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ABSTRACT

A linear stability analysis of a meridional boundary current on the beta plane is presented. The boundary
current is idealized as a constant-speed meridional jet adjacent to a semi-infinite motionless far field. The
far-field region can be situated either on the eastern or the western side of the jet, representing a western
or an eastern boundary current, respectively. It is found that when unstable, the meridional boundary
current generates temporally growing propagating waves that transport energy away from the locally
unstable region toward the neutral far field. This is the so-called radiating instability and is found in both
barotropic and two-layer baroclinic configurations. A second but important conclusion concerns the dif-
ferences in the stability properties of eastern and western boundary currents. An eastern boundary current
supports a greater number of radiating modes over a wider range of meridional wavenumbers. It generates
waves with amplitude envelopes that decay slowly with distance from the current. The radiating waves tend
to have an asymmetrical horizontal structure—they are much longer in the zonal direction than in the
meridional, a consequence of which is that unstable eastern boundary currents, unlike western boundary
currents, have the potential to act as a source of zonal jets for the interior of the ocean.

1. Introduction

Radiating instability refers to an instability of the
mean flow that propagates energy away from the
source of instability. It can be contrasted with a trapped
instability, the influence of which is confined mainly to
the locally unstable region and has no impact on the far
field. Previous studies have shown that parallel zonal
eastward barotropic jets do not support radiating insta-
bilities (Talley 1983). For these currents, the perturba-
tion energy stays trapped near the mean jet and none is
radiated toward the far field. However, radiating insta-
bilities are possible if the far field is made baroclinic or
if a westward component is added to the jet (Talley
1983). Another way to obtain radiation is by introduc-
ing even slight nonzonality in the mean flow (Kamen-
kovich and Pedlosky 1996).

A meridional current can be seen as an extreme case

of nonzonality. The stability of meridional currents is
less studied in the literature but is nonetheless of great
interest. Because of the presence of continents, bound-
ary currents that are meridional or close to meridional
are present on both sides of most ocean basins. Un-
stable boundary currents can be an important source of
eddy kinetic energy. If the instabilities are radiating,
then the energy of the disturbances will be transported
long distances and will be able to potentially affect the
mean circulation and its variability in the interior of the
basin. Radiating instabilities propagate energy away
from the locally unstable region by coupling to the free
Rossby waves in the far field. This brings attention to a
possible difference between eastern and western
boundary currents. Because short and long Rossby
waves have different zonal directions of propagation, it
introduces an asymmetry between eastern and western
boundary currents. One could expect, therefore, differ-
ent radiating properties depending on which side of the
basin the current is situated on.

There are several previous studies relevant to the
stability of meridional flows. In Walker and Pedlosky
(2002), attention is paid to the baroclinic instability of a
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two-layer meridional flow in a channel. Compared to its
zonal counterpart, the main distinction is that an arbi-
trarily small vertical shear leads to growing perturba-
tions. The lack of critical threshold for linear stability is
a consequence of the fact that the contributions to the
mean potential vorticity gradient coming from the plan-
etary vorticity and the mean shear are in different di-
rections. Meridional currents are also known to have
radiating instabilities. In Fantini and Tung (1987), the
particular case of a meridional barotropic boundary
current situated on the western side of a basin and ad-
jacent to a motionless, semi-infinite region is addressed.
The authors find that radiating unstable waves are gen-
erated, which propagate energy eastward toward the
ocean interior. The unstable waves have long meridio-
nal wavelengths and phase speeds that are larger than
those of the jet that generates them.

The objective here is to expand our knowledge of
radiating instabilities of meridional boundary currents.
This is done in the context of a layered quasigeo-
strophic (QG) model on the � plane with no dissipa-
tion. As in Fantini and Tung (1987), the boundary cur-
rent is idealized by a piecewise constant profile
bounded by a solid wall on one side and a semi-infinite
motionless far-field region on the other side. By solving
the resulting linear stability problem, one can find
whether and under what conditions the meridional cur-
rent can have radiating instabilities. Compared to pre-
vious studies, emphasis is placed on the differences be-
tween the stability properties of eastern and western
boundary currents. Also, both barotropic and two-layer
baroclinic configurations are studied.

The plan of the presentation is as follows: section 2
presents the formulation of the problem and discusses
the results for the barotropic QG model. It also gives
some extended discussion on the structure of the radi-
ating instabilities. Section 3 deals with the stability of a
purely baroclinic meridional current using a two-layer
QG model. Some final conclusions and physical impli-
cations are given in section 4.

2. The barotropic case

a. Formulation

For reasons of mathematical convenience, the bound-
ary current is idealized as the piecewise constant me-
ridional velocity profile

V � �V*, |x| � x0

0, |x| � x0

, �1�

as in Fantini and Tung (1987). The velocity V* is taken
positive without loss of generality. Depending on where
the motionless far field is located, the flow corresponds
to a western or an eastern boundary current as shown in
Fig. 1. The basic state is sustained by some large-scale
forcing, not specified here because it does not appear in
the linear stability problem. The departures �(x, y, t)
from the basic state are decomposed into normal
modes:

��x, y, t� � Re���x�eim�y�ct��, �2�

where m is the meridional (downstream) wavenumber
and c is the phase speed in that direction. The ampli-
tude 	(x) satisfies the linearized barotropic quasigeo-
strophic potential vorticity equation

�V � c���� � m2�� 

Qy

im
�� � Qx� � 0, �3�

where (Qx, Qy) is the potential vorticity gradient of the
basic state given by

Qx �
d2V

dx2 , Qy � �. �4�

All variables above are nondimensionalized using as
scales the current width L* � 2x0 and the current ve-
locity V*. The nondimensional planetary vorticity gra-
dient is � � �0L2

*/V*.
For the basic state chosen here, Eq. (3) can be further

simplified because the horizontal shear and Qx are
identically zero. Special care has to be taken, however,

FIG. 1. Basic state for the stability problem. Configurations for (a) a western and (b) an
eastern boundary current.
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of the points x � �x0, where the velocity V is discon-
tinuous. At these points, jump conditions derived from
Eq. (3) hold (Kamenkovich and Pedlosky 1996). Their
role is to impose the continuity of the streamline slopes
and the tangential pressure gradient

�� �

V � c�� 0, ���V � c��� 

�

im
��� 0. �5�

Here, �[ • ] indicates the jump of the quantities in the
brackets at the point x � 
x0 for a western boundary
current and x � �x0 for an eastern boundary current.
The boundary condition on the other side of the cur-
rent, where there is a solid wall, is 	 � 0 (i.e., no-normal
flow).

The advantage of choosing a piecewise constant basic
flow is that the stability problem (3) becomes a constant
coefficient ODE. The amplitude 	 is thus of the form
	 � Aeikx, where the zonal wavenumber k is related to
the phase speed c, the meridional wavenumber m, and
the other parameters of the problem through a disper-
sion relation. What is left is to impose the boundary and
jump conditions at x � �x0, which leads to a homoge-
neous algebraic system. The eigenvalues c are found by
solving numerically the nonlinear equation that results
from requiring the determinant of the homogeneous
system to be zero so that there is a nontrivial solution.
Once the eigenvalues c are found, the solution in both
the far field and the boundary current region can be
reconstructed. More details on the method of solution
are given in the appendix.

b. Identifying the radiating instabilities

Suppose that for a given parameter � and a meridi-
onal wavenumber m we have found a value for the
phase speed c such that the stability problem (3) as well
as all boundary and jump conditions are satisfied. In the
far-field region (|x| � x0), the solution is then of the
form

��x, y, t� � Re�Aeikrxeim�y�crt��e�kixemcit, �6�

where the zonal wavenumber k is related to the fre-
quency � � cm (in general, a complex number) through
the barotropic Rossby wave dispersion relation

cm � �
�k

k2 
 m2 . �7�

The solution (6) consists of a wave with amplitude en-
velope that for unstable modes (mci � 0) is growing in
time and decaying with distance from the source. The
spatial decay is a consequence of the fact that for a
perturbation growing in time and propagating, the am-
plitude observed far from the source has been gener-
ated at an earlier time and is thus smaller than what is

currently observed near the source. From (7) it follows
that for each eigenvalue c, there are two solutions for
the zonal wavenumber k. As shown in Fantini and Tung
(1987), these two solutions have opposite-signed imagi-
nary parts ki as well as zonal group velocities. One of
these solutions is appropriate for a western boundary
current and the other for an eastern boundary current,
because the two configurations require different sign ki

to have vanishing perturbation at infinity [see (6)].
Equivalently, one can say that given the eigenvalue c,
the far-field solution consists only of the Rossby wave
that has zonal group velocity away from the locally un-
stable region.

Because a radiating unstable solution decays into the
far field very much as it is expected from a trapped one,
it may be confusing at first how to distinguish between
the two. The distinction, however, is clear in the weakly
unstable limit. In the limit ci → 0, the far-field structure
of a radiating solution becomes a pure Rossby wave
(i.e., ki → 0), while for a trapped solution ki stays finite.
A mathematical expression of the statement above can
be obtained from expanding the complex Rossby dis-
persion relation (7) in a Taylor series where ki is the
small parameter (i.e., k � kr 
 iki and |ki| K |kr|). If
only the first-order term in ki is kept, we obtain for the
eigenvalue

c�kr 
 iki� � c�ki � 0� 
 iki

	c

	k
�ki � 0� 
 O�ki

2�. �8�

The real part of (8) states that

cr � c�ki � 0� � �
�kr

m�kr
2 
 m2�

. �9�

In other words, in this limit the real parts of the eigen-
value c and the zonal wavenumber k are related
through the Rossby dispersion relation. In particular,
for given � and m, there is a real-valued solution for
kr only if the phase speed cr lies within the allowable
range for barotropic Rossby wave phase speeds, which
is ��/2m2 � cr � �/2m2. For meridional phase speed cr

that satisfies this condition, there are two possible val-
ues for kr that correspond to a zonally long (kr � m)
and zonally short (kr � m) wave and are solutions for
an eastern and a western boundary current, respec-
tively. If cr does not satisfy the condition above, then kr

is actually complex and the solution in the far field is
exponentially decaying, not a radiating wave.

The imaginary part of (8) states that

ci � ki

	c

	k
�ki � 0� �

ki

m
cg

x�ki � 0�, �10�

where cx
g � �(k2

r � m2)/(k2
r 
 m2)2 is the zonal group

velocity of free barotropic Rossby waves. It follows that
the spatial decay scale in the far-field 1/ki is propor-
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tional to the group velocity cx
g and the inverse of the

growth rate mci. Thus, radiating unstable waves have
amplitude envelopes that decay away from the source
because packages of bigger and bigger amplitude are
propagated at cx

g as time advances.
For practical purposes, to determine if an eigenmode

corresponds to a radiating instability, one follows the
unstable mode until it becomes marginally stable (i.e.,
ci � 0). If ki also vanishes in this limit, then the insta-
bility is radiating. The mode has a radiating wave struc-
ture in the far field roughly as long as 0 � |ki| � |kr|
(Fantini and Tung 1987; Kamenkovich and Pedlosky
1996).

c. Results

The only nondimensional parameter that character-
izes the barotropic problem is the � parameter, defined
previously as � � �0L2

*/V*, where L* and V* are the
current width and velocity, respectively. The linear sta-
bility problem defined in section 2a is solved for the
specific choice � � 0.5, a typical order one value, but
the results are qualitatively representative of the gen-
eral behavior of the system. When solving the eigen-
value problem, we are interested in finding the unstable
eigenvalues and following them as the meridional
wavenumber m is varied so that we can determine
whether they are radiating or not.

1) WESTERN BOUNDARY CURRENT

The results are in essence the same as in Fantini and
Tung (1987), except for the different choice of �. In the
short-wave end of the explored range of meridional
wavenumbers, there is a single unstable eigenvalue

(solid black line in Fig. 2) that asymptotes to c � 0.5 

i0.5 when m → 
�. The lack of short meridional wave
cutoff is artificial and is due to the choice of discontinu-
ous basic-state profile. When the meridional wavenum-
ber m is decreased, the growth rate mci for this mode
decreases and reaches zero at m* � 0.355 while its
meridional phase speed cr increases and eventually be-
comes larger than one (i.e., faster than the current).
Besides this mode, an additional number of unstable
eigenvalues, not mentioned in Fantini and Tung (1987),
are found (a representative is shown in Fig. 2 with a
solid gray line). All these modes have cr � 1; that is,
they are faster than the current (see Fig. 2a). Because of
the trend of ci to decrease to zero while cr goes to 1
when the meridional wavenumber is increased, they are
thought to originate in their short-wave limit from the
singular point c � 1. Because of the singularity, how-
ever, the point c � 1 cannot be reached numerically and
this is only assumed. Their growth rates are signifi-
cantly weaker, but they exist for slightly smaller values
of m � m* (see Fig. 2b). Nevertheless, as concluded in
Fantini and Tung (1987), it is found that there is a long
meridional wave cutoff for the linear stability of a west-
ern boundary current. Hence, for meridional wavenum-
bers below the cutoff value, all eigenvalues have nega-
tive imaginary parts (i.e., the current is linearly stable).

Concerning the radiating nature of the instabilities, it
is the long-wave end of the explored range of meridi-
onal wavenumbers, when cr � 1, that qualifies as radi-
ating. In Fig. 3a the logarithm of the ratio |kr|/|ki|, kr,
and ki being the real and imaginary part of the zonal
wavenumber in the far field, is plotted as a function of
m. For all modes, when the meridional wavenumber is
decreased, the ratio |kr|/|ki| goes to infinity while the

FIG. 2. (a) Meridional phase speed and (b) growth rate as a function of the meridional wavenumber for the barotropic case with
� � 0.5. Solid lines are used for the western boundary current and dotted–dashed lines for the eastern boundary current. For each
configuration, the most unstable eigenvalue is shown in black and the next unstable eigenvalue in gray.
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growth rate decreases, which indicates that in the limit
of zero growth rate the solution is a pure wave (ki � 0).
The modes have a radiating wave structure, defined by
|kr| � |ki| or positive values for log(|kr|/|ki|), over some
interval of meridional wavenumbers before they stabi-
lize. The structure of the eigenmodes in the far field
depends strongly on the meridional wavenumber and
the growth rate. In general, the weaker the growth rate,
the shorter in the zonal direction are the radiated waves
and the larger is the amplitude envelope decay scale.
In Fig. 4 a typical example of a far-field solution is
shown. The radiating wave has a meridional wave-
length of 2�/m � 18 current widths, a zonal wavelength
of 2�/kr � 5 current widths, and an envelope decay
scale of 1/ki � 90 current widths. For example, if the
parameter � � 0.5 is representative of a 100-km wide
current with speed 40 cms�1, then the radiated wave
has a zonal wavelength of 500 km, an envelope decay
scale of 9000 km, and a growth rate of approximately
(2.5 yr)�1.

2) EASTERN BOUNDARY CURRENT

To satisfy the condition of a vanishing perturbation
at infinity, a western boundary current selects solutions
in the far field that have positive zonal group velocity,
while for an eastern boundary current the solutions
have negative zonal group velocity. This difference has
a strong effect on the stability properties of the current.

The short-wave end of the explored range of merid-
ional wavenumbers is similar for the western and east-
ern configurations. There is a single unstable eigen-
value (dotted–dashed black line in Fig. 2) that asymp-
totes to c � 0.5 
 i0.5 when m → 
�. Looking back at
Eq. (3), one can see that in this limit the term �/im
responsible for the asymmetries in the propagation
properties between east and west is not important.
When the meridional wavenumber is decreased, how-
ever, differences appear. The meridional phase speed cr

of the mode decreases, unlike for the western boundary
current case. When the mode finally stabilizes at m* �

FIG. 4. Structure of a radiating wave (left) for the western and (right) eastern boundary currents for the barotropic case. Only
the real part of the solution in the far-field 	(x) is plotted as a function of x. Western boundary current: m � 0.348, cr � 1.153, mci �
3.2 � 10�3, k � �1.140 
 i0.011. Eastern boundary current: m � 0.348, cr � 0.773, mci � 3.2 � 10�3, k � �0.068 � i0.001.

FIG. 3. Logarithm of the ratio |kr|/|ki| as a function of the meridional wavenumber for the barotropic case for the (a) western and (b)
eastern configurations. Here, kr and ki are the real and imaginary parts, respectively, of the zonal wavenumber in the far field. Line and
black–gray code as in Fig. 2. Positive values indicate radiating wave structure.
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0.080, its meridional phase speed is equal to minus one
(i.e., it is opposite to the basic state current).

In addition to this mode, there are also other un-
stable eigenvalues (a representative is shown in Fig. 2
with a dotted–dashed gray line). Again, due to the
trend of ci to decrease to zero while cr goes to 1 when
the meridional wavenumber is increased, it is thought
that these eigenvalues originate in their short-wave
limit from the singular point c � 1, but because of the
singularity, the limit cannot be reached numerically.
The meridional phase speed for these modes decreases
when m gets smaller and becomes cr � �1 [i.e., oppo-
site to the basic state current, when the modes stabilize
(see Fig. 2a)]. Their growth rates are zero in both ex-
tremities and reach a maximum somewhere in between
(see Fig. 2b). There are infinitely many eigenvalues
(not only the one shown in the figures) with similar
behavior, which reach their maximum growth rate at
smaller and smaller values of m. A major difference
from the western boundary current is that the accumu-
lation point for these eigenvalues is m � 0 rather than
m finite. In other words, there is no long meridional
wave cutoff for the linear stability of an eastern bound-
ary current.

Concerning the radiating nature of the instabilities,
the logarithm of the ratio |kr|/|ki|, where k is the zonal
wavenumber in the far field, is plotted in Fig. 3b as a
function of the meridional wavenumber. Because for all
eastern boundary current modes the meridional phase
speed changes sign (it goes from being positive to �1
when m is decreased; see Fig. 2a), so does the real part
of the zonal wavenumber in the far field. This corre-
sponds to the minima of the dashed curves in Fig. 3b,
where the far-field solution is characterized with kr � 0.
The solution has a radiating wave structure, as indi-
cated by the positive values for log(|kr|/|ki|), to the left
of the minimum (for all modes) and to the right of the
minimum (for all but the leading unstable mode).

The long meridional wave end corresponds to a ra-
diating instability, as for the western boundary current,
because both ki and the growth rate vanish. However,
in this limit kr � 10�4 or smaller, depending on the
mode, which leads to radiating waves with extremely
long zonal wavelengths on the order of 10 000 current
widths or more. Unlike for the western boundary cur-
rent, there is an infinite number of eigenmodes with
radiating wave structure toward the short meridional
wave end. For all modes but the most unstable one, for
values of the meridional wavenumber to the right of the
minimum, the far-field solution is characterized with
|kr| k |ki| [positive values for log (|kr|/|ki|)], while the
growth rate is very weak, which is an indication of an

eigenmode with horizontally radiating structure. In
general, the smaller the meridional wavenumber, the
stronger the growth rate and the greater the zonal
wavelength of the radiated wave, with typical values
between 20 and 2000 current widths.

An example of a far-field solution on the short me-
ridional wave side of the minimum is shown in Fig. 4.
The radiated wave has a meridional wavelength of
2�/m � 18 current widths, a zonal wavelength of
2�/kr � 90 current widths, and an envelope decay scale
of 1/ki � 1000 current widths. The solution has been
chosen to have exactly the same growth rate as the
solution for the western boundary discussed before. For
the same growth rate, its longer envelope decay scale is
due to the greater zonal group velocity: cx

g � �3.69 for
the eastern compared to cx

g � 0.29 for the western
boundary current, where the group velocity cx

g is given
in units of the current velocity V*. This is consistent
with the analysis in section 2b that the radiated waves
from the eastern side are characterized with longer
zonal wavelengths and a slower amplitude envelop de-
cay due to the greater zonal group velocities than their
western boundary counterpart.

As a final remark, in this barotropic model the only
energy source for the growing instabilities is associated
with the jump in the basic-state velocity. Thus, the ra-
diating waves are considered the result of a Kelvin–
Helmholtz-type instability of the flow.

3. The baroclinic case

In this section the problem of the linear stability of a
purely baroclinic meridional current adjacent to a mo-
tionless far field is addressed using a two-layer QG
model. The introduction of vertical structure leads to a
model able to represent more physical processes. Spe-
cifically, the mean flow instabilities can be of the
Kelvin–Helmholtz type, as in the barotropic case pre-
sented in section 2, or baroclinic instabilities because of
the presence of vertical shear.

a. Formulation

For the two-layer case, the basic-state profile is again
piecewise constant as sketched in Fig. 1, except that
now the flow is chosen to be purely baroclinic:

V1,2 � ��
Vs

2
, |x| � x0

0, |x| � x0

. �11�

Without loss of generality, the vertical shear VS is cho-
sen to be positive. The perturbation streamfunctions
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for each layer �n(x, y, t) are once more decomposed
into normal modes, �n(x, y, t) � Re[	n(x) eim(y�ct)],

where the amplitudes 	n(x) satisfy the linearized quasi-
geostrophic potential vorticity equation

�Vn � c����n � m2�n 
 ��1�nFn��1 � �2�� 

Qn,y

im
��n � Qn,x�n � 0. �12�

Here, (Qn,x, Qn,y) is the potential vorticity gradient of
the basic state given by

Qn,x �
d2Vn

dx2 
 ��1�nFn�V1 � V2�, Qn,y � �. �13�

All variables above are nondimensionalized, using as
scales the vertical shear (VS) and the Rossby deforma-
tion radius Ld � �2g�H1H2/f 2

0(H1 
 H2). The nondi-
mensional parameters that appear in Eqs. (12) and (13)
are the scaled planetary vorticity gradient � � �0L2

d/Vs
and the parameters Fn, which are a function of the layer
depths Fn � 2H1H2/Hn(H1 
 H2) with F � F1 
 F2 �
2. Similar to the barotropic case, the jump conditions
given by Eq. (5) as well as the no-normal flow condition
on the solid wall are applied to each layer. The method
of finding the eigenvalues is essentially the same except
for a larger problem size. More details on the method of
solution are given in the appendix.

The analysis from the barotropic case regarding how
to identify the radiating instabilities is helpful for the
two-layer model as well, although the situation is a little
more complex. In the two-layer model, for a given
choice of parameters �, F1/F2, and meridional wave-
number m, the solution in the far field is a superposition
of two waves with zonal wavenumbers kbt and kbc, re-
lated to the frequency � � cm by the barotropic and
baroclinic Rossby wave dispersion relations, respec-
tively:

cm � �
�kbt

kbt
2 
 m2 , cm � �

�kbc

kbc
2 
 m2 
 F

. �14�

For both the barotropic and baroclinic parts of the far-
field solution, an analysis similar to that in section 2b
can be made. In particular, for an eigenvalue c satisfy-
ing the problem, there are two possible values for each
of the wavenumbers kbt and kbc that have opposite-
signed imaginary parts and zonal group velocities. The
solution for a western boundary current has positive
zonal group velocity, while for an eastern boundary
current it has negative zonal group velocity, so that in
both cases we have a vanishing perturbation at infinity.
A solution qualifies as a radiating wave if in the limit of
becoming neutrally stable the imaginary part of kbt or
of both kbt and kbc go to zero. The physical explanation

behind this is the following: because the phase speed
range of barotropic Rossby waves (|cr| � �/2m2) is
wider than that of baroclinic Rossby waves (|cr| � �/
2m�m2 
 F), it may so happen that a solution has a
radiating barotropic part but a nonradiating baroclinic
part. If, however, the phase speed c lies within the range
of the free baroclinic Rossby waves, then we have a
solution that is a radiating wave and could have both
barotropic and baroclinic components.

b. Energetics

In the two-layer QG model, the energy for the grow-
ing instabilities, be they radiating or not, can come from
two sources—Kelvin–Helmholtz-type instability or
baroclinic instability. To determine in what proportions
these two sources contribute, one needs to consider the
energy balance.

The energy equation can be derived by multiplying
Eq. (12) by the complex conjugate amplitude 	*n ,
weighted by the layer depth dn � Hn/H, and summing
over the two layers. After several manipulations and
using the fact that dVn/dx is zero for the piecewise con-
stant velocity profile used here, one can write the final
result as

mciE � mF0�V1 � V2�Im��1�*2� 

dS

dx
, �15�

where E � F0|	1 � 	2| 2 
 �2
n�1dn(|	�n| 2 
 m2|	n| 2) is

the total (potential plus kinetic) wave energy of the
system with F0 � d1F1 � d2F2. The quantity S is a flux
term defined as

S � �
n�1

2
�

2
dn|�n|2 � dnIm�m�Vn � c��*n

d�n

dx �. �16�

The energy flux S is zero at the solid wall and at infinity
and undergoes a jump, proportional to the jump in the
basic-state velocity, at the point where the velocity pro-
file is discontinuous. Integrating Eq. (15) over the
whole domain—from the wall to infinity for a western
boundary current or from minus infinity to the wall for
an eastern boundary current—leads to the following
energy balance:
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0 � �mciE dx � �
�x0

x0

mF0�V1 � V2�Im��1�*2� dx 
 ��S�. �17�

A
B

For a linearly unstable, growing mode, the terms on
the right-hand side have to sum to a positive number.
Term A is the contribution from baroclinic instability
where perturbations grow feeding on the potential en-
ergy of the basic-state flow, proportional to the vertical
shear (V1 � V2). Term B is the contribution from the
flux term, which for ci � 0 is nonzero only because
there is a jump in the basic-state velocity profile at x �

x0 for a western boundary current or at x � �x0 for an
eastern boundary current. This is interpreted as a
Kelvin–Helmholtz type of instability that arises in the
presence of discontinuous velocity profiles. In the baro-
tropic model, the only source for growing perturbations
is term B, while in the two-layer model terms A and B
can combine in different ways and lead to growth.

c. Results

The baroclinic problem is characterized by three
nondimensional parameters, which are �, F1/F2 or the
ratio of the layer depths, and the nondimensional width
of the current 2x0/Ld. In this section, results from cal-
culations made with specific values of these parameters
are shown. The layer depths are taken to be equal,
which translates into F1 � F2 � 1, the width of the current
is set to 10 deformation radii, and � � �0L2

d/VS � 0.5.
As before, when solving the stability problem, the main
objectives are to find the unstable eigenvalues, follow
them as a function of the meridional wavenumber m,
and determine whether they are radiating.

Before going into more details about the results,
some general observations can be made that hold for
both the western and eastern boundary current configu-
rations. An examination of the problem solution shows
that the unstable eigenvalues, if there are such, have
real parts situated between �0.5 � cr � 0.5, the non-
dimensional lower- and upper-layer basic-state veloc-
ity. In other words, the semicircle theorem seems to
apply, although it cannot be proved for the meridional
case (Walker and Pedlosky 2002). Furthermore, with
the equal-layer depth assumption, the stability problem
has the following symmetry property: if c � cr 
 ici is an
eigenvalue of the problem, with corresponding eigen-
vectors [	1(x), 	2(x)], then c � �cr 
 ici is also an
eigenvalue, with corresponding eigenvectors [	*2 (x),
	*1 (x)]. Thus, there are two possibilities for the unstable
eigenmodes: either they have a nonzero real phase
speed, in which case they come in pairs c � �cr 
 ici, or

they have a zero real phase speed c � 0 
 ici. The last
ones are not of interest for radiating instabilities be-
cause cr � 0 implies Re(kbt, kbc) � 0 (i.e., no waves in
the far field).

1) WESTERN BOUNDARY CURRENT

In the short-wave end of the explored range of me-
ridional wavenumbers, there is a single pair of unstable
eigenvalues that asymptotes to c � �0.25 
 i0.25 as
m → 
� (black solid line in Figs. 5a,b). Again, as in the
barotropic case, the lack of short-wave cutoff is related
to the choice of piecewise constant basic-state profile
with an infinitely thin region of horizontal shear. In
addition to the leading pair, there are other pairs of
unstable eigenvalues (two representatives are shown in
Figs. 5a,b with gray solid lines). They originate from
eigenvalues with zero real part (gray dashed lines in
Figs. 5a,b) that collide and split into two unstable eigen-
values with nonzero real parts. When the meridional
wavenumber is decreased, for all unstable pairs, the
meridional phase speed cr goes to �0.5, the upper- and
lower-layer velocities, while the growth rate decreases.
It was not possible to reach exactly the zero growth rate
limit because the points c � �0.5 are singular and it is
very difficult to track eigenvalues in their vicinity. It is
thought, however, that the modes stabilize when their
meridional phase speed reaches the upper- or lower-
layer velocity because of the decreasing trend for ci.
There is an infinite number of unstable pairs that origi-
nate from zero meridional phase speed modes at
smaller and smaller meridional wavenumbers. Their ac-
cumulation point, however, is some finite critical wave-
number below which there are no more unstable
modes. Thus, similar to the barotropic western bound-
ary current, there is a long meridional wave cutoff for
the linear stability of a purely baroclinic western
boundary current.

Concerning the radiating nature of the instabilities,
the logarithm of the ratios |kbt

r | /|kbt
i | and |kbc

r | /|kbc
i | ,

where kbt and kbc are the zonal wavenumbers for the
barotropic and baroclinic parts of the far-field solution,
are plotted as a function of the meridional wavenumber
in Figs. 5c,d, respectively. These plots show only the
modes with nonzero meridional phase speed, which are
the only ones that can possibly have wave structure in
the far field. Although it was not possible to reach ex-
actly the limit ci � 0, there is an indication that for both
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the barotropic and the baroclinic parts of the solution
the long-wave end of the explored range of meridional
wavenumbers is radiating because |kr| k |ki| while
mci → 0. This is especially true for the pairs of modes
that destabilize at smaller meridional wavenumbers but
not so much for the leading pair of unstable modes.
Note that although the eigenmodes with radiating
structure in the far field are found toward the long-
wave end of the explored range of meridional wave-
numbers (m � 0.75), the corresponding meridional
wavelength of the disturbances is actually not so
large—it is only a couple of deformation radii.

Finally, it is worth noticing that the stability picture,
where pairs of unstable modes originate from modes
with zero meridional phase speed and stabilize when
they reach the basic-state velocities, is very similar to
what is occurring in a meridional flow confined in a
channel: the configuration studied in detail in Walker
and Pedlosky (2002) and Pedlosky (2002). The reason
for the instability in this case is identified as being the
destabilization of Rossby normal modes by the vertical

shear. The resemblance to the channel case suggests
that despite the addition of a motionless far field on one
side of the meridional flow, the same physical mecha-
nism for the instability may be in play.

2) EASTERN BOUNDARY CURRENT

The eigenvalue analysis of an eastern boundary cur-
rent is qualitatively similar for the most part to the
western counterpart. In the short-wave end of the ex-
plored range of meridional wavenumbers, there is a
single unstable pair that asymptotes to c � �0.25 

i0.25 (black solid line in Figs. 6a,b). Additional pairs of
unstable eigenvalues appear from the splitting of zero
meridional phase speed eigenvalues (two representa-
tives are shown in Figs. 6a,b with gray solid line). When
the wavenumber is decreased, the meridional phase
speed for all unstable pairs goes toward cr � �0.5, the
upper and lower basic-state velocities, where the modes
are thought to stabilize (although the exact zero growth
rate limit cannot be reached computationally). This

FIG. 5. For the baroclinic western boundary current configuration with � � 0.5 and F1 � F2 � 1, (a) meridional phase speed, (b)
growth rate and logarithm of the ratio |kr|/|ki| for the (c) barotropic and (d) baroclinic parts of the far-field solution as a function of the
meridional wavenumber. The first 10 unstable eigenvalues are shown using black solid lines for the leading unstable pair, gray solid lines
for the next unstable pairs, and gray dashed lines for the eigenvalues with cr � 0 (nonradiating).
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again bears similarities to the instability of a meridional
channel flow studied in Walker and Pedlosky (2002).

There are also some differences from the western
case. First, there is a range of meridional wavenumbers
over which the additional pairs are the most unstable
modes with growth rates almost twice as large as the
leading pair. Another difference is that there is a whole
group of weakly unstable eigenmodes, not present in
the western case (two such pairs, the most unstable
ones, are shown in Figs. 6a,b with black dotted–dashed
lines). These weakly unstable modes are characterized
with meridional phase speeds that decrease from cr �
�0.5 toward cr � 0 when the meridional wavenumber is
decreased. These modes seem to be at the origin of the
zero meridional phase speed modes (gray dashed line in
Figs. 6a,b)—when a pair of weakly unstable modes
reaches cr � 0, they collide and a single unstable eigen-
value with cr � 0 appears. As we will see later, the
energetics for these weakly unstable modes is also dif-
ferent, which suggests that a different mechanism for
the instability is at play. Finally, similar to the baro-
tropic case, the accumulation point for the infinite num-

ber of unstable modes is m � 0, so that there is no long
meridional wave cutoff for the linear stability of a
purely baroclinic eastern boundary current.

Concerning the presence of radiating waves, the
logarithm of the ratios |kbt

r | /|kbt
i | and |kbc

r | /|kbc
i | are

plotted for all nonzero meridional phase speed modes
in Figs. 6c,d, respectively. In a comparable way to the
western case, it is the long-wave end of the explored
range of meridional wavenumbers that seems to be ra-
diating, because |kr| k |ki| while mci → 0 for both the
barotropic and the baroclinic part. Exceptions are the
weak growth rate eigenmodes that exist in the eastern
case only. For these modes, neither their short- nor
their long-wave limit is radiating, even though the
eigenvectors have a radiating wave structure in the far
field [positive values for log (|kbt

r | /|kbt
i |) and log (|kbc

r | /
|kbc

i | )] for some range of meridional wavenumbers in
between.

Examples of radiating wave solutions for the western
and eastern configurations are shown in Fig. 7. First, as
could be expected, waves from the western side are
characterized by smaller zonal wavelengths and faster

FIG. 6. As in Fig. 5, but for the baroclinic eastern boundary current configuration. The first 14 unstable eigenvalues are shown using
black solid lines for the leading unstable pair, gray solid lines for the next unstable pairs, gray dashed lines for the eigenvalues with
cr � 0 (nonradiating), and black dotted–dashed lines for the weakly unstable pairs, present in the eastern case only.
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amplitude decay away from the current compared to
the eastern case. For the western boundary current so-
lution, the radiated barotropic and baroclinic waves
have comparable zonal wavelengths on the order of two
to three deformation radii and an envelope decay scale
on the order of one to two deformation radii. For the
eastern boundary current solution, the baroclinic wave
is of zonal length 2�/kbc

r � 10 deformation radii, while
the barotropic wave is much longer: 2�/kbt

r � 160 de-
formation radii. Because the envelope decay scale for
the baroclinic part is much shorter compared to that for
the barotropic part however (6 compared to 140 defor-
mation radii), the solution far away from the current is
predominantly barotropic. Second, a peculiarity about
the horizontal structure of the far-field solution is
brought to light if one looks at the meridional wave-
length of the radiated waves. For both the eastern and
the western case solutions, the meridional wavelength
of the waves is on the order of 2�/m � 15 deformation
radii, while their zonal wavelengths are significantly dif-
ferent. We find that waves radiated from the eastern
side tend to be asymmetric, in the sense that they are
much longer in the zonal direction than in the meridi-
onal. This leads to a velocity field with a zonal compo-
nent much larger than the meridional component,
which would cause the radiating waves to appear, as
they propagate in the far field, more like zonal jets than
localized wave packets or eddies.

3) ENERGETICS

An inspection of the energy balance for the unstable
eigenmodes can give some insight into the processes
responsible for the instability. For the leading pair
(black solid lines in Figs. 5, 6), especially in the short-
wave end of the explored range of meridional wave-
numbers, the most important energy source is term B,
or Kelvin–Helmholtz-type instability related to the
jump in the basic-state velocity profile. This holds for

both the western and eastern boundary current setups
and supports the idea that the lack of short-wave cutoff
is due to the choice of discontinuous velocity profile.
Concerning the other pairs of unstable eigenmodes
(solid gray lines in Figs. 5, 6), there is a significant dif-
ference between the western and eastern configura-
tions. For the western case, the dominant energy source
is term A, or the baroclinic instability, while term B,
related to the jump in the basic-state velocity, is negli-
gible (see the western solution in Fig. 7). For the east-
ern case, both terms A and B are positive and contrib-
ute in comparable amounts (see the eastern solution in
Fig. 7). The fact that in both configurations the baro-
clinic conversion term A is important for the pairs of
eigenmodes originating from splitting of modes with
zero real part eigenvalues further supports the connec-
tion to the meridional channel flow instability due to
the destabilization of Rossby normal modes by the ver-
tical shear, as discussed in Walker and Pedlosky (2002)
and Pedlosky (2002). Finally, for the weak growth rate
eigenmodes that exist only in the eastern configuration
(black dotted–dashed lines in Fig. 6), the baroclinic
conversion term A is negative, while term B related to
the jump in the mean velocity is positive and slightly
bigger in magnitude so that we have a growth overall.
This is a different energy balance compared to the
other unstable modes, which suggests a different insta-
bility mechanism.

One can also use the energy balance to get some
indications about the potential effect of the radiating
modes on the current. The solutions shown in Fig. 7
have been plotted with a mode amplitude chosen so
that the perturbation velocities within the boundary
current region are of the same order as the basic-state
current itself. Although one would not expect a linear
stability analysis to hold at such large amplitudes, this is
a reasonable assumption for regions of unstable oceanic
currents, where the meanders lead to perturbations of

FIG. 7. Structure of a radiating wave for the (left) western and (right) eastern boundary currents for the baroclinic case. Only the real
part of the solution in the far field 	(x) is plotted as a function of x. Solid line is the barotropic part; dashed line is the baroclinic part
of the solution. Western boundary current: m � 0.486, cr � �0.326, mci � 2.1 � 10�2, kbt � 3.021 
 i0.419, kbc � 2.168 
 i0.715. Eastern
boundary current: m � 0.390, cr � �0.324, i � 2.1 � 10�2, kbt � 0.039 – i0.007, kbc � 0.630 � i0.154.
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the same order as the mean, and is done to get realistic
magnitude for the energy fluxes. Given the total energy
contained in the basic state E � �x0

�x0
(V 2

1 
 V 2
2 


V2
sx2)/2 dx , one can then use the fluxes A and B to find

the time needed to utilize all of the basic-state energy
toward growing perturbations. Note that in the frame-
work of the linear stability analysis performed here, the
flow is not actually evolving in time. The basic-state
velocity profile is constantly supplied with energy from
some external forcing (wind, e.g.) so that it is fixed in
time. The depletion time scale defined above is thus
only a hypothetical quantity helpful in judging the ef-
fect of the radiating modes on the current; no actual
time evolution computations are performed.

The depletion time scales found using the fluxes for
the specific solutions in Fig. 7 are on the order of 50–70
time units. Those are comparable to the growth time
scale, which is 1/mci � 48 time units. If the nondimen-
sional parameter � � 0.5 is representative of a current
with deformation radius Ld � 60 km and vertical shear
VS � 15 cm s�1, then the depletion times are on the
annual scale, which implies a minor effect on the cur-
rent.

4. Discussion and conclusions

In this paper we have performed a linear stability
analysis of a meridional boundary current adjacent to a
motionless far field. The current is idealized as a piece-
wise constant linear profile as in Fantini and Tung
(1987), which allows the stability problem to be re-
duced to a nonlinear algebraic equation that can be
solved numerically. We are interested in a special type
of instability of this system. When the phase speed and
wavenumber of the disturbances within the unstable
region are such that they match those of the freely
propagating Rossby waves in the far field, temporally
growing radiating waves with amplitude envelopes that
decay slowly with distance from the source may appear.
These are called radiating instabilities. The existence of
radiating instabilities is of interest because even if the
radiating modes are not the most unstable modes, they
are the only ones that reach the neutral far field. By
transporting perturbation energy away, they have the
ability to affect the circulation far from the locally un-
stable region where the perturbations are generated.

We have considered two different cases of a basic-
state flow: a purely barotropic and a purely baroclinic
meridional velocity profile, because it was determined
that the stability of a more general flow, which is still
piecewise constant but has both barotropic and baro-
clinic components, is a mix of the behavior of the purely
barotropic and purely baroclinic cases.

The first major conclusion of this paper is that unlike
zonal currents, for which special circumstances are
needed, unstable meridional currents are generally
characterized by eigenmodes that have a horizontally
radiating structure. The radiating modes are not neces-
sarily the most unstable ones, but there are usually sev-
eral of them for a given set of parameters. In the two-
layer case, the radiating solutions have both barotropic
and baroclinic components.

A second major conclusion of this paper concerns the
differences in the stability properties of western and
eastern meridional boundary currents. For instance, it
was found that western boundary currents are linearly
stable to perturbations with meridional wavenumbers
below some critical value, while there is no such long
meridional wave cutoff for the linear stability of eastern
boundary currents. What is at the base of these differ-
ences is the requirement that the zonal group velocity
of the radiated waves be away from the locally unstable
region. Consequently, western boundary currents radi-
ate short Rossby waves (kr � m), which have a small
eastward group velocity and a rapidly decaying ampli-
tude envelope away from the current. Eastern bound-
ary currents, on the other hand, radiate long Rossby
waves (kr � m), which have a large westward group
velocity and a slowly decaying amplitude envelope
away from the current. It was determined that not only
do radiating waves from the eastern side penetrate far-
ther into the far-field region but there is a greater num-
ber of them and they can be found over a wider range
of meridional wavenumbers. Another particularity of
the eastern boundary current radiating waves is that
they tend to have an asymmetrical horizontal structure
with a zonal wavelength several times larger than the
meridional wavelength. This leads to a velocity field
with a zonal component much larger than the meridi-
onal component, which would cause the radiating
waves to appear, as they propagate in the far field,
more like zonal jets than localized wave packets or ed-
dies. Circulation in the form of multiple zonal jets has
been observed in the real ocean (Maximenko et al.
2005). In particular, the eastern parts of all basins at
midlatitudes contain signatures of steady alternating
jets with a meridional scale on the order of 200–300 km
and extending zonally for thousands of kilometers
(Maximenko and Niiler 2006). The origin of these jets is
not yet fully understood. The present study brings the
possibility that the observed zonal jets may be related
to radiating instabilities of eastern boundary currents.

We have also looked at the energy balance, which
gives some insight into the sources for the instabilities.
In the barotropic model, the only energy source is a
Kelvin–Helmholtz type of instability due to the discon-
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tinuous velocity profile. In the two-layer case, a second
possible energy source is baroclinic instability because
of the presence of vertical shear. There are some dif-
ferences between the energy balance for the western
and eastern cases. However, the fact that the baroclinic
conversion term contributes significantly to the energy
balance for all unstable modes except the leading one,
for both eastern and western boundary currents, sug-
gests a connection to the meridional channel flow in-
stability studied in Walker and Pedlosky (2002).

As a final word, although the model used in this
study is very idealized, it leads to some interesting con-
clusions concerning the differences between eastern
and western meridional boundary currents and the
characteristics of the radiating waves, all of which are
worth pursuing using more realistic models.
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APPENDIX

Method of Solution

a. The barotropic case

The linear stability Eq. (3) to be solved is a constant
coefficient ODE because the basic-state velocity is con-
stant in the two regions, boundary current |x| � x0 and
far-field |x| � x0. The solution in the boundary current
region, where V is a nonzero constant, is

�in�x� � �
j�1

2

Bje
ikjx, �A1�

where the zonal wavenumbers kj are the two roots of
the second-order polynomial

k2�V � c� �
�

m
k 
 m2�V � c� � 0.

The solution in the far-field region is a particular case
with V � 0 of the boundary current solution. The two
roots of the second-order polynomial in this case are

kbt
� �

�

2cm ��1 ��1 �
4c2m4

�2 �.

Only one of the zonal wavenumbers k�
bt is physically

consistent for the far-field solution. The minus sign cor-
responds to barotropic Rossby waves that have a posi-
tive group velocity—this is the choice for a western

boundary current. The plus sign corresponds to baro-
tropic Rossby waves that have a negative group veloc-
ity—this is the choice for an eastern boundary. There-
fore, the solution in the far-field region, for the western
and eastern boundary currents, respectively, is

�out�x� � B3eikbt
�

�x�x0�. �A2�

For a given parameter � and a meridional wavenum-
ber m, the constants Bj and the eigenvalue(s) c, which
appear in the solutions (A1) and (A2) through the ex-
pressions for the zonal wavenumbers, are found by im-
posing the no-normal flow condition at the wall and the
jump conditions (5) on the side with discontinuous ve-
locity. These conditions translate into the following set
of equations, for the western and eastern cases, respec-
tively:

at x � �x0:�in � 0, �A3�

at x � �x0:
�in

V � c
�

�out

�c
, �A4�

at x � �x0:�V � c�
d�in

dx



�

im
�in � �c

d�out

dx



�

im
�out.

�A5�

It is straightforward to see that after using the ex-
pressions (A1) and (A2), the equations above lead to a
homogeneous 3 � 3 system for the unknown constants
(Bj)

3
j�1. The eigenvalues c are those values for c that

make the determinant of the homogeneous system
zero, so that there is a nontrivial solution for the con-
stants Bj. Once the eigenvalue(s) c are found, if there
are such, the solution in all regions can be recon-
structed.

b. The baroclinic case

The linear stability problem (12) is solved following
the same procedure, except that now we are dealing
with two layers. The solution in the boundary current
region, where Vn are nonzero constants, is

�1
in�x� � �

j�1

4

Bje
ikjx, �A6�

�2
in�x� � �

j�1

4

Bj
je
ikjx,

where


j �
kj

2

F1



�kj

m�c � V1�F1



m2

F1



c � V2

c � V1
,

and the zonal wavenumbers kj are the four roots of the
fourth-order polynomial

�4k4 
 �3k3 
 �2k2 
 �1k 
 �0 � 0,
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with

�4 � �c � V1��c � V2�,

�3 � �2c � V1 � V2�,

�2 � � �

m�2


 �2m2 
 F ��4 
 �V1 � V2��,

�1 �
�

m
�m2�3 
 ��,

�0 � m2��m2 
 F ��4 
 �V1 � V2���,

� � F1�c � V2� � F2�c � V1�.

In the far-field region, where Vn � 0, the fourth-
order polynomial reduces to the barotropic and baro-
clinic Rossby dispersion relations, so that the four roots
kj become

kbt
� �

�

2cm ��1 ��1 �
4c2m4

�2 �,

kbc
� �

�

2cm��1 ��1 �
4c2m2�m2 
 F �

�2 �.

Once more, only one of the signs in the expressions
above corresponds to barotropic and baroclinic Rossby
waves with zonal group velocity in the right direction.
Thus, the solution in the far-field region, for the west-
ern and eastern cases, respectively, is

�1
out�x� �

1
2

B5eikbt
�

�x�x0� 

F1

F
B6eikbc

�
�x�x0�, �A7�

�2
out�x� �

1
2

B5eikbt
�

�x�x0� �
F2

F
B6eikbc

�
�x�x0�.

Applying the no-normal flow condition at the wall
and the jump conditions (5) for each layer translates
into the following set of equations:

at x � �x0:�n
in � 0, n � 1, 2, �A8�

at x � � x0:
�n

in

Vn � c
�

�n
out

�c
, n � 1, 2, �A9�

at x � � x0:�Vn � c�
d�n

in

dx



�

im
�n

in

� �c
d�n

out

dx



�

im
�n

out, n � 1, 2. �A10�

This leads, after using the expressions (A6) and (A7),
to a homogeneous 6 � 6 system for the unknown con-
stants (Bj)

6
j�1. Again, the eigenvalues c are those values

for c that make the determinant of the homogeneous
system zero, so that there is a nontrivial solution for the
constants Bj. Once the eigenvalue(s) c is found, if there
is such, the solution in all regions and layers can be
reconstructed.
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