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ABSTRACT

The response of a zonal channel to a uniform, switched-on but subsequently steady poleward outflow is

presented. An eastward coastal current with a Kelvin wave’s cross-shore structure is found to be generated

instantly upon initiation of the outflow. The current is essentially in geostrophic balance everywhere except

for the vicinity of the outflow channel mouth, where the streamlines must cross planetary vorticity contours

to feed the current. The adjustment of this region generates a plume that propagates westward at Rossby

wave speeds. The cross-shore structure of the plume varies with longitude, and at any given longitude it

evolves with time. The authors show that the plume evolution can be understood both conceptually and

quantitatively as the westward propagation of the Kelvin current’s meridional spectrum, with each spectral

element propagating at its own Rossby wave group velocity.

1. Introduction

This paper presents the linear quasigeostrophic (QG)

response to a switched-on, steady outflow from a poleward-

facing channel mouth (see Fig. 1). It is a companion paper

for Durland et al. (2008, hereafter DSP), where the results

derived herein are used as a foundation for understanding

the equivalent problem in the framework of the nonlinear

shallow-water equations (SWE) on the b plane.

The physical motivation for the overall investigation

lies in the remarkable coincidence between features of

the SWE solutions and observations of eddy variability

in the eastern Indian Ocean, just poleward of Lombok

Strait. The observed eddies have variously been attrib-

uted to baroclinic instability of the South Equatorial

Current (SEC) (Feng and Wijffels 2002), barotropic

instability of the SEC (Yu and Potemra 2006), and eddy

shedding by the branch of the Indonesian Throughflow

(ITF) entering the Indian Ocean as a predominantly

zonal flow through Timor Passage (Nof et al. 2002). DSP

demonstrate that a highly idealized 11/2-layer model of

the poleward-flowing branch of the ITF exiting Lombok

Strait produces eddy variability with temporal and spatial

patterns quite similar to those observed, indicating the

presence of a contributory mechanism that has not pre-

viously been considered. A more complete description of

relevant observations, prior modeling work, and the non-

linear model results can be found in DSP.

The linear QG model considered in this paper does

not support eddy generation, but it clearly elucidates

the origins of two important dynamical features that are

also found in the nonlinear SWE solutions: an eastward-

propagating coastal Kelvin wave that sets up rapidly

upon initiation of the outflow and a plume that propa-

gates westward from the outflow at the long Rossby wave

speed. In particular, an approximation to the QG solu-

tion provides a conceptual and quantitative description

of the plume evolution, and DSP use this description to

help explain the nonlinear model’s behavior west of the

outflow mouth where the eddies appear.

The term poleward describes a meridional flow di-

rected away from the equator, whether in the Northern

or Southern Hemisphere. Solutions will be presented

from a Northern Hemisphere (NH) perspective (as in

Fig. 1), but we note that the Southern Hemisphere re-

sponse to a poleward outflow is merely a reflection across

the equator of the NH results, which we will display.

Corresponding author address: Theodore S. Durland, College of

Oceanic and Atmospheric Sciences, Oregon State University,

Corvallis, OR 97331.

E-mail: tdurland@whoi.edu

VOLUME 39 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y JULY 2009

DOI: 10.1175/2008JPO3999.1

� 2009 American Meteorological Society 1541



A northward outflow in the Northern Hemisphere

problem becomes a southward outflow in the equivalent

Southern Hemisphere problem, and westward (east-

ward) propagation in the Northern Hemisphere prob-

lem remains westward (eastward) propagation in the

Southern Hemisphere scenario. The mathematical

model is presented in section 2, solutions in section 3,

and a summary of the results in section 4.

2. Model

The linear, inviscid, nondimensional quasigeostrophic

vorticity equation for shallow-water theory is (Pedlosky

1987)

(=2 � 1)›tc 1 b ›xc 5 0, (1)

where c is the streamfunction (›xc 5 y, ›yc 5 2u), x and

y are the eastward and northward Cartesian coordinates,

and u and y are the zonal and meridional components

of velocity. The normalization is (x*, y*) 5 (x, y)Ld,

t* 5 tf 21
0 , and (u*, y*) 5 (u, y)Ldf0, where asterisks de-

note dimensional variables; f0 is the Coriolis parameter

and Ld the deformation radius at the outflow latitude; the

origin of coordinates is chosen at the center of the out-

flow channel mouth (Fig. 1). The nondimensional b is

equal to b0Ld/f0, where b0 is the meridional derivative of

the Coriolis parameter at the outflow latitude.

The initial condition is

c(x, y, t , 0) 5 0, (2)

and we impose an outflow that is uniform across the

channel mouth, switched on at t 5 0, and steady there-

after. Our interest lies in the response of a semi-infinite

basin, but to avoid the necessity of estimating two

transform-inversion integrals, we formulate the prob-

lem in a zonal channel (0 , y , L). Once the discrete

meridional modes are determined, they are summed

numerically to convergence. In each solution presented,

the channel width is chosen so that the boundary at y 5 L

does not significantly affect the solution during the in-

tegration time.

With the given normalization, the nondimensional out-

flow velocity is equal to the deformation-radius Rossby

number (Ro5 V0 /f0Ld) of the outflow. The boundary con-

ditions for ›xc are then

›xc 5
Ro X(x) H(t), y 5 0
0, y 5 L,

�
(3)

where

X(x) 5
1, xj j , w/2
0, xj j . w/2

�
(4)

and H(t) is the unit step function.

A determination of the proper boundary conditions

for c involves some subtle details that are presented in

the appendix. For mathematical simplicity, we use the

boundary conditions

c 5 Ro X(x) H(t) at y 5 0, (5)

c 5 0 at y 5 L, (6)

where

X(x) 5

ðx

�‘

dj X(j) 5

0, x , �w/2
x 1 w/2, �w/2 , x , w/2

w, w/2 , x.

8<
: (7)

As described in the appendix, these boundary condi-

tions involve imposing an incoming Kelvin wave from

x 5 ‘, with amplitude Roe2Lw on y 5 L. When L� 1,

the appropriate condition for our study, this additional

radiation condition has a negligible effect on the solu-

tion. Due to the steadiness of the forcing for t . 0, the

‘‘Kelvin waves’’ associated with the problem might

more appropriately be called ‘‘Kelvin currents.’’ In this

and the next section, however, our concern with direc-

tion of radiation leads us to retain the Kelvin wave

terminology, with the understanding that the frequency

vanishes after the initial Kelvin waves are set up.

3. Solutions

A Fourier sine transform in y and a Fourier transform

in x are applied to (1), using the conventions

fn(x, t) 5
2

L

ðL

0

dy c sin lny, c(x, y, t) 5 �
‘

n51

fn sin lny,

(8)

fn

x
(k, t) 5

1

2p

ð‘

�‘

dx fn e�ikx, fn(x, t) 5

ð‘

�‘

dkfn

x
eikx,

(9)

FIG. 1. Poleward outflow in a Northern Hemisphere setting.
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where

ln [
np

L
. (10)

In the following text, the inverse y transform in (8) will

be represented as an infinite sum, to distinguish it from a

truly finite sum that will be introduced later. In practice,

of course, we truncate the summation at a suitably large

value of n.

The summation in (8) is not uniformly convergent

along the part of the boundary where c 6¼ 0, so in ap-

plying the transform to the ›yy term in (1) we integrate

by parts, converting the boundary condition at y 5 0 to a

forcing term. Taking the time derivative of the bound-

ary term converts the step function in (5) to a delta

function, and the transformed equation becomes

›tfn

x
1 isn fn

x
5

2

L
Ro

ln

k2 1 l2
n 1 1

X x
d(t), (11)

where

sn(k) 5
�b k

k2 1 l2
n 1 1

(12)

and

X x
5

sin(k w/2)

pi k2
. (13)

The right-hand side of (11) is nonzero only at t 5 0, so

the solution is just the homogeneous solution. Inte-

grating (11) from t 5 2t to t 5 1t, taking the limit as

t / 0 and considering the quiescent initial condition,

yields the value of the multiplicative constant. The so-

lution to (11) for t $ 0 is then

fn

x
5

2

L
Ro

ln

l2
n 1 1

X x � 1

pi

sin(k w/2)

k2 1 l2
n 1 1

" #
e�isn t. (14)

a. The t 5 0 solution

A Taylor series expansion of the exponential in (14)

shows that there will be an instantaneous, nonzero so-

lution at t 5 0. For clarity, we separate it into two parts:

fKn

x
[

2

L
Ro

ln

l2
n 1 1

Xx
(15)

and

fgn

x
[ � 1

pi

2

L
Ro

ln

l2
n 1 1

sin(k w/2)

k2 1 l2
n 1 1

. (16)

The x transform in (15) is easily inverted, and the terms

precedingXx
comprise the Fourier sine transform of the

meridional structure of the Kelvin waves, so

cK [ �
‘

n51
fKn sin lny 5 Ro X(x) (e�y � e�Ley�L).

(17)

Here cK represents the superposition of a Kelvin wave

of amplitude wRo, generated at the outflow and ex-

tending eastward along y 5 0, and the artificially im-

posed Kelvin wave of amplitude e2LwRo incoming

from x 5 ‘. Since the Kelvin waves have infinite pro-

pagation speeds in the QG framework, they appear fully

formed as soon as the outflow is switched on, and it is

clear that they will satisfy the boundary conditions for

all time. The inverse transform of (16) and higher-order

terms in the expansion of the exponential in (14) can

only contribute to the interior solution.

By comparison with the f-plane solution (not shown)

we identify fgn

x
as the transform of evanescent inertia–

gravity waves trapped near the corners of the channel

mouth. The x transform can be inverted using the resi-

due theorem, giving

where

mn [

ffiffiffiffiffiffiffiffiffiffiffiffi
l2
n 1 1

q
. (19)

The total streamfunction at t 5 0 is

c(x, y, t 5 0) 5 cK(x, y) 1 cg(x, y), (20)

where

cg [ �
‘

n51
fgn sin lny. (21)

fgn 5
1

L
Ro

ln

(l2
n 1 1)3/2

emn(x1w/2) � emn(x�w/2), x ,�w/2

e�mn(x1w/2) � emn(x�w/2), �w/2 , x , w/2

e�mn(x1w/2) � e�mn(x�w/2), w/2 , x,

8>>>><
>>>>:

(18)
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The function cg has a dipole structure that is antisym-

metric in x, with a peak (trough) trapped near the

western (eastern) corner of the outflow channel mouth,

and it is an essential part of the solution for an f-plane

Kelvin wave exiting a narrow channel mouth and

rounding the corner. Figure 2 shows cK, cg, and c(t 5 0)

for two different outflow channel widths. Positive values

of the streamfunction are represented by black contours

and negative values by gray contours. As expected, cg

decays in both x and y and does not contribute to the

boundary value of c. It ‘‘smooths’’ cK so that, once the

flow exits the channel mouth, it quickly assumes the

characteristic shape of a Kelvin wave rounding a corner,

regardless of the channel width. Within a fraction of a

deformation radius poleward of the channel mouth,

where the streamlines are predominantly oriented north–

south, the cross-current Kelvin wave structure is already

evident. The meridional velocity at this latitude decays to

the west on a deformation radius scale, even though the

outflow velocity is uniform across the channel mouth.

On quasigeostrophic time scales, the combined Kelvin–

evanescent gravity wave structure appears instantly and

can be thought of as the initial condition for the prob-

lem. At x � w this structure is in geostrophic balance

and satisfies the governing equation by itself. In the

vicinity of the channel mouth, however, it has a nonzero

cx (i.e., meridional velocity) and cannot satisfy (1)

without generating time-dependent motions by shed-

ding Rossby waves.

b. The t . 0 solution

When t . 0 the solution for the y transform is

The integral cannot be evaluated using the residue

theorem because of an essential singularity in the ex-

ponential term. The method of stationary phase is typ-

ically used to estimate such integrals, but the left-hand

term in square brackets is not slowly varying in the vi-

cinity of the important stationary point k 5 0, that is,

near the long Rossby wave front. We therefore solve for

the x derivative of the streamfunction:

›xc 5 �
‘

n51
›xfn sin lny, (23)

where

The x derivative of c is then integrated zonally from a

point to the west of the fastest Rossby wave front, where

c 5 0.

The stationary phase approximation to (24) is

The stationary wavenumbers ks are found by inverting

x

t
5 ›ks(ks) 5

b [k2
s � (l2

n 1 1)]

(k2
s 1 l2

n 1 1)2
. (26)

In the final solution, t is always found as part of the

product

bt 5 b0Ld t�5 2sc0 t�, (27)

›xfn 5 Ro
4

L

ln

p
�

ks,0

sin(ks w/2)

ks (k2
s 1 l2

n 1 1)

" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

t ›kksn(ks)j j

s
cos ksx� sn(ks)t � p

4
sgn ›kksn(ks)

n o
. (25)

fn(x, t) 5 Ro
2

L

ð‘

�‘

dk
ln sin(k w/2)

ipk2(k2 1 l2
n 1 1)

" #
exp ik x 1

b t

k2 1 l2
n 1 1

 !" #
(22)

›xfn 5 Ro
2

L

ð‘

�‘

dk
ln sin(k w/2)

pk (k2 1 l2
n 1 1)

" #
exp ik x 1

b t

k2 1 l2
n 1 1

 !" #
. (24)
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where sc0 is the cutoff frequency for the l 5 0 Rossby

wave at the reference latitude. At the latitude of Lombok

Strait, 1 yr is roughly equivalent to bt 5 85.5 for the first

baroclinic mode. In the left column of Fig. 3, the sta-

tionary phase approximation to the total streamfunction

is shown at three successive values of bt, up to a maxi-

mum of 85.5.

In the series of snapshots we see a plumelike feature

emanating from the western edge of the Kelvin wave

structure where the nonzero b›xc term can only be

balanced by time dependence. We refer to this feature

as the b plume and we see that the western front of the

plume propagates westward at roughly the long Rossby

wave speed. To lowest order there is no mass transport

(Dc 5 0 across the plume), although there is a west-

ward propagation of streamfunction anomaly. Moving

from west to east within a single snapshot, we see that

the plume becomes narrower, the peak value of the

FIG. 2. Solution to the linear quasigeostrophic model at t 5 0, contours of c/wRo. Black

contours: c . 0; gray contours: c , 0. (left column) Solutions for w 5 0.1; (right column)

solutions for w 5 1.0; (bottom row) total streamfunction (cK 1 cg) at t 5 0.
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streamfunction within the plume gets larger, and the

locus of the streamfunction peak gets closer to the

boundary. Comparing the second and third rows, we see

that this progression also holds at a single meridional

transect as time passes. Subsequent sections will clarify

and quantify these observations.

c. The long-wave approximation to the
quasigeostrophic solution

It is evident from inspection of the left column of Fig. 3

that aside from the immediate vicinities of the channel

mouth and the western front, ›xx� ›yy within the b plume

(note that in Fig. 3 the y axes are stretched considerably

relative to the x axes). Ignoring ›xxc relative to ›yyc

simplifies (1) to

(›yy � 1)›tc 1 b ›xc 5 0. (28)

With the boundary conditions (5)–(6) and the quiescent

initial condition, the transformed solution to (28) is

fLn

x
5

2

L
Ro

ln

l2
n 1 1

X x
e�i sLn t, (29)

FIG. 3. Comparison of b-plume propagation in three approximations: (left column) contours

of quasigeostrophic streamfunction, stationary-phase approximation; (middle column) con-

tours of quasigeostrophic streamfunction, long-wave approximation; (right column) contours

of shallow-water equations’ layer-thickness deviation, numerical solution for b 5 0.002

(u0 5 59.48). Dashed lines locate transects at x 5 25.5.
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where

sLn 5
�bk

l2
n 1 1

, (30)

that is, the long-wave (k / 0) limit of the Rossby wave

dispersion relation.

The exponential in (29) no longer contains an essen-

tial singularity in k, and the x-transform inversion is

straightforward:

fLn 5
2

L
Ro

ln

l2
n 1 1

X x 1
bt

l2
n 1 1

 !
. (31)

The terms preceding X [x 1 bt/(l2n 1 1)] comprise the

Fourier sine transform of the Kelvin wave meridional

(cross-shore) structure, and each spectral component can

be viewed as the amplitude of a distinct meridional

mode. For each meridional mode, the x structure of the

y 5 0 boundary condition, X(x), propagates westward

nondispersively at the long Rossby wave speed associ-

ated with the appropriate meridional wavenumber, ln.

There is a discrete distance between distinct meridional-

mode wave fronts and a discrete change in the y structure

of the plume with the passage of each wave front. The

tapered part of X, corresponding to the channel mouth,

merely serves to smooth the transitions. As L / ‘, the

discrete spatial and spectral jumps become smaller and

smaller so that the tapered part of X becomes less and

less important. We therefore make the further simplifi-

cation of imagining a delta-function outflow with the

same volume flux as would exit a channel of width w,

thus eliminating the channel mouth taper. The outflow

boundary-value structure is then

XL(x) 5 w H(x). (32)

The solution for this boundary structure, which we will

call the ‘‘long-wave approximation,’’ is

cL(x, y, t) 5 Ro w
2

L
�

N(bt/x)

n51

ln

l2
n 1 1

sin lny, (33)

where

L

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� bt

x
1 1

� �s
� 1 # N ,

L

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� bt

x
1 1

� �s
. (34)

The summation limit, N(bt/x), reflects the fact that only

a finite number of meridional modes can reach a given

longitude, x, within a finite time, t. The slower modes do

not contribute to the solution at this x and t. [Note that

the long-wave approximation does not contain the short

Rossby waves, so it is appropriate only for 2bt (L/p)2 ,

x , 0.]

The middle column of Fig. 3 shows a time series of

snapshots of the cL plume taken at the same times as

those in the left column (stationary-phase approxima-

tion to the complete QG problem). The westward

propagation is somewhat faster in the long-wave ap-

proximation, which we expect because the approxima-

tion overestimates the group velocity of each meridio-

nal mode. Otherwise, the match is very good.

d. Plume evolution

The long-wave approximation presents an easy way to

conceptualize and to quantify the temporal and spatial

changes in the plume structure that we noticed in the

stationary-phase solutions. We think of the individual

Fourier components of the Kelvin current’s cross-shore

structure as representing the amplitudes of individual

meridional Rossby modes. The Rossby adjustment of the

t 5 0 Kelvin current’s western front (where outflow

streamlines cross planetary vorticity contours) consists

of the Rossby modes propagating westward with group

velocities that decrease as the meridional mode number

increases. The spectrum of the plume’s meridional

structure at a given longitude is just a truncated version

of the Kelvin current’s spectrum, and the truncation

limit increases monotonically as time passes and addi-

tional Rossby modes are able to reach that longitude.

When N 5 1, the plume has the y structure of the half-

sine wave on the channel width. The passage of the next

mode, N 5 2, enhances the half of the plume closest to

y 5 0 and detracts from the other half. As time pro-

ceeds, the peak of the plume continues to increase in

amplitude and shift toward y 5 0 while the width of the

plume decreases. As N / ‘, the plume approaches the

meridional structure of the preexisting eastward Kelvin

current with a delta-function westward current along

the boundary. As mentioned previously, the summation

in (8) is not uniformly convergent for x . 2w/2, so in

that part of the domain the delta-function feature is just

a mathematical artifact of the sine transform represen-

tation of exp(2y). For x , 2w/2, however, the series is

uniformly convergent, and the delta-function feature is

an essential part of the inviscid dynamics. As t / ‘, the

steady state that emerges consists of the flow exiting the

channel and turning westward toward x 5 2‘ in a delta-

function boundary current. Superimposed on this nar-

row westward boundary current of semi-infinite length

is an eastward Kelvin current with equal and opposite

volume transport, extending from x 5 2‘ to x 5 ‘.

We are not so much interested in the t / ‘ structure

as we are in the plume evolution at shorter times, and

we are particularly interested in how well the simple

long-wave expression (33) predicts this evolution.

Figure 4 shows the y structure of the plume measured at

JULY 2009 D U R L A N D E T A L . 1547



four successively longer times at the transect x 5 25.5

(shown in Fig. 3 panels as a dashed line). The solid lines

represent the stationary-phase approximation at the

given values of bt, and the dashed lines represent the

long-wave approximation, with N chosen in each case to

give the best match with the plume width and peak lo-

cation in the stationary-phase approximation. Using

(34) the t required for the long-wave approximation to

achieve the displayed profile is calculated, and the ratio

of the long-wave approximation t to the stationary-phase

approximation t is presented in each panel. Because of

the discrete nature of the long-wave approximation ev-

olution, this ratio is given as a range, the width of which

depends on the channel width used in (33)–(34). The

qualitative match between the stationary-phase approx-

imation and the long-wave approximation is quite good,

although the long-wave approximation plume evolves

about 11% faster and has a peak amplitude about 23%

greater for the same plume width. The evolutionary

process described above is clearly representative of the

full quasigrostrophic solution—it is just easier to visualize

in the long-wave approximation owing to the nondis-

persive nature of the individual meridional modes and

the simplicity of (33).

Both the stationary-phase and long-wave solutions

are approximations, and it is not immediately obvious

which of the traces in Fig. 4 is more representative of the

true solution. We therefore compare these solutions

with numerical solutions (another approximation) of

the linearized SWE on the b plane. The equations and

numerical model are described in DSP, and at midlati-

tudes and long time scales we expect a good match

between the SWE and QG solutions.

The right column of Fig. 3 shows snapshots of the

b 5 0.002 numerical plume (u0 5 598), taken at the same

times as the QG solutions in the other columns. The

contours are of the layer thickness deviation, and the

agreement with the streamfunction contours of the QG

solutions is quite good. As expected, the numerical

plume evolution near the channel mouth is slower than

that of the long-wave approximation, but the qualitative

match between the numerical and long-wave plumes

appears better than the match between the numerical

and stationary-phase plumes.

Figure 5 is the equivalent of Fig. 4, with the numerical

plume evolution at x 5 25.5 represented by the solid

lines, and the long-wave approximation represented by

the dashed lines. The long-wave approximation evolves

roughly 10% faster, but the general agreement is better

than between the long-wave and stationary-phase so-

lutions (Fig. 4). Note that we are referring to the evo-

lution at x 5 25.5 (dashed lines in Fig. 3). The western

front of the plume appears to evolve at the same rate in

both the numerical and long-wave solutions (bottom

row, Fig. 3).

The long-wave approximation underestimates the nu-

merical plume’s peak by only a few percent, whereas it

overestimates the stationary-phase solution by about

10%. The stationary-phase approximation involves a

truncation of the transform-inversion integral, and the

approximation technically requires t / ‘. We should not

be surprised then that, while it provides an excellent

qualitative approximation of the solution, the stationary-

phase approximation appears to provide a quantitative

underestimate at the finite times that we are considering.

In DSP we seek to understand numerical solutions to

the SWE. Given the good agreement in Figs. 3 and 5

between the numerical SWE solutions and the long-

wave solutions to the QG equation, we feel confident

that the long-wave approximation captures the essence

of the linear SWE plume development at midlatitudes.

This section has presented the plume evolution as a

function of time at a fixed x, but (34) shows that the same

pattern can be viewed as a function of x at a fixed time.

FIG. 4. Beta-plume evolution at x 5 25.5. Solid lines: stationary

phase (sp) approximation. Dashed lines: long-wave (lw) approxi-

mation. Ratio of times, tlw/tsp, each approximation takes to evolve

to displayed profile.
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Viewing a snapshot of the plume (e.g., bottom row, Fig.

3), the change in cross-shore structure as we move from

west to east is identical to the evolution with time at a

given longitude. As long as t , ‘ the plume continues to

evolve and is never truly zonal. In DSP we will see that

this situation changes when nonlinearity is introduced.

4. Summary

On QG time scales, the response to a switched-on,

steady poleward outflow is the instantaneous setup of a

Kelvin current carrying 100% of the outflow to the east

of the channel mouth. At t 5 0, the western front of the

current is not in geostrophic balance and it adjusts by

shedding Rossby waves in a process that is easily con-

ceptualized. Each of the Fourier-transform components

of the Kelvin current’s offshore structure propagates

westward with its own distinct group velocity. As the

individual wave fronts pass a given meridional transect,

the plume cross-section changes. It starts with a low-

amplitude peak far offshore and evolves monotonically

with the streamfunction peak becoming larger and mi-

grating toward shore. The ‘‘long-wave approximation,’’

in which the individual Rossby waves are considered

nondispersive, provides a good estimate of the plume’s

meridional structure and amplitude. Although it over-

estimates the evolutionary rate by some 10%, it pro-

vides an easy way to predict the nature of the plume’s

evolution using (33) and (34).

As noted, 100% of the outflow volume flux is carried

westward by the Kelvin current. Any volume flux asso-

ciated with the westward propagation of streamfunction

anomaly is a second-order effect in the QG formulation.

The Kelvin current also carries 100% of the outflow

energy flux. This can be seen either by integrating ›yc2

across the plume or by considering the ratio of Rossby

wave group velocity to Kelvin wave group velocity, a

ratio which vanishes in the QG approximation.
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APPENDIX

Boundary Conditions for the Quasigeostrophic
Streamfunction

Prior to t 5 0, the quasigeostrophic streamfunction is

zero along y 5 0. When t . 0 the streamfunction has a

constant value along (x , 2w/2, y 5 0) and a different

constant value along (x . w/2, y 5 0). In addition to

Rossby waves, the QG model can represent coastal

Kelvin waves with constant phase along a zonal

boundary (i.e., infinite phase speed). These correspond

to the ›xc 5 0, (›yy 2 1)c 5 0 solution of the vorticity

equation (1). Because the Rossby waves have finite

group velocities, only the Kelvin waves can instantly set

up the Dc across the channel mouth at y 5 0 while

maintaining constant streamfunction values on (x , –w/2,

y 5 0) and (x . w/2, y 5 0). With the temporal step

function forcing, the Kelvin wave phase will also remain

constant in time after being switched on (i.e., the zero-

frequency limit), thus maintaining the boundary condi-

tions for all time. Consequently, the Rossby waves do

not contribute to the boundary values of the stream-

function at any time.

FIG. 5. Beta-plume evolution at x 5 25.5. Solid lines: numerical

(num) solutions of the linear shallow-water-equation thickness

deviation (dh) with b 5 0.005. Dashed lines: long-wave (lw) ap-

proximation of the linear QG streamfunction (c). Ratio of the

times, tlw/tnum, that the two approximations take to evolve to the

displayed profiles.
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In a channel of width L the outflow can produce both

an eastward Kelvin wave with streamfunction value ce

on (x . w/2, y 5 0) and a westward Kelvin wave with

streamfunction value cw on (x , 2w/2, y 5 L). The

eastward Kelvin wave only contributes to stream-

function boundary values east of the channel mouth,

and the westward Kelvin wave only contributes to

boundary values west of the mouth. When t . 0 the

natural radiation condition of no incoming signal from

x 5 ‘ leads to a streamfunction value on y 5 L east of

the channel mouth equal to ce e2L, due to the eastward

Kelvin wave trapped at the y 5 0 boundary. Likewise, no

incoming signal from x 5 2‘ gives a streamfunction

value on y 5 L west of the mouth equal to cw. The y 5 L

streamfunction values east and west of the mouth must

be equal to prevent flow through the poleward boundary:

cw 5 ce e�L. (A1)

Likewise, the boundary value on y 5 0 west of the

channel mouth is cw e2L, due to the westward Kelvin

wave trapped at y 5 L. Using (A1) we see that this value

is equal to ce e22L, and the change in streamfunction

value across the channel mouth at y 5 0 is

D c [ c(x 5 w/2, y 5 0, t . 0)� c(x 5 �w/2, y 5 0, t . 0)

5 (1� e�2L) ce. (A2)

Integrating the velocity boundary condition (3) across

the channel mouth, we also have

Dc 5 Ro w, (A3)

and we find that

ce 5
Ro w

(1� e�2L)
. (A4)

The proper boundary conditions for the stream-

function when t . 0 are then

c(x , w/2, y 5 0) 5
e�2L

1� e�2L
Ro w, (A5)

c( xj j, w/2, y 5 0) 5
e�2L

1� e�2L
Ro w 1 Ro (x 1 w/2),

(A6)

c(x . w/2, y 5 0) 5
1

1� e�2L
Ro w, (A7)

c(x, y 5 L) 5
e�L

1� e�2L
Ro w. (A8)

These boundary conditions are mathematically cum-

bersome, and we prefer to fix the streamfunction values

for (y 5 L) and (x , 2w/2, y 5 0) at their initial values

for all time. This amounts to imposing a radiation con-

dition that includes a Kelvin wave incoming from x 5 ‘,

which is trapped at the y 5 L boundary and has an

amplitude there of

�e�L

1� e�2L

� �
Ro w.

This incoming wave subtracts from the streamfunction

boundary values at all x and cancels the westward

Kelvin wave induced by the outflow. With the added

radiation condition, the boundary conditions for t . 0

are (5)–(6), reproduced here:

c 5 Ro X(x) H(t) at y 5 0,

c 5 0 at y 5 L,

with x(x) as in (7). While the above radiation condition

seems artificial, it greatly simplifies the mathematics,

and for a channel width greater than a few deformation

radii (L � 1), the effect on the solution is negligible.

The simpler boundary conditions have the added ben-

efit that we can use a Fourier sine transform in y on the

governing equation and the inverse transform will be

uniformly convergent on x , w/2, where the most in-

teresting part of the solution will be found.

REFERENCES

Durland, T. S., M. A. Spall, and J. Pedlosky, 2009: Response to

a steady poleward outflow. Part II: Oscillations and eddies.

J. Phys. Oceanogr., 39, 1551–1573.

Feng, M., and S. Wijffels, 2002: Intraseasonal variability in the

South Equatorial Current of the east Indian Ocean. J. Phys.

Oceanogr., 32, 265–277.

Nof, D., T. Pichevin, and J. Sprintall, 2002: ‘‘Teddies’’ and the

origin of the Leeuwin Current. J. Phys. Oceanogr., 32,

2571–2588.

Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-

Verlag, 710 pp.

Yu, Z., and J. Potemra, 2006: Generation mechanism for the in-

traseasonal variability in the Indo-Australian basin. J. Geo-

phys. Res., 111, C01013, doi:10.1029/2005JC003023.

1550 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39


