along-shelf velocity (colors;

m s21) in the vicinity of the shelf break. This initial condition has

a 5 1.25, which gives a transition from high stratification over the

shelf to weaker stratification offshore, with outcropping isohalines

and a geostrophically balanced along-shelf jet. For a 5 0, the

stratification over the shelf extends into the deep water, while for

a 5 ‘ all isohalines outcrop at the shelf break.
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any section is very small. The inertial oscillation is very

clear here. Most of the transport after the initial baro-

tropic response propagates away is carried in the upper

layer. The transport peaks near the end of the forcing

period and remains nearly constant for the remainder

of the calculation (when averaged over twice the period

of the inertial waves). The offshore flow persists be-

cause the strong topographic slope effectively limits the

transport in the lower layer, for example, (22); yet, the

Ekman pumping/suction has deflected the interface such

that thermal wind requires an offshore transport in the

upper layer. With no interfacial friction and weak vis-

cosity, the upper layer is slow to decay. Evidently, bar-

oclinic instability is not effective at pumping momentum

down into the lower layer on these time scales. Even

though the wind forcing is very short in duration, the

decoupling from the bottom provides an effectivemeans

of exporting the low-salinity shelf water across the slope.

It is expected that this sense of circulation would con-

tinue until some other external event occurs to disrupt

the flow, such as subsequent wind events or along-shelf

advection by the background flow.

The two-layer quasigeostrophic potential vorticity

equation can be used to get an estimate of the offshore

transport that would be driven by an impulsive wind

over a stratified ocean with a steep bottom slope. The

vorticity equation for the upper layer, with g 5 0, is

written as

›

›t
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=2c
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f 2
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2
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curlt

r
0
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. (29)

It will be assumed that the bottom slope is sufficiently

steep so that, from (22), c2 ’ 0. If we also assume that

the crosswind length scale is much less than the along-

wind length scale, then =2c1 ’ c1xx. Taking the form of

wind stress given in (28a) and (28b), and assuming a

form for the streamfunction as c1 5 B(t) cos(px/L), the

offshore transport in the upper layer T 5 c1h1 is found

to increase linearly in time as

›T
›t

5
px

0
t
0

r
0
(p2 1 f 2x20/g

0h
1
)
. (30)

For a wind forcing of 1Nm22 applied for 1 day, this

predicts an offshore transport of 0.4 Sv, close to what is

found in the numerical model. The offshore transport

averaged over the final day of the calculation is 0.36 Sv,

similar to but slightly less than the peak predicted by

(30). A more robust test of (30) is realized by carrying

out a series of numerical calculations in which the

stratification g0 5 gaS(Sm 2 Ss)/r0 and the length scale

of the forcing x0 are varied. A comparison between

model runs in which the stratification is varied and the

FIG. 6. Depth-integrated transport streamfunction (Sv) as

a function of time and x at y5 15 km. The solid white linemarks the

end of wind forcing, and the dashed white lines indicate the limits

of the wind forcing.

FIG. 7. Mean meridional velocity (colors; m s21) and salinity

(white contours; contour interval 5 0.25) over the final day of in-

tegration down to a depth of 250m at midslope (y 5 15 km). The

wind region of forcing is indicated by the thick black line. The

bottom depth at this section is 800m, somost of the flow is confined

to the upper layer.

FIG. 8. Offshore transport (Sv) in the upper and lower layers at

y 5 15 km as a function of time. Solid lines are running averages

over 1.2 days; the dashed line is the upper-layer transport every 0.1

days. Wind forcing is active for the first day and then turned off.
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prediction (30) is shown in Fig. 9a. The central case

shown in Fig. 8 is indicated by the asterisk. There is

generally close agreement for finite stratification. The

offshore transport increases with increasing de-

formation radius, approximately linearly for stratifica-

tions representative of the east Greenland shelf. The

transport found for zero stratification is a remnant of a

barotropic topographic wave that is excited at time zero,

also evident in the lower-layer transport in Fig. 8, which

is not considered in the theory.

A second key parameter is the length scale of the

forcing. A series of calculations were carried out with

the central stratification (Rd 5 10.3 km) and atmo-

spheric forcing length scales x0 varied between 5 and

300 km. The offshore transport in the model and from

(30) is shown in Fig. 9b. There is close agreement with

peak transports found close to x0 5 pRd, as expected

from (30). The circle nearly coincident with the asterisk

(and those with smaller x0) was carried out with the same

forcing parameters but with a refined grid that had

horizontal grid spacing of 500m for jxj , 100 km,

demonstrating convergence for the larger grid spacing.

At smaller length scales relative vorticity becomes im-

portant and balances the vorticity input by the wind. At

larger length scales the transport decreases because the

vorticity input by the wind decreases.

The QG theory and above model calculations as-

sumed that the stratification is horizontally uniform.

However, given that the freshwater originates on the

shelf and that the interior loses buoyancy to the atmo-

sphere; in reality the surface in the basin interior is

denser than that on the shelf. Up until this point, all of

the numerical model calculations have been carried out

with uniform initial stratification a 5 0 in order for

consistent comparison with the QG theory. Now, the

parameter a in (27a) and (27b) was varied between

0 and 100, resulting in an offshore change in salinity from

surface to bottom that ranged between 0 and 2 and de-

formation radii that varied between 0 and 9.8 km. The

offshore transport of low-salinity water was calculated

as before at y5 15km and is plotted against the offshore

deformation radius in Fig. 9c. There is generally

FIG. 9. Offshore transport in the upper layer for a series of numerical model calculations compared with (30) for

variations in (a) initial stratification on the shelf, (b) length scale of the forcing, and (c) offshore deformation radius

(through variations in a). The solid lines in (a), (b), and (c) are the transports predicted by (30), integrated for 1 day.

(d) The ratio of the lower-layer streamfunction to the upper-layer streamfunction as a function ofPbT for a series of

model calculations varying g and x0.
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increasing offshore transport with increasing offshore

stratification. The solid line is the transport estimate

given by (30) based on the offshore deformation radius.

It generally compares well with the model results, al-

though it does slightly underpredict the transport for

large a. This is likely because there is some initial

stratification over the slope, and the offshore transport

further increases the stratification by advecting shelf

water offshore. However, to leading order, the initial

local stratification determines the offshore transport

following (30). The finite transport at Rd 5 0 is the same

influence of barotropic Rossby waves, as seen in Fig. 9a.

The influence of coupling between the upper and

lower layers is tested by varying the coupling parameter

g. The theory predicts that the nondimensional number

PbT (23) controls the ratio of the transport in layer 2 to

that in layer 1. The value of PbT was varied in the model

by changing g and/or the atmospheric forcing length

scale x0. The resulting range of PbT was between 0.03

and 300. The model was then run until the offshore

transport equilibrated. For small PbT, (weak coupling)

the transport in layer 2 is much less than the transport in

layer 1. This is because the weak momentum flow to the

deep ocean is rapidly damped by bottom drag. The

lower-layer transport increases roughly linearly with

increasing PbT until this parameter is O(1), at which

point the flow is nearly barotropic and shows no further

increases (Fig. 9d).

4. Discussion

The response of the coastal region to forcing repre-

senting the action of localized jets of wind issuing from

oceanic fjords is strongly conditioned by the nature of

the topography.Our theoretical model, although limited

by the use of quasigeostrophic theory, identifies the

main ingredients determining the response. Over the flat

shelf region a strong circulation develops limited by

bottom friction when the lateral scale of the forcing

exceeds the deformation radius and permitting a baro-

tropic response. On the other hand sufficiently strong

stratification allows stronger motion, limited to the up-

per layer and constrained only by relatively weakmixing

between the layers.

Over the slope region the topographic beta effect is

dominating in the steady and low-frequency portion of

the response. Strong enough stratification masks the

effect of the topography but also limits the response of

the wind driving largely to the upper layer except for

high-frequency components of the response revealed in

the numerical calculations of section 3. The result of

sheltering the response from the topographic beta effect

leads to a much larger transport over the slope in the

steady state, even though limited to the upper layer. The

localized nature of the forcing and response means that

there is little net mass flux across the shelf. The dipole

advects shelf water offshore and offshore water onto the

shelf. The net property flux across the shelf break will

depend on many other processes, such as time de-

pendence,mixing, spatial variability, and ambient currents,

so the theory provides an upper-bound estimate for the net

property flux between the shelf and the open ocean.

The spatial extent of the time-dependent approach to

equilibrium is seen in both the theory and numerical

model results to be limited by the absence of a net

vorticity source in the forcing. The interference of the

positive and negative regions of the forcing leads to a

rapid spatial decay of the waves produced by the onset

of the forcing. At the same time, the presence of strati-

fication induces amore rapid spinup of the lower layer to

its equilibrium state.

Typical parameters for southeast Greenland are

t 5 1Nm22, x0 5 50km, h1 5 100m, and g0 5 0.015. If

the wind stress is applied for 1 day, from (30), the off-

shore transport will increase from 0 at time 0 to ap-

proximately 0.4 Sv. If it is assumed that this offshore

transport persists for another day before being dis-

rupted, this would give a total offshore flux of approxi-

mately 5 3 1010m3. This is comparable to the observed

flux forced out of Sermilik Fjord by katabatic winds

(Jackson 2016; Spall et al. 2017). It is estimated that

there are 4–8 strong wind events per year, so this would

result in an offshore flux of 2–43 1011m3 of low-salinity

shelf water per year fromwinds associated with Sermilik

Fjord. If we take a representative salinity of the shelf

water as 31, this gives a total volume of freshwater fluxed

offshore as approximately 20–40 km3 yr21. This com-

pares with a total southward freshwater flux of approx-

imately 1500km3 yr21 in the East Greenland Current

and 500km3 yr21 from glacial discharge on Greenland

(Holfort et al. 2008). Additional offshore fluxes are ex-

pected downwind of other east Greenland fjords, such as

Kangerdlugssuaq and Nansen Fjords. While the un-

certainties are large, particularly the duration of the

dipole circulation, these estimates of cross-shelf trans-

ports indicate that local wind-driven exchange repre-

sents an important component of the freshwater budget

on the east Greenland shelf.

To provide simple, but clarifying, solutions to the

question of wind-driven offshore flux across the slope,

we have made several strong assumptions and neglected

potentially important additional processes. Given that

most of the strong katabatic wind events are found in

winter, ice may be important in two ways. First, it acts as

an intermediary in the transmission of momentum from

the wind to the ocean. For very thick, immobile icemuch
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of the stress imparted from the wind on the ice is lost to

internal ice stresses and is not transmitted to the ocean.

On the other hand, for partial ice cover the amount of

momentum transmitted to the ocean can be larger than

for an ice-free ocean because of large air–ice and ice–

ocean drag coefficients. The second way that ice may be

important is as a direct means of freshwater flux. Ice

will be advected both by direct wind stress and from

the ocean advection beneath. So even in cases for which

the bottom topography suppresses strong ocean cur-

rents, these winds may transport ice from the shelf to

the basin interior. We have also for the most part ne-

glected ambient currents, both in the interior and on the

shelf. These currents may interact with the locally wind-

driven flows studied here and alter their persistence or

freshwater flux.
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