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Onset of time-dependence in a double-gyre circulation:
Barotropic basin modes versus classical baroclinic modes

by Hristina G. Hristova1, Henk A. Dijkstra2 and Michael A. Spall3

ABSTRACT
Using a fully-implicit high-resolution two-layer quasi-geostrophic model combined with pseudo-

arclength continuation methods, we perform a bifurcation analysis of double-gyre ocean flows to
study their initial oscillatory instabilities. In this model, both wind- and thermally-forced flows can be
represented. We demonstrate that on the branch of anti-symmetric steady-state solutions the ratio, Ω,
of the flow advective speed to the long internal Rossby wave speed determines the type of oscillatory
modes to first become unstable. This is the same nondimensional parameter that controls the shape
of the geostrophic contours in the linear limit of the circulation. For large values of Ω, the first Hopf
bifurcations correspond to the classical baroclinic modes with inter-monthly time periods arising
from shear instability of the flow. For small values of Ω, the first Hopf bifurcations correspond instead
to barotropic Rossby modes with shorter, monthly periods arising from mixed barotropic-baroclinic
instability of the flow. By considering both a wind-forced and a thermally-forced ocean, we show that
this is a robust feature that does not depend on the type of forcing driving the circulation.

1. Introduction

An important problem in physical oceanography is understanding the physics of the time-
mean ocean circulation and its variability on timescales from several months to decades.
Part of this variability is in response to the variable atmospheric forcing, but part is related
to the so-called internal ocean variability. Nonlinear systems, such as the ocean circulation,
can exhibit complex time-dependent behavior on a variety of timescales even under steady
forcing conditions as a result of internal feedbacks between perturbations and mean flow,
when certain thresholds for instabilities are exceeded (Dijkstra, 2005).

It has been demonstrated that for the wind-driven double-gyre circulation only a small
number of internal modes of variability contribute to its complex transient behavior – the
barotropic basin modes, the classical baroclinic modes, the gyre modes and the wall-trapped
modes (Nauw et al., 2004). These modes differ by their periods, horizontal and vertical
structure, and underlying physical mechanisms. They have been identified as the major
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players for the mid-latitude ocean circulation variability in an hierarchy of numerical models
ranging from simple QG flat-bottom barotropic models (Cessi and Ierley, 1995; Jiang et al.,
1995; Dijkstra and Katsman, 1997; Primeau, 2002) to shallow-water and primitive equations
models with realistic coastline and bathymetry (Dijkstra and Molemaker, 1999; Schmeits
and Dijkstra, 2000).

Amongst these modes, the gyre modes are the only truly low-frequency internal modes of
the double-gyre circulation with periods on inter-annual to decadal timescales, depending
on the particular parameter choice, and are associated with weakening and strengthening of
the mid-latitude jet (Dijkstra and Katsman, 1997; Simonnet and Dijkstra, 2002). The wall-
trapped modes on the other hand are high-frequency (monthly timescales) oscillations but,
as their name suggests, confined to the region of the western boundary and resulting from
instabilities of the viscous boundary layer (Cessi and Ierley, 1993). Our focus here is on
the remaining two internal modes, the barotropic basin modes and the classical baroclinic
modes, which are both oscillations with periods up to inter-monthly and annual timescales.
They can be found as the first Hopf bifurcations on the branches of anti-symmetric and
asymmetric steady-state solutions for the double-gyre circulation. As such, they influence
to a large degree the transient behavior of the system. We will demonstrate that which
kind of oscillatory mode appears as the leading instability on the branch of anti-symmetric
steady-state solutions, depends on the Rossby deformation radius, or more precisely on the
relative size of the long internal Rossby wave basin crossing timescale to the flow advective
timescale, a nondimensional parameter that we call Ω in this paper. Incidentally, this is
the same nondimensional parameter that controls the shape of the geostrophic contours,
suggesting that there is a relationship between the transient behavior of the system and the
presence of closed geostrophic contours in the weakly nonlinear limit.

A new aspect in this study is that we consider the onset of time-dependence in the case
of both a wind-driven and a thermally-driven ocean. The thermal forcing is included in the
context of a QG model through the introduction of a non-zero cross-isopycnal flux param-
eterized as relaxation of the interface displacement, which is equivalent to the vertically
averaged temperature, toward some externally specified profile (Pedlosky and Spall, 2005).
This can be interpreted as a very crude representation of the vertical mixing in the ther-
mocline that leads to water exchange between the deep and upper ocean. While the initial
bifurcation diagram for a wind-driven double-gyre flow has been extensively studied, there
is no such previous analysis in the case of a thermally-forced flow. Thus, we will present
here for the first time the bifurcation diagram for a thermally-driven double-gyre flow. We
will also show that the relationship between the initial Hopf bifurcations of the system and
the parameter Ω that controls the shape of the geostrophic contours in the weakly nonlinear
limit, holds for both a wind-driven and a thermally-driven double-gyre.

The plan for the presentation is as follows. In Section 2 we will define the model and
describe the numerical methods used for the calculations. In Section 3 some initial results
about the typical bifurcation diagrams for a wind-driven and a thermally-driven double-gyre
are presented. Section 4 concentrates on analyzing the dependence of the type of oscillatory
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Figure 1. Illustration of the thermal forcing parameterization. a) The upward interface displacement
in a 2-layer QG model is representative of the vertically averaged temperature – for example, η

positive means a cold anomaly. b) The cross-isopycnal velocity w∗ is parameterized as relaxation
of the interface η toward an externally specified height h(x, y) = h0ST (x, y) on a timescale γ.

instabilities on the parameter Ω with some final conclusions and implications presented in
Section 5.

2. Model formulation and numerical methods

a. The model

One of the simplest models that offers insights into the nonlinear dynamics of the double-
gyre ocean circulation is the classical quasi-geostrophic (QG) layer model (Pedlosky, 1987).
We are using here a 2-layer version of the model, similar to that in Dijkstra and Katsman
(1997). The ocean, confined to a flat-bottom square basin of size L×L, is represented by two
density layers with thicknesses at rest, H1 and H2, and reduced gravity g′ = g(ρ2 −ρ1)/ρ0.
Dissipation in the form of Laplacian eddy viscosity ν is applied. The circulation is forced
at the surface by a wind-stress curl with magnitude (τ0/L)Sw(x, y), where Sw(x, y) is
a nondimensional function describing the spatial variation of the wind forcing. However,
unlike most QG models, we have relaxed the assumption of adiabatic motion. Instead,
we have included a non-zero cross-isopycnal flux w∗, parameterized as relaxation of the
interface displacement η to some prescribed equilibrium profile on a timescale γ,

w∗ = 1

γ
(η − h0ST (x, y)). (1)

In the expression above, h0 is the equilibrium profile amplitude in meters, ST (x, y), a
nondimensional function describing its spatial variation, while the interface displacement η

is given in terms of the streamfunctions ψ1 and ψ2 for the upper and lower layer, respectively,
by η = −f0(ψ1 − ψ2)/g

′.
Note that the interface displacement in a 2-layer model is proportional to the vertically

averaged temperature field anomaly – a positive value for η (or an upward displacement)
signifies a thinner upper layer and a cold anomaly (Fig. 1). The parameterization for w∗ is
therefore nothing else but a relaxation of the vertically averaged temperature toward some
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externally specified profile. This parameterization is used commonly in atmospheric QG
models, where it is referred to as radiative damping (Held, 2000). In the oceanic context,
it can be thought of as representing the effect of vertical mixing in the thermocline leading
to water properties transformation and water exchange between the upper and deep ocean
(Pedlosky and Spall, 2005). In the remainder of this paper, we refer to the cross-isopycnal
flux w∗ as thermal forcing.

Using the basin width L, a typical horizontal velocity U , and an advective timescale
L/U , the nondimensional equations describing the ocean circulation become

∂

∂t
(∇2ψ1 − F1(ψ1 − ψ2)) + J (ψ1, ∇2ψ1 − F1(ψ1 − ψ2)) + β

∂ψ1

∂x

= UwSw(x, y) − F1 w∗ + 1

Re
∇4ψ1, (2a)

∂

∂t
(∇2ψ2 + F2(ψ1 − ψ2)) + J (ψ2, ∇2ψ2 + F2(ψ1 − ψ2)) + β

∂ψ2

∂x

= F2 w∗ + 1

Re
∇4ψ2, (2b)

w∗ = − 1

ΩδT

(ψ1 − ψ2 + UT ST (x, y)), (2c)

where J is the Jacobian, defined as J (a, b) = (∂a/∂x)(∂b/∂y) − (∂a/∂y)(∂b/∂x).
The following nondimensional parameters appear in the equations: the nondimensional β

parameter, the Reynolds number Re, the ratio Ω of the advective speed to the long baroclinic
Rossby wave speed, the ratio δ12 of the layer depths, a thermal scale δT equal to the ratio
of the restoring timescale to the time needed for a long Rossby wave to cross the basin
and finally two velocity scales, Uw and UT , defined respectively by the amplitudes of the
applied wind and thermal forcing

β = β0L
2

U
, Re = UL

ν
, Ω = U

β0R
2
d

, δ12 = H1

H2
, δT = γβ0R

2
d

L
,

UT = g′h0

Uf0L
, Uw = τ0L

U 2ρ0H1
.

(3)

In addition, in Eqs. (2a) and (2b) the notations F1 = (H2/H)βΩ and F2 = (H1/H)βΩ

have been used for shorter writing, where H = H1 + H2 is the total depth of the ocean.
For all calculations presented here, the spatial variation of the forcing terms is assumed to

be zonally uniform with a sine dependence on latitude, i.e Sw(y) = ST (y) = − sin(2πy).
This is meant to represent an idealized subtropical/subpolar gyre circulation with the sub-
tropical gyre being warmed and the subpolar gyre, cooled. The sine forcing implies that
there is no net wind-stress curl and no net heating/cooling applied to the system. No-normal
flow and no-slip boundary conditions are applied on the basin boundaries, which translates
into ψn = cn(t) and ∇ψn · n̂ = 0 on the walls. The values cn(t) of the streamfunction at
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the walls are determined from the additional condition of mass conservation, which in the
presence of cross-isopycnal flux is∫∫

∂

∂t
(ψ1 − ψ2) + 1

ΩδT

(ψ1 − ψ2 + UT ST (x, y)) dxdy = 0. (4)

The mass conservation condition is satisfied accurately for all solutions presented here.
The main goal of this paper is to explore the dependence on Ω of the onset of time-

dependent circulation as the Reynolds number is increased. Note that in QG models, it is
usually the Froude number F = βΩ = L2/R2

d that is introduced instead of Ω. However,
we show that the ratio Ω of the advective speed to the internal Rossby wave speed is a
better suited nondimensional parameter when it is a question of distinguishing between
the appearance of classical baroclinic modes or barotropic Rossby basin modes as the first
oscillatory instabilities of the flow. Note also that Ω is the parameter that appears naturally
in the definition of the geostrophic contours φ̂, the characteristics along which information
propagates in the basin (Rhines and Young, 1982). By definition, φ̂ = y + Ωφ, where
φ = H1/Hψ1 + H2/Hψ2 is the barotropic streamfunction.

b. Numerical methods

Instead of relying on forward time integration to compute the different equilibrium states
of the system for a different set of parameters, we have used continuation methods to
solve directly for a branch of steady-state solutions, as a nondimensional parameter is
varied. More details on the continuation methods and examples of their application to
oceanographic problems can be found in Dijkstra (2005). The idea behind these methods is
that by monitoring the linear stability of a branch of steady-state solutions, one can explain
the onset of a complex time-dependent circulation through a succession of bifurcations.
For the case of a 2-layer QG model, the generally complex eigenfunctions ψ̂n(x, y) =
ψ̂n,r + iψ̂n,i (one for each density layer) and the corresponding eigenvalue σ = σr + iσi

obtained from solving the linear stability problem for a given equilibrium flow provide the
spatial structure, period T = 2π/σi and growth rate σr of a specific perturbation ψ′

n(x, y, t),
or internal mode, that destabilizes the flow,

ψ′
n(x, y, t) = Real(ψ̂ne

σt ) = eσr t [ψ̂n,r (x, y) cos σi t − ψ̂n,i(x, y) sin σi t]. (5)

The bifurcation points are the critical values of the control parameter (usually, the Reynolds
number), where the real part of one or more eigenvalues changes sign, implying modification
of the stability properties of the flow. At saddle-node and pitchfork bifurcations, a single
real eigenvalue crosses the imaginary axis, which is linked to the appearance of multiple
steady states. At a Hopf bifurcation, a pair of complex conjugated eigenvalues crosses the
imaginary axis, which is linked to the destabilization of the flow to an oscillatory mode.

Previous studies have shown that only a small number of real and complex eigenvalues
are involved in the transition of the double-gyre ocean circulation from steady equilibrium
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Table 1. Values of the dimensional and nondimensional parameters used in the wind-driven and
thermally-driven calculations. Two different values for the internal deformation radius Rd are
considered, corresponding to Ω = 1.2 or Ω = 0.3. The parameters which are forcing specific,
Uw, UT , δT , are provided in the text as the different calculations are presented.

L = 1000 km f0 = 1 × 10−4 s−1

Dimensional H1 = 860 m β0 = 2 × 10−11 m−1 s−1

parameters H2 = 2140 m ρ0 = 1000 kgm−3

U = 0.02 ms−1 Rd = 29 or 58 km
ν = 4000 − 200 m2 s−1

Nondimensional δ12 = 0.4 β = 1000
parameters Re = 5 − 100 Ω = 1.2 or 0.3

to irregular behavior (Dijkstra, 2005). To determine these most unstable eigenvalues we
have employed the same code as in Dijkstra and Katsman (1997), but now using the Jacobi-
Davidson QZ method (Sleijpen and Van Der Vorst, 1996). The equations are solved on a
65×65 non-equidistant grid with the same stretching parameters as in Dijkstra and Katsman
(1997). The stretched grid is advantageous since it provides finer resolution only in the parts
of the basin (the western boundary layer and the mid-latitude jet), where strong solution
gradients are expected. More details on the numerical methods are provided in Dijkstra
(2005).

3. Results

We will present next the basic bifurcation diagrams for a thermally-only and wind-
only forced double-gyre circulation with the Reynolds number Re in the role of a control
parameter. The values of the common parameters used in the calculations are listed in
Table 1. The parameters which are forcing specific, i.e. Uw, UT , δT , will be defined as the
different calculations are presented. We are using two different values Ω = 1.2 and Ω = 0.3
for the ratio of the advective speed to the long baroclinic Rossby wave speed. Assuming that
the forcing and thus the horizontal velocity scale U are kept unchanged, these two values
for Ω can be thought of as the case of an ocean basin with respectively small/large internal
deformation radius (Rd ≈ 29 km for Ω = 1.2 vis Rd ≈ 58 km for Ω = 0.3), where the
internal Rossby waves are slower/faster than the background flow.

a. Wind-forced case

In order to provide continuity with previous studies, we are presenting first the case of a
wind-only driven double-gyre circulation with zero cross-isopycnal flux w∗, i.e. UT = 0,
δT = ∞. The applied wind stress has a magnitude τ0 = 0.34 N/m2 with correspond-
ing advective velocity scale U = 2 cm/s, resulting in a 17 Sv Sverdrup transport for the
upper layer and an inertial boundary layer thickness

√
U/β0 ≈ 32 km. In terms of the



2010] Hristova et al.: Bifurcation analysis of double-gyre ocean flows 221

nondimensional parameters, this choice of values implies Uw = β = 1000 (from Eqs. (2a)
and (2b) and using the values in Table 1).

When describing a branch of steady-state solutions as function of the Reynolds number,
we use as norm of the solution the maximum of the (nondimensional) baroclinic stream-
function, τ = ψ1 −ψ2, indicating the intensity of the subtropical gyre. In Figures 2a and 2b,
the branches of steady-state solutions emanating from the linear Munk solution for a viscous
wind-driven double-gyre, are plotted for the two cases Ω = 1.2 and Ω = 0.3, respectively.
On these branches, the circulation consists of a double-gyre flow that is anti-symmetric with
respect to the basin mid-latitude and becomes progressively more inertially dominated as
the Reynolds number is increased. This translates into strengthening of the subtropical gyre
and growing values for max τ as a function of the Reynolds number. Looking back at Eqs.
(2a) and (2b), one can see that the only way in which Ω can influence the steady regime
ocean dynamics is through the advection of stretching vorticity, FnJ (ψn, ψ1 − ψ2). The
cross-isopycnal flux, Fnw∗ does not depend on Ω, independent of whether thermal forcing
is included or not. Because for the steady wind-driven circulation the motion is confined to
the upper layer only, the advection of stretching vorticity is identically zero. Consequently,
the branches of steady-state solutions for Ω = 1.2 and Ω = 0.3 in Figures 2a and 2b are
identical.

Although the steady-state wind-driven solutions are independent of Ω, their linear stabil-
ity is not. The most obvious difference is that the threshold for linear stability of the flow,
as determined by the Reynolds number where the first bifurcation occurs, depends on Ω.
One can see in Figures 2a and 2b that for Ω = 1.2 the circulation loses its linear stability at
ReH1 = 19.3, while for Ω = 0.3, the critical threshold is ReP1 = 30.4. This is consistent
with the idea that the larger the value of Ω, the smaller is the internal deformation radius
and the lower is the threshold for instability of the flow.

In addition to that, although in both configurations saddle-node, pitchfork and Hopf
bifurcations are present, the order of their occurrence is different. In Figures 2a and 2b the
locations of only the first pitchfork (marked P1), the first saddle-node (marked L1) and
the first two Hopf bifurcations (marked H1 and H2), are shown. While the positions of
the saddle-node and pitchfork bifurcations are almost unchanged between the two cases
Ω = 1.2 and Ω = 0.3, the Hopf bifurcations shift to a larger Reynolds number for the
case Ω = 0.3. Consequently, for the ocean basin with smaller deformation radius (larger
Ω), the pitchfork bifurcation is preceded by Hopf bifurcations. This signifies that the anti-
symmetric double-gyre circulation first becomes unstable to oscillatory modes, before the
emergence of multiple equilibria through the symmetry breaking pitchfork bifurcation.
More specifically at P1, branches of asymmetric steady-state solutions appear on which the
double-gyre circulation is characterized with either the subtropical or subpolar gyre being
of larger intensity and spatial extent. These asymmetric solution branches are not plotted
since they are not the subject of our study here, but their role for the internal wind-driven
circulation variability is well documented (Cessi and Ierley, 1995; Simonnet and Dijkstra,
2002; Primeau, 2002). For the ocean basin with larger deformation radius (smaller Ω), the
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Figure 2. Bifurcation diagram for a wind-driven double-gyre circulation with a) Ω = 1.2 and b)
Ω = 0.3. Filled (empty) circles denote linearly stable (unstable) steady-state solutions. H, P and L
stand for Hopf, pitchfork and saddle-node bifurcation point, respectively. The steady-state solution
at the critical Reynolds number is shown in the insert (contour interval 0.1). The spatial structure
(by vertical modes) and periods (in days) for the first two oscillatory modes H1 and H2 are given
in c) for Ω = 1.2 and in d) for Ω = 0.3. Solid (dashed) lines denote clockwise (anticlockwise)
motion.
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situation is exactly the opposite – the pitchfork bifurcation, or the appearance of multiple
equilibria, occurs before the Hopf bifurcations, and hence before the destabilization to
oscillatory modes.

Another, more subtle difference, but which is the feature to which we would like to bring
attention with the present study, is that depending on Ω the first Hopf bifurcations corre-
spond to different types of oscillatory modes. For Ω = 1.2 (small deformation radius), the
oscillatory modes destabilizing the flow are of the classical baroclinic type, as described
first in Dijkstra and Katsman (1997). They have inter-monthly time periods, a phase dif-
ference between the streamfunction perturbations in the two layers, and spatial amplitudes
confined to the region of the basin mid-latitude jet and recirculation gyres. In Figure 2c the
barotropic and baroclinic part of the eigenvectors, which eigenvalues cross the imaginary
axis at the bifurcation points H1 and H2, are plotted for the case Ω = 1.2. Note that the
solution to the linear stability problem determines the eigenvectors only up to a constant
factor. Thus we have chosen to use the maximum value of the real upper layer eigenvector
as a normalization, which is equivalent to setting the maximum amplitude of the upper
layer perturbation streamfunction at time t = 0 to one (see Eq. (5)). It can be seen that
the H1 baroclinic mode is symmetric with respect to the basin mid-latitude and represents
meandering of the jet with period 113.5 days. The H2 baroclinic mode on the other hand
is anti-symmetric with respect to the basin mid-latitude and represents oscillations of the
recirculation gyres associated with weakening and strengthening of the mid-latitude jet with
period 192.3 days. Both these modes are consistent with the baroclinic oscillatory modes
previously described in the literature (Dijkstra, 2005).

For Ω = 0.3 (large deformation radius), the Hopf bifurcations H1 and H2 correspond
instead to the destabilization of the flow to barotropic basin modes, as shown in Figure 2d.
The period of the oscillations is shorter with a monthly timescale (50–54 days), while hori-
zontally the modes consist of several counter-rotating cells, spread out over the entire basin.
Their barotropic part closely resembles the spatial structure and phase propagation charac-
teristics of the theoretical 1 by 2 and 2 by 1 barotropic Rossby basin modes respectively,
while their baroclinic part represents simply the advection of the interface displacement by
that basin mode. As a reminder, the barotropic Rossby basin modes constitute free modes of
oscillation of an ocean at rest, with analytical solutions known for the case of a flat-bottom
square basin ocean (Pedlosky, 1987). The internal modes H1 and H2, being the eigenvectors
of a non-zero equilibrium solution, are thus not pure basin modes but represent instead basin
modes that are modified by the background circulation. There are some departures from the
exclusively westward theoretical phase propagation and distortion in the spatial pattern of
the modes due to the interaction with the background flow, especially in the region of the
recirculations. Also, the period of the theoretical barotropic n by m basin mode in a square
basin at rest is given by Tn,m = 4π2

√
n2 + m2/(Lβ0) (Pedlosky, 1987), which leads for

L = 1000 km and β = 2 × 10−11 m−1s−1 to T1,2 = T2,1 = 51 days. This is close, but not
exactly equal to the period of the oscillatory modes H1 and H2 found here, TH1 = 53.4
days and TH2 = 50.0 days.
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It is known that the barotropic Rossby basin modes are part of the spectrum of the closed
basin double-gyre circulation. They have been reported as first Hopf bifurcations mainly in
barotropic and reduced gravity models (Dijkstra and Katsman, 1997). In multi-layer model
studies, where bifurcation analysis is used to explore the origin of the internal low-frequency
ocean variability, attention is paid mostly to the lower frequencies classical baroclinic and
gyre modes, while focus is rarely put on the basin modes which are higher frequency
oscillations. We argue also in the next section of this paper that in order to observe the
barotropic basin modes as the primary oscillatory instability of the double-gyre flow, the
system has to be in a specific parameter regime.

b. Thermally-forced case

As a complement to the more widely (if not exclusively) studied wind-driven case, we
will present in this section the basic bifurcation diagram for a thermally-only driven ocean.
Before going into details about the stability of the flow, it is instructive to examine first the
properties of the thermally-driven circulation in the linear limit. This will provide us with a
reference circulation and a justification for why the study of a thermally-only driven ocean
may be of value.

i. The linear thermally-driven circulation. For a sine thermal forcing (which implies no net
heating/cooling) and a closed basin, the resulting thermally-only forced circulation is again
a double-gyre flow (Pedlosky and Spall, 2005). Unlike the wind-driven case however, the
circulation extends to both layers. This is due to the fact that the wind stress curl acts only on
the top layer, while the cross-isopycnal flux acts as a forcing for both layers. If the governing
Eqs. (2a) and (2b) are rewritten by vertical modes, where φ = ψ1H1/H + ψ2H2/H and
τ = ψ1 − ψ2 are respectively the barotropic and baroclinic streamfunctions, then in the
steady, linear, inviscid limit we have that

β
∂φ

∂x
= H1

H
UwSw(y), (6a)

β
∂τ

∂x
= UwSw(y) + β

δT

(τ + UT ST (y)). (6b)

Thus, in the absence of wind forcing the linear circulation is purely baroclinic. A vertically
integrated thermally-driven background flow can be generated only through the nonlinear
advection terms, that couple the barotropic and baroclinic vertical modes. These terms are
absent in the linearized Eqs. (6a) and (6b), but it is straightforward to see that the Jacobian
terms from the original Eqs. (2a) and (2b) will lead to coupling of the barotropic and
baroclinic vertical modes. This means that in the absence of wind forcing, the barotropic
flow is weak, proportional to δ2

I (or 1/β), with its magnitude completely vanishing in the
linear limit.

From a basin-scale circulation point of view, we know that a strong enough barotropic
circulation can arrest the westward Rossby wave propagation and create regions of closed
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geostrophic contours isolated from the eastern boundary, where the circulation departs
from the simple Sverdrup balance (Rhines and Young, 1982). Although a thermally-only
driven flow is without doubt not representative for the real ocean circulation, it provides an
instructive hypothetical setting, given that only a weak vertically integrated circulation is
generated, to explore the role of the linear limit circulation structure and its associated flow
of information for the onset of time-dependence in the system.

ii. Bifurcation diagram for a thermally-driven circulation. For the thermally-only forced
calculations we have limited the parameter space to explore by choosing a fixed thermal
scale, δT = 1. This choice signifies that the timescale γ, on which the interface displacement
is relaxed toward the prescribed equilibrium profile, matches the travel time across the basin
TR = L/β0R

2
d for the long internal Rossby waves, where TR = 2 years (TR = 0.5 years)

for Ω = 1.2 (Ω = 0.3), respectively. As a result, the thermal relaxation has only a weak
effect on the internal Rossby wave propagation, since it does not inhibit their propagation
across the basin. The opposite limit, not considered within this paper, would be to use
a relaxation timescale γ much shorter than TR . In this case, the Rossby waves would be
strongly affected by the interface relaxation and remain trapped near the eastern boundary,
while the interface displacement in the basin interior would closely match the specified
target profile h0ST (y). Concerning the amplitude of the equilibrium profile that sets up the
advective velocity scale for the thermally-only forced circulation, we have chosen h0 so that
the upper layer circulation is characterized, in the linear limit, with the same order interior
velocity and transport as the wind-only driven case. This leads from Eq. (6b) after some
algebra to UT = 2 and h0 = 294 m (h0 = 74 m) for Ω = 1.2 (Ω = 0.3), respectively4.

The branches of thermally-forced, steady-state solutions described by the maximum
baroclinic streamfunction as a function of the Reynolds number, are plotted in Figures 3a
and 3b for the two cases Ω = 1.2 and Ω = 0.3, respectively. The branches originate in
the viscous, weakly nonlinear limit from equilibria with approximately the same norm,
consistent with the linearized baroclinic mode Eq. (6b), that is independent of Ω. However,
unlike for the wind-only driven case, the branches for the two values of Ω progressively
diverge, when followed to larger Reynolds numbers. This is due to the fact that the thermal
forcing, unlike the wind stress curl, sets in motion both layers and as a result the stretching
vorticity and value of Ω matter for the steady-regime dynamics.

As the flow becomes more nonlinear, the intensity of the subtropical and subpolar gyres
increases, although less dramatically than for the wind-driven circulation. The reason for
this is the relaxation thermal forcing that acts to limit the interface deviations by restoring η

to the prescribed equilibrium profile. It can be seen from the marginally-stable steady-state
solutions included in Figures 3a and 3b, that the gyres increase in intensity because of the

4. From Eq. (6b), the linear thermally-only forced solution for the baroclinic streamfunction is τ(x, y) =
UT ST (y)(e

x−1
δT − 1). The scale for the upper layer streamfunction is then ψ1 ∼ H2

H
τ ∼ H2

H
UT (1 − e

− 1
δT ), which

we want to be equal to one (the value for the wind-driven case).
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Figure 3. Bifurcation diagram for a thermally-driven double-gyre circulation with a) Ω = 1.2 and
b) Ω = 0.3. The steady-state solution at the critical Reynolds number is shown in the insert
(contour interval 0.1). The spatial structure (by vertical modes) and periods (in days) for the first
two oscillatory modes H1 and H2 are given in c) for Ω = 1.2 and in d) for Ω = 0.3.

formation of recirculations that have both a barotropic and a baroclinic component. This is
an illustration that, although the thermal forcing does not directly drive a barotropic flow, a
steady barotropic circulation is generated because of the nonlinear dynamics.

Although the thermally-driven, steady-state solutions differ in several ways from the
wind-driven ones, we can make qualitatively similar observations concerning the depen-
dence of the oscillatory modes on Ω, the ratio of the flow advective speed to the long internal
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Rossby wave speed. For the smaller Ω (larger deformation radius) thermally-forced double-
gyre flow, the first two Hopf bifurcations correspond to barotropic basin modes (Fig. 3d).
The first Hopf bifurcation at ReH1 = 72.1 has the structure of a 1 by 2 basin mode with
period TH1 = 54.0 days. The second Hopf bifurcation at ReH2 = 75.1 corresponds to a 2
by 1 basin mode with period TH2 = 53.6 days. Both internal modes are nearly identical to
those for the wind-driven case. A difference from the wind-driven case is that we did not
locate any symmetry-breaking pitchfork bifurcation below Re = 100.

The larger Ω (smaller deformation radius) thermally-forced double-gyre flow has a lower
Reynolds number threshold for linear instability. In addition, the first two Hopf bifurcations
correspond instead to baroclinic modes (Fig. 3c). The first Hopf bifurcation at ReH1 = 15.0
is characterized with a spatial structure that is symmetric with respect to the basin mid-
latitude and leads to meandering of the mid-latitude jet with an inter-monthly period of
TH1 = 273.0 days. In that sense, it is similar to the first oscillatory mode for the wind-
driven case. The second Hopf bifurcation for the thermally-forced case is actually two
Hopf bifurcations. A second pair of complex eigenvectors (not shown) with a very similar
spatial structure and imaginary part eigenvalue (i.e., same period) becomes unstable at
approximately the same Reynolds number, ReH2 = 21.4, as the pair shown in Figures 3a
and 3c. These oscillatory modes are boundary intensified with the maximum amplitude
occurring near the southern and northern walls of the domain. They lead to meandering
of the zonal boundary layers with an inter-monthly period TH2 = 151.7 days. No such
oscillatory modes have been reported for the wind-driven double-gyre in the literature. Based
on energetics, which we will present in more detail in the next section, these new internal
modes can be classified as baroclinic ones as well. Therefore, similar to the wind-driven case,
the larger Ω (smaller deformation radius) thermally-forced circulation is characterized with
baroclinic oscillatory modes with inter-monthly periods. Also similar to the wind-driven
case, a symmetry breaking pitchfork bifurcation occurs at ReP1 = 36.8, when the flow is
already linearly unstable to several oscillatory modes.

Another particularity of the bifurcation diagram of the thermally-forced double-gyre is
that we did not detect any saddle-node bifurcations, at least within the range of Reynolds
numbers covered here. For the wind-driven problem, the two (there is one farther down the
branch) saddle-node bifurcations L on the anti-symmetric solution branch are associated
with the approach to an inertial regime (Dijkstra and Katsman, 1997). Apparently, the
transition to this regime in the thermally-driven case is more direct (without an unstable
branch) and this can only occur when the two saddle-nodes have merged in a cusp. The
physics of this merging are difficult to determine without further analysis.

4. Barotropic basin modes versus baroclinic modes

Examination of the bifurcation diagrams for the wind-only and thermally-only driven
double-gyre flow revealed that despite differences in the steady-state solutions, a similar
dependence on the ratio Ω of the flow advective speed to the speed of long internal Rossby
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waves exists, as to whether the first Hopf bifurcations correspond to baroclinic modes or
barotropic basin modes. It can be shown furthermore that the first oscillatory internal modes
differ not only in their spatial and temporal structure, but also in the instability process at
their origin. In order to illustrate this, we will examine next the total perturbation energy
budget as a function of Ω for the first two Hopf bifurcations in the wind-driven and the
thermally-driven case.

The perturbation energy budget can be derived from the governing Eqs. (2) by decom-
posing the streamfunction into basic state Ψn (with corresponding velocity field Un =
−∂Ψn/∂y and Vn = ∂Ψn/∂x), which is the steady-state solution at a given Reynolds
number, and a perturbation streamfunction ψ′

n, which is the oscillatory mode of inter-
est at this Reynolds number as determined from the linear stability analysis. Neglecting
all nonlinear in ψ′

n terms, an equation for the evolution of the total perturbation energy
E′ = 1/2

∫∫
H1
H

(∇ψ′
1)

2 + H2
H

(∇ψ′
2)

2 + βΩ
H1H2
H 2 (ψ′

1 − ψ′
2)

2 can be derived following, for
example, Pedlosky (1987)
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.

(7)

In the equation above, the double integrals are taken over the area of the basin, the summation
is over the two density layers, while the overbar indicates time-averaging over the period
of the oscillatory mode.

The energy balance states that the rate of change of the total perturbation energy is a
combination of the decay due to viscous dissipation (DISS) and thermal relaxation (REST,
if present), and growth due to the barotropic (BT) and/or baroclinic (BC) conversion terms
through which energy can be extracted from the background flow, if the conditions are
favorable. The barotropic conversion term is proportional to the horizontal shear of the
background flow; and if positive, indicates perturbations growing on the kinetic energy of
the basic state or barotropic instability. The baroclinic conversion term is proportional to
the vertical shear of the background flow; and if positive, indicates perturbations growing
on the potential energy of the basic state or baroclinic instability. No flux terms are present
in the integrated energy budget (7) because of the no-normal flow conditions at the basin
walls.
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Figure 4. Perturbation energy budget for the first two oscillatory modes for a) the wind-driven double-
gyre, and b) the thermally-driven double-gyre. For each value Ω = 1.2 and Ω = 0.3, the first bar
corresponds to the first oscillatory mode H1, while the second bar, to the second oscillatory mode
H2. The four terms in the energy budget are: BT, barotropic energy conversion, BC, baroclinic
energy conversion, DISS, viscous dissipation, and REST, damping due to interface restoring.

The perturbation energy budgets for the first two Hopf bifurcations for the wind-driven
and the thermally-driven double-gyre and both values Ω = 1.2 and Ω = 0.3, are shown
in Figures 4(a) and 4(b), respectively. In all cases, the energy budget is computed for a
Reynolds number just above the corresponding bifurcation, so that the oscillatory mode of
interest is unstable and slightly growing. In general, because the magnitude of the rate of
change of E′ depends on the choice of normalization for the eigenmode ψ̂n as well as the
growth rate σr , we have scaled all terms in the energy budget (7) by the sum of the absolute
value of the two sink terms in the budget, DISS and REST. This does not affect the sign
of the source terms BT and BC – the main information in which we are interested, while it
makes the comparison between the different cases easier.

It can be seen in Figure 4 that for Ω = 1.2 in both the wind-driven and the thermally-
driven case, it is the baroclinic conversion term that is positive and leads to overall growth of
E′, while the barotropic conversion term is negative. In other words, the first two oscillatory
modes for Ω = 1.2 result from a baroclinic, or shear instability of the double-gyre flow.
This is consistent with previous discussion of these modes in the literature (Dijkstra and
Katsman, 1997) and is actually at the origin of their name. Note also, that the boundary
intensified oscillatory modes for the thermally-driven double-gyre with Ω = 1.2 are indeed
baroclinic modes as previously stated, since the sole source for their growth is the baroclinic
conversion term. For Ω = 0.3 on the other hand, both the barotropic and the baroclinic
conversion terms are positive and contribute to the overall growth of E′, indicating that
the basin modes result instead from a mixed barotropic-baroclinic instability. From the
stability theory of zonal jets we know that the necessary condition for baroclinic instability
of a zonal background flow with constant shear is that there is a change of the sign of
the potential vorticity gradient between the upper and lower layer (Pedlosky, 1987). For an
eastward flowing jet and the nondimensionalization applied here, this condition corresponds
to Ω > H/H1 ≈ 3.5. In the case of the double-gyre flow, we seem to be able to get a positive
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Figure 5. Barotropic streamfunction φ (in gray, contour interval 0.03) and geostrophic contours
φ̂ = y + Ωφ (in black) for the wind-driven and the thermally-driven double-gyre with a) Ω = 1.2,
and b) Ω = 0.3. The solution at Re = 12 is shown, a Reynolds number below the linear instability
threshold of the flow.

baroclinic energy conversion even below the baroclinic instability threshold for a zonal jet.
This is not contradictory since the double-gyre flow contains non-zonal background flow
that is always baroclinically unstable with no viscosity (Walker and Pedlosky, 2002; Spall,
2000).

The dependence on Ω of the type of oscillatory modes that destabilize the double-gyre
circulation can be followed down the bifurcation tree below the threshold for linear insta-
bility. There is a range of Reynolds numbers below the critical one, where although the flow
is linearly stable it still exhibits preference toward one or the other type of modes. In other
words, if perturbed, the circulation would respond more strongly to perturbations that have
the inter-monthly periods and spatial structure of the baroclinic modes in one case, and to
those resembling the higher frequency barotropic basin modes in the other case. In order to
investigate the reason for this predisposition of the double-gyre circulation toward different
instability processes, we have examined the steady-state solutions at even lower Reynolds
number, where the flow is only weakly nonlinear and stable.

In Figure 5, the barotropic part of the wind-driven and thermally-driven circulation for
the two different values of Ω is plotted for Re = 12, a small Reynolds number toward the
beginning of the bifurcation diagrams, that is below the linear stability threshold of the flow
in all cases (see Figs. 2 and 3). In this weakly nonlinear limit, the equilibrium solution, either
wind-driven or thermally-driven, depends only slightly, if at all, on the value for Ω. However,
there is a fundamental difference in the shape of the geostrophic contours, φ̂ = y +Ωφ. For
Ω = 1.2, the circulation is fast enough to arrest the westward Rossby wave propagation and
a region of closed geostrophic contours with non-Sverdrupian dynamics is evident in the
western part of the basin. Incidentally, in this situation the preferred oscillatory modes of the
flow when it eventually becomes unstable, are the baroclinic ones with maximum amplitude
confined roughly to the closed geostrophic contour region. For Ω = 0.3 on the other hand,
the flow is sluggish compared to the long Rossby wave speed and consequently does not
affect the paths of Rossby wave propagation. Consequently, the geostrophic contours are



2010] Hristova et al.: Bifurcation analysis of double-gyre ocean flows 231

nearly zonal and blocked on all latitudes. The preferred oscillatory modes of the flow in
this case are the barotropic basin modes instead.

In order to test whether there is indeed a relationship between the shape of the geostrophic
contours in the weakly nonlinear limit and the type of oscillatory modes to which the
double-gyre eventually becomes unstable, we have expanded the bifurcation diagrams in the
Ω/Re parameter space. More specifically, we varied the ratio Ω that controls the shape of the
geostrophic contours between 0.2 and 1.8, which corresponds to an internal Rossby defor-
mation radius between 70 km and 23 km respectively, while all other parameters including
the forcing, were kept unchanged and as specified in Table 1. The locations of the first
four Hopf bifurcations (or less in some cases) and the first pitchfork bifurcation are shown
in the Ω/Re parameter space for the wind-driven and the thermally-driven double-gyre in
Figures 6a and 6b, respectively. The type of oscillatory mode corresponding to each Hopf
bifurcation is rendered through the choice of symbol used – filled triangle for a baroclinic
mode, and empty triangle for a basin mode. It can be seen that for both the wind-driven and
the thermally-driven case the first Hopf bifurcations correspond to baroclinic modes for the
large values of Ω, while the basin modes start dominating for the small values of Ω.

To further refine this analysis, using the linear limit solution for a wind-driven double-
gyre, φ = (H1/H)(1 − x) sin(2πy), it is possible to derive a critical value for the ratio
Ω above which closed geostrophic contours are present5. Characteristics isolated from
the eastern wall will occur only if the meridional gradient of the geostrophic contours at
midlatitude ∂y φ̂(x, y = 1/2) = 1 + Ω∂yφ vanishes within the domain, i.e for 0 < x0 < 1,
leading to the following condition on Ω

x0 = 1 − 1

2πΩ
H1
H

> 0 ⇒ Ω >
1

2π
H1
H

. (8)

For the set of parameters used here, this value is Ωc = 0.56 and is drawn in Figure 6a
with a dashed line. It can be seen that for the wind-driven double-gyre the switch from
baroclinic modes to basin modes as the most unstable oscillatory modes of the system
occurs approximatively at Ωc.

For the thermally-only forced case, since there is no barotropic circulation in the linear
limit, we cannot determine an a priori critical value for the ratio Ω as with the wind-driven
double-gyre, above which closed geostrophic contours are present. Furthermore, the shape
of the geostrophic contours in this case depends not only on Ω but on the Reynolds num-
ber as well, given that the characteristics are computed solely with the nonlinearly-driven
barotropic flow, as obtained from the numerical solution. Therefore, discussing the shape
of the geostrophic contours of the thermally-driven double-gyre in the weakly nonlinear
limit is a sensitive issue. Nevertheless, for comparison purposes and since we made the

5. If one considers instead a solution for φ including a Munk western boundary layer, it is again possible to
derive a critical value for the ratio Ω. The so found Ωc is approximatively the same as when only the interior
solution for φ is used, while the algebra involved is much more lengthy.
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Figure 6. Bifurcation diagram in the Ω/Re parameter space for a) the wind-driven double-gyre, and
b) the thermally-driven double-gyre. Shown are the first four Hopf bifurcations (triangle symbol) and
the first pitchfork bifurcation (square symbol) below Re = 100. Filled (empty) triangles indicate a
Hopf bifurcation associated with a baroclinic oscillatory mode (barotropic basin mode).The dashed
line at Ωc = 0.56 marks the critical value above which closed geostrophic contours are present in
a linear wind-driven double-gyre.

choice when setting up the calculations to match the interior linear velocities for the wind-
driven and the thermally-driven cases, we have added in Figure 6b a reference line at the
wind-driven critical value Ωc = 0.56. It can be seen that a switch from barotropic basin
modes to baroclinic modes as the most unstable oscillatory modes of the system occurs
in the vicinity of Ωc as well. There is a hint actually that the switch to baroclinic modes
for the thermally-driven double-gyre happens at a slightly larger value than Ωc. This can
be justified given that in the presence of thermal forcing only, for the same baroclinic flow
magnitude, the barotropic part of the flow is weaker. Consequently, one would expect to
find blocked characteristics and basin modes as the preferred oscillatory modes of the sys-
tem over a wider range of Rossby wave speeds, i.e up to larger Ω values compared to the
wind-driven case.
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Another observation that can be made from Figure 6 is that the threshold for linear insta-
bility of the double-gyre flow as determined by the occurrence of the first bifurcation, moves
toward smaller Reynolds numbers as Ω is increased. Furthermore, a common feature of the
wind-driven and the thermally-driven double-gyre is that the linear instability threshold is
set by a symmetry-breaking pitchfork bifurcation for the small values of Ω, and a Hopf
bifurcation for large values of Ω. The only cases that stand out are the thermally-driven
Ω = 0.3 and Ω = 0.45 cases, where we did not locate any symmetry-breaking bifurcation
below Re = 100. Figure 6 also confirms our previous statement that for the wind-driven
double-gyre the location of the pitchfork bifurcation does not change with Ω, while for the
thermally-driven double-gyre it moves toward smaller Reynolds numbers as Ω is increased.
This can be rationalized given that a pitchfork bifurcation arises through a stationary mode
associated with barotropic shear instability (Dijkstra, 2005). Since the horizontal shear of
the background state seems to change much more strongly with Ω for the thermally-driven
than for the wind-driven gyre, it is expected that the value of P will also shift more strongly
in the former case.

As a final remark, we have tried here to put forward the argument that the ratio Ω of the
flow advective speed to the long internal Rossby speed – the nondimensional parameter that
controls the shape of the geostrophic contours, determines as well the type of the the most
unstable oscillatory modes of the system. We have thus designed our numerical experiments
so that we can explore the first Hopf bifurcations in theΩ/Re parameter space, while keeping
all other nondimensional parameters of the system fixed. On the other hand, when analyzing
the different regime of circulation in a basin, it is the Froude number F = L2/R2

d = βΩ that
is more commonly used to characterize the system rather than Ω itself. Given that we have
kept β unchanged, one can argue than what we have described here is a dependence on F ,
not Ω. However, experiments can be designed where we can vary simultaneously F and β,
while keeping their ratio Ω = F/β unchanged. In this case, although F varies, the shape of
the geostrophic contours in the weakly nonlinear limit remains unchanged since Ω = const

and we would not expect to see any changes in the type of the most unstable oscillatory
modes of the system. From the results of such experiments (not shown here), we have
confirmed that it is indeed Ω, not F , that matters as to whether the first Hopf bifurcations
of the double-gyre system correspond to baroclinic modes or barotropic basin modes.

5. Summary and discussion

We have explored the onset of time-dependence in a simple 2-layer QG model of the
double-gyre circulation with the emphasis put on how the type of oscillatory instabilities
depends on the ratioΩof the flow advective speed to the speed of internal long Rossby waves.
This is the nondimensional parameter that controls the shape of the geostrophic contours
in the linear limit and determines the extent of the Sverdrup balanced flow in the basin.

We considered two different types of forcing – the traditional wind-driven double-
gyre and the less common, thermally-driven double-gyre, where cross-isopycnal velocity
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parameterized as restoring of the interface displacement to some equilibrium profile is
included. The main difference between the wind-driven and the thermally-driven circula-
tion lies within the vertical structure of the flow. In the absence of wind-forcing, the linear
circulation is purely baroclinic. A thermally-driven barotropic flow can be generated only
through the nonlinear advective terms that couple the barotropic and baroclinic vertical
modes.

Because of the differences in the equilibrium solutions for the wind-driven and the
thermally-driven double-gyre, there are predictably some differences in the stability prop-
erties of the flow. These differences concern mainly the overall linear stability threshold of
the circulation, as well as the existence and critical Reynolds numbers for the bifurcations
associated with non-oscillatory modes. However, we also uncovered a common, indepen-
dent of the forcing, feature of the stability properties of the double-gyre flow. We found that
on the branch of antisymmetric steady-state solutions, there is a relation between the nature
of the leading oscillatory instabilities of the flow and the value of the ratio Ω of the flow
advective speed to the speed of long internal Rossby waves. For large values of Ω, when
the flow is fast compared to the Rossby waves, the first Hopf bifurcations correspond to the
classical baroclinic modes, with inter-monthly to annual time periods, maximum amplitude
concentrated near the region of the mid-latitude jet and recirculation gyres, and arising from
shear instabilities of the flow. For small values of Ω, when the flow is slow compared to the
Rossby waves, the first Hopf bifurcations correspond instead to barotropic basin modes,
with shorter, monthly time periods, and arising from mixed barotropic-baroclinic instabil-
ity of the flow. We found that the critical value for Ω that determines the threshold for the
appearance of closed geostrophic contours in the linear limit circulation is a good guide-
line as to when the switch from barotropic basin modes to baroclinic modes as the leading
oscillatory instabilities occurs. Although such a critical value cannot be derived strictly for
the thermally-driven double-gyre, for which the barotropic part of the circulation vanishes
in the linear limit, one can use as a reference an "equivalent" wind-driven flow that has the
same interior baroclinic velocity.

It is a well established fact that both the barotropic basin modes and the classical baro-
clinic modes are part of the spectrum of the wind-driven double-gyre circulation. What our
analysis shows is that a similar bifurcation diagram holds as well for the thermally-driven
double-gyre, with the addition of some new, boundary intensified baroclinic modes, not
previously reported in the wind-driven case. Our analysis also suggested that the important
nondimensional parameter, that delimits the parameter space where the leading oscillatory
instabilities are the barotropic basin modes from the parameter space where the leading
oscillatory instabilities are the classical baroclinic modes instead, is the ratio Ω = U/β0R

2
d

of the flow advective speed to the speed of the long internal Rossby waves, and not for
example the Froude number F = L2/R2

d .
For the purpose of this study we made the choice to analyze separately a wind-only and

a thermally-only driven double-gyre, so that we can contrast them. More generally, a com-
bined wind- and thermally-driven double-gyre will have stability properties a combination
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of the two. We expect a similar switch from barotropic basin modes to classical baroclinic
modes as the leading oscillatory instabilities of the flow at approximatively the critical value
for Ω where closed geostrophic contours appear in the weakly nonlinear limit. Concerning
the multiple steady-state solution branches, we expect a pitchfork bifurcation with a critical
Reynolds number depending on Ω, and a lack of saddle-node bifurcation, similar to the
thermally-driven double-gyre. These last two features are both associated with the presence
of a cross-isopycnal velocity parameterized as interface relaxation, and consequently they
will persist even if wind forcing is included as well.

The lack of saddle-node bifurcation in the presence of interface relaxation can have
some important consequences for the low-frequency variability of the system. In previous
bifurcation analyses of the double-gyre circulation, special attention has been paid to the
gyre modes, which are low-frequency oscillatory modes with interannual to decadal time
period, associated with weakening and strengthening of the mid-latitude jet. It has been
shown that the origin of the gyre mode is related to the merging of two non-oscillatory
modes, a P-mode and L-mode, associated with a pitchfork and saddle-node bifurcation,
respectively (Simonnet and Dijkstra, 2002). If the L-mode is missing in a model including
an interface relaxation parameterization of the cross-isopycnal flux, then that will imply
that the gyre mode will be missing as well. Therefore, thermal relaxation may suppress the
low-frequency variability of the system.

This finding about the dependence on Ω of the onset of time-dependent behavior in the
system has some implications for the expected variability in ocean basins, depending on
the relative size of the internal Rossby wave basin crossing timescale to the flow advective
timescale. It suggests that high-frequency barotropic basin mode variability is more likely
in small, low-latitude basins, while the baroclinic modes are to be prevailing in mid- and
high-latitude basins and in large, Pacific/Atlantic Ocean size basins.
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