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Abstract

Internal tide generation is examined for a knife-edge ridge and an abrupt step. The energy flux from a knife-edge

ridge with a height much less than the water depth is shown to be twice that from a Witch of Agnesi ridge with the same

height but a small slope. In contrast, the energy flux from an abrupt step with an infinitesimal depth change compared

to the water depth is the same as from a small slope with the same depth change. For larger topographic heights in both

cases, the energy flux from the abrupt topography can significantly exceed that from gentle topography. The energy flux

generated at a top-hat ridge and top-hat trench is also calculated. A top-hat ridge generates more energy flux than a

knife edge of equivalent height, though the increase is large only for ridges whose height is small compared to the total

depth. Additionally, the energy flux produced by a top-hat ridge is found to be rather insensitive to the ridge width. In

contrast, the energy flux generated at a top-hat trench is strongly dependent on width. A knife-edge ridge of moderate

height has much of its energy flux in mode 1. For a height to depth ratio comparable to that of the Hawaiian Ridge this

fraction is 75%, consistent with observations. We also show that energy flux estimates based on representing general

topography as a number of independent steps are flawed.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the stratified ocean, internal tides are gener-
ated at regions where the barotropic tidal current
encounters variations in bottom topography. The
problem for the wave response involves the
solution to the momentum, continuity, and buoy-
ancy equations satisfying the surface ðz ¼ 0Þ and
bottom ðz ¼ �H þ hðx; yÞÞ boundary conditions

wð0Þ ¼ 0; wð�H þ hÞ ¼ U � rhþ u � rh: ð1Þ

Here, hðx; yÞ is the bottom topography relative to a
deep constant-depth level z ¼ �H; U is the
barotropic tidal velocity for the region of depth
H ; and uðx; y; z; tÞ and wðx; y; z; tÞ are the lateral
and vertical components of the baroclinic wave
response. These waves obey the conventional
dispersion relation of internal waves which can
be expressed in terms of wave slope,

a ¼
k

m

���� ���� ¼ o2 � f 2

N2 � o2

� �1=2

; ð2Þ

where a is the wave slope, k and m are the lateral
and vertical wavenumbers, and f and N are the
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inertial and buoyancy frequencies. We will take the
tidal frequency o satisfying the condition
foooN so that internal tides are freely radiating.
Several nondimensional parameters are needed

to characterize the physical regime of wave
generation. One parameter, kU0=o; measures the
ratio of the tidal excursion length scale U0=o to
the length scale of the topography k�1: This
parameter is discussed by Bell (1975) and others,
and distinguishes a wave response dominated by
the fundamental tidal frequency ðkU0=oo1Þ from
a lee-wave response involving higher tidal harmo-
nics ðkU0=o > 1Þ: A second parameter, d ¼ h0=H ;
measures the ratio of the topographic amplitude h0
to the total depth H : A third parameter, e ¼ s=a;
measures the ratio of the maximum topographic
slope s ¼ jrhj to the ray slope given by (2). This
parameter also distinguishes two regimes. In the
case of eo1; the topographic slopes are less steep
than the radiated tidal beam, and internal wave
generation is termed subcritical. In the case of e >
1; the topographic slopes exceed the steepness of
the radiated beam and the internal wave genera-
tion is termed supercritical. The critical generation
condition is met when the radiated tidal beam is
aligned with the slope of the topography.
The subcritical generation of internal tides was

first considered by Cox and Sandstrom (1962),
Baines (1973), and Bell (1975). These studies
examined subcritical topography in the limit of
d51 and e51; for which the bottom boundary
condition can be linearized to wð�HÞ ¼ U � rh: In
this case, the internal tide generation problem can
be solved for topography of arbitrary shape by
Fourier decomposition. Later studies have exam-
ined the initial transient wave response, finite
depth effects, depth varying stratification, and
spatial variations in topography and tidal forcing
(Hibiya, 1986; Khatiwala, 2003; Li, in press;
Llewellyn Smith and Young, 2002; St. Laurent
and Garrett, 2002). Of central interest in all studies
is the tidal conversion rate F ; the production of
baroclinic energy as the barotropic tide responds
to changes in topography. In the limit of small
tidal excursion ðkU0=o51Þ; the conversion
rate is equal to the energy flux away from the
topography. Llewellyn Smith and Young (2002)
show that the energy flux in the limits of e51 and

kU0=o51 is

Flinear ¼ F0H
�2

XN
n¼1

kn
*hðknÞ *hnðknÞDk; ð3Þ

where kn ¼ nDk ¼ anp=H denote the wavenum-
bers of the resonant modes and *h is the Fourier
transform of the topography. Here,

F0 ¼
1

2p
r
ððN2 � o2Þðo2 � f 2ÞÞ1=2

o
U2

0H2 ð4Þ

is a convenient metric for the energy flux
amplitude, with the rest of (3) being nondimen-
sional.
Internal tide generation at topography of finite

steepness was considered by Baines (1982). In that
study, ray tracing methods were developed to
permit the full range of d and e: The integral
equations derived by Baines (1982) are difficult to
apply to arbitrary topography, and Baines did not
examine the sensitivity of the conversion rate to
the steepness of the topography. Using an
approach similar to Baines, Craig (1987) specifi-
cally considered a continental slope of finite
steepness, but only considered ep2: Taking a
different approach, St. Laurent and Garrett (2002)
examined the first-order correction to linear theory
estimates of energy flux for sinusoidal topography
of subcritical steepness ðeo1Þ; finding that

F ¼ Flinear 1þ
1

4
e2 þ?

� �
: ð5Þ

Full series expansions for the full corrections for
sinusoidal and gaussian topographies were derived
by Balmforth et al. (2002) for increasing steepness
up to the critical condition ðe ¼ 1Þ: They find
increased levels of conversion at critical slopes,
though the increase varies from only 14% for the
gaussian ridge to 56% for the sinusoidal case.
Numerical simulations have allowed calcula-

tions of internal tide generation over the full
variation of the steepness parameter. Studies by
Khatiwala (2003) and Li (in press) also show
increased energy flux production at critical topo-
graphies to levels comparable with those reported
by Balmforth et al. (2002). Both Li (in press) and
Khatiwala (2003) find a reduction in energy flux
for supercritical sinusoidal topography. Khatiwala
(2003) also explores isolated ridges, and finds that
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the reduction in energy flux does not occur. He
suggests that the downward propagating energy
from supercritical sinusoidal topography will
accumulate in valleys as trapped modes. While
numerical simulations have provided some in-
sights, the properties of internal tides generated at
supercritical topography are still poorly under-
stood.
In contrast to studies that explore wave genera-

tion for incremental increases in e; models for
generation at abrupt depth discontinuities ðe ¼ NÞ
have also been formulated. Rattray (1960) con-
sidered the first-mode baroclinic response to
barotropic flow over shelf topography. Stigeb-
randt (1980) also considered a topographic step
and examined the full spectrum of baroclinic
modes. However, both of these studies focus on
the coastal generation problem, where dC1: Past
studies have not compared the energy flux
production at abrupt topography with estimates
made using linear theory.
In the present study, we examine the internal tide

generation problem for a knife-edge ridge and a
step. For the case of the knife-edge ridge (Section 2),
we compare estimates of energy flux to linear
theory estimates for the ‘‘Witch of Agnesi’’ ridge.
For the case of the step (Section 3), we compare
estimates of energy flux to linear theory estimates
for a slope. In both cases, we examine the energy
flux over the full range of d; paying particular
attention to the limit of d-0 applicable to small
amplitude topography in the deep ocean. We
extend the model for the step to examine energy
flux generated by a top-hat ridge (Section 4.1) and
a top-hat trench (Section 4.2). In Section 5, we

discuss implications of these abrupt topography
models. Internal tide energy flux for the Hawaiian
Ridge is considered using the knife-edge ridge
model in Section 5a. Finally, the model used by
Sj .oberg and Stigebrandt (1992) and Gustafsson
(2001), in which arbitrary topography is repre-
sented as a number of independent steps, is
examined in Section 5b. Conclusions are presented
in Section 6.

2. Internal tide generation at a knife-edge ridge

We consider a knife-edge (zero width) ridge of
height h0 at x ¼ 0 in an ocean of uniform depth H

(Fig. 1). A barotropic tidal current is given by
UðtÞ ¼ U0 cosot; taken perpendicular to the ridge.
Previous studies by Larsen (1969) and Robinson
(1969) have examined the scattering of waves,
rather than wave generation, from a knife-edge
ridge. While their solutions could be adapted to
the barotropic to baroclinic conversion of the tide,
we will use a straightforward approach based on
matching conditions for the modal solutions:

u1 ¼ U0

XN
n¼1

an cos
npz

H

� �
cos ðknx þ otÞ;

u2 ¼ U0

XN
n¼1

bn cos
npz

H

� �
cos ð�knx þ otÞ; ð6Þ

w1 ¼ aU0

XN
n¼1

an sin
npz

H

� �
sin ðknx þ otÞ;

w2 ¼ �aU0

XN
n¼1

bn sin
npz

H

� �
sin ð�knx þ otÞ; ð7Þ
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Fig. 1. Sketch showing a knife-edge ridge of height h0 in an ocean of depth H: The barotropic tidal current and baroclinic response are
denoted by U and u; respectively.
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where an and bn are the nondimensional coeffi-
cients of the modal series, np=H are vertical
wavenumbers, and kn are the horizontal wave-
numbers given by (2) as kn ¼ anp=H : The sub-
scripts 1 and 2 denote the baroclinic response on
the xo0 and x > 0 sides of the ridge, respectively.
Here, the modal forms have been chosen to satisfy
the boundary condition w ¼ 0 at z ¼ 0 and z ¼
�H : The modal coefficients are obtained through
matching conditions at x ¼ 0;

w1 ¼ w2; �H þ h0pzp0; ð8Þ

u1 þ U ¼ u2 þ U ; �H þ h0pzp0; ð9Þ

u1 þ U ¼ 0; �Hpzo� H þ h0; ð10Þ

u2 þ U ¼ 0; �Hpzo� H þ h0: ð11Þ

Relations (9)–(11) can be combined to show

XN
n¼1

an cos
npz

H
¼

XN
n¼1

bn cos
npz

H
; �Hpzp0: ð12Þ

Through the orthogonality of cosines, (12) implies
an ¼ bn; a result which is also implied by the
symmetry of the topography. This allows us to
write all the matching conditions as two state-
ments,

XN
n¼1

an sin
npz

H
¼ 0; �H þ h0pzp0; ð13Þ

XN
n¼1

an cos
npz

H
¼ �1; �Hpzo� H þ h0: ð14Þ

The coefficients an can now be determined by a
Fourier series expansion of the terms in (13) and
(14). Multiplying by cos mpz=H and vertically
integrating gives

XN
n¼1

an

Z �Hþh0

�H

cos
npz

H
cos

mpz

H
dz

�
þ
Z 0

�Hþh0

sin
npz

H
cos

mpz

H
dz

�
¼ �

Z �Hþh0

�H

cos
mpz

H
dz: ð15Þ

In practice, the summation in (15) is done over a
finite number of modes, n ¼ 1; 2;y;N: Thus, for
any integer choice of m; (15) gives an equation
with N unknown an coefficients. A coupled set of
N equations in N unknowns can be produced by
taking m ¼ 0; 1; 2;y;N � 1: These can be written
in matrix form as

Amnan ¼ cm; ð16Þ

where

and

cm ¼
sin mpð1� dÞ

m
: ð18Þ

Amn is singular when m ¼ n; so those elements are
replaced with those found by re-evaluating the
integrals on the left-hand side of Eq. (15) after
setting m ¼ n; giving

Ann ¼
npd� sin npð1� dÞ cos npð1� dÞ � sin2 npð1� dÞ

2n
:

ð19Þ

Also, cm is singular at m ¼ 0: This element is
replaced by setting m ¼ 0 in the integral on the
right-hand side of (15), yielding

c0 ¼ �pd: ð20Þ

The matrix problem (16) has been solved for
2000 baroclinic modes. The cosine expansion was
also done for 2000 terms, m ¼ 0; 1; 2;y; 1999:
This gives a square matrix for Amn; and the
coefficients an are given by the matrix inversion
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Amn ¼
n sin npð1� dÞ cos mpð1� dÞ � m cos npð1� dÞ sinmpð1� dÞ

ðm2 � n2Þ

þ
n � n cos npð1� dÞ cos mpð1� dÞ � m sin npð1� dÞ sin mpð1� dÞ

ðm2 � n2Þ
ð17Þ
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an ¼ A�1
mncm: In general, only Oð300Þ terms of the

series expansions are needed to give solutions that
comply within 1% of the matching conditions (8)–
(11). The higher mode contributions become
important when d-1: Fig. 2 shows the horizontal
velocity field (u1 and u2) for the case of d ¼ 0:75:
The rays emanating from the critical generation
point at the ridge tip are clearly visible. For the
constant stratification used in this calculation, the
wave energy is concentrated along the character-
istic linear paths given by dx=dz ¼ 7a�1: The
current amplitudes along the upward and down-
ward paths are equal.

For this finite depth system, the conversion rate
is equal to the energy flux away from the
topography. The depth-integrated energy flux is
given by

Fknife ¼
Z 0

�H

/p0u0S dz ¼ F0

XN
n¼1

n�1a2n; ð21Þ

where F0 is given by (4) and / �S denotes an
average over all components of wave phase. Fig. 3
shows the nondimensional energy flux for 1000
modes for the case of d ¼ 0:75: The spectrum is
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Fig. 2. A snapshot of instantaneous baroclinic velocity (u1 and u2 at ot ¼ 0; 2p; 4p;y; from (6)) normalized by the barotropic current

amplitude, for the knife-edge ridge with d ¼ 0:75: The ridge at x ¼ 0 is shown, and the distance coordinate is normalized by a�1H:
Dark gray shading indicates regions where u ¼ �U0:
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Fig. 3. Nondimensional energy flux for 1000 modes generated from the knife ridge with d ¼ 0:75: In the lower portion of the panel, the
cumulative sum of the energy flux is shown, normalized by the total sum in (21).
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red, with the energy flux in mode 1 accounting for
75% of the total sum in (21).
We can compare (21) to the linear theory

solution for baroclinic energy flux caused by tidal
flow over a two-dimensional ridge of varying
steepness. Specifically, we examine a topographic
ridge with the ‘‘Witch of Agnesi’’ profile, hðxÞ ¼
h0ð1þ ðx2=b2ÞÞ�1 (the story behind the name of
this curve is given in Chapter 3 of Singh (1997)).
Bell (1975) examined the internal tide generation
by this in an infinitely deep ocean, and Llewellyn
Smith and Young (2002) examined the modal
response to wave generation in an ocean of finite
depth. Using their formulation, it is possible to
express the conversion rate for the witch as

Fwitch ¼F0
p2

4
d2

XN
n¼1

nc2e�nc

¼F0
p2

4
d2

c2e�c

ð1� e�cÞ2
; ð22Þ

where c ¼ ð33=2p=4Þðd=eÞ; and the slope parameter
for the maximum topographic steepness is

given by

e ¼ a�1
33=2

8

� �
h0

b
: ð23Þ

In the limit of d=e51; (22) reduces to the result for
an infinitely deep ocean presented by Bell (1975),

FwitchCF0ðp2=4Þd
2: ð24Þ

As discussed by Llewellyn Smith and Young
(2002), (24) is independent of the width of the
sloping region.
Fig. 4 shows the ratio of Fknife from (21) to Fwitch

from (22) for the case of a witch ridge with critical
slope, e ¼ 1: Here, we have stretched the applic-
ability of the linear theory estimate, since (22) is
formally valid only for e51: However, this
estimate for critical generation provides the basis
for a useful comparison with (21). In the limit of
d51; the knife produces twice the energy flux
predicted for the witch. Specifically, we find
Fknife=Fwitch is equal to 2:00070:0004 for 10
calculations in the parameter range 0:003o
do0:03: Thus, it seems that Fknife=Fwitch is exactly
2 for d51; as Llewellyn Smith and Young (in
press) have now found analytically. Since (24) is
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independent of e; this result is generally applicable
to the linear theory solution for witch topography
with d51 of arbitrary steepness.
The energy flux production from the knife

exceeds the linear prediction by more than a factor
of 4 for d > 0:6 (Fig. 4).

3. Internal tide generation at a step

We now consider a topographic step at x ¼ 0;
where the depth is �H on the deep side of the step
and �H þ h0 on the shallow side of the step
(Fig. 5). A barotropic tidal current given by UðtÞ ¼
U0 cosot is taken perpendicular to the barrier.
This problem was examined by Stigebrandt (1980),
who assumed that the wave response occurred
only on the deep side of the step. We allow internal
tides to radiate away from the step in both
directions. In this case, the modal solutions take
the form:

u1 ¼ U0

XN
n¼1

an cos
npz

H

� �
cos ðknx þ otÞ;

u2 ¼ U0

XN
n¼1

bn cos
npz

H � h0

� �
cos ð�k0

nx þ otÞ;
ð25Þ

w1 ¼ aU0

XN
n¼1

an sin
npz

H

� �
sin ðknx þ otÞ;

w2 ¼ � aU0

XN
n¼1

bn sin
npz

H � h0

� �

 sin ð�k0

nx þ otÞ: ð26Þ

Here, ðu1;w1Þ are the baroclinic velocity compo-
nents on the deep side ðxo0Þ of the step where the

horizontal and vertical wavenumbers are given by
kn ¼ anp=H and np=H ; respectively. The velocity
components on the shallow side ðx > 0Þ of the step
are ðu2;w2Þ; with wavenumbers k0

n ¼ anp=ðH � h0Þ
and np=ðH � h0Þ: The matching conditions at
x ¼ 0 are similar to (8)–(10), with the barotropic
velocity on the shallow side of the step scaled by
H=ðH � h0Þ: These can be stated asXN

n¼1

an sin
npz

H
¼

XN
n¼1

bn sin
npz

ðH � h0Þ
;

� H þ h0pzp0; ð27Þ

1þ
XN
n¼1

an cos
npz

H
¼

H

ðH � h0Þ

þ
XN
n¼1

bn cos
npz

ðH � h0Þ
;

� H þ h0pzp0; ð28Þ

1þ
XN
n¼1

an cos
npz

H
¼ 0; �Hpzo� H þ h0: ð29Þ

The terms in (28) and (29) can be multiplied by
cos mpz=H and integrated vertically. For n ¼
1;y;N modes and m ¼ 1;y;N; this gives a
coupled set of equations for the coefficients am

and bn which can be written as the matrix problem:

am ¼ Amnbn þ cm: ð30Þ

Additionally, multiplying the terms in (27) by
sin lpz=ðH � h0Þ and vertically integrating the set
of equations generated by taking l ¼ 1;y;N gives
the matrix problem:

bn ¼ Bnlal : ð31Þ
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Fig. 5. Sketch showing a topographic step of height h0 above a deep ocean of depth H: The barotropic tidal current and baroclinic

response are denoted by U and u; respectively.
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The matrices for the two coupled problems are
given by

Amn ¼
2mð1� dÞ2ð�1Þn sin mpð1� dÞ

p½m2ð1� dÞ2 � n2�
; ð32Þ

Bnl ¼
2nð�1Þn sin lpð1� dÞ

p½n2 � l2ð1� dÞ2�
; ð33Þ

cm ¼
2 sin mpð1� dÞ

mpð1� dÞ
: ð34Þ

The coefficients for the baroclinic velocity series
are solved by combining (30) and (31) into a single
matrix inversion,

al ¼ ðI � AmnBnlÞ
�1cm; ð35Þ

where I is the identity matrix. Using (31) and (35),
the modal coefficients were computed for 2000
baroclinic modes. Fig. 6 shows the horizontal
velocity field (u1 and u2) for the case of d ¼ 0:75:
The amplitudes of the baroclinic velocities are
largest along characteristic paths, with slope
dx=dz ¼ 7a�1 emanating from the edge of the
step. On the deep-side of the step, the current
amplitudes along the upward and downward paths
are equal.
The depth-integrated energy flux is given by

Fstep ¼
Z 0

�H

/p0u0S dz

¼
1

2
F0

XN
n¼1

n�1½a2n þ ð1� dÞ2b2n�; ð36Þ

where / �S denotes an average over all compo-
nents of wave phase. Fig. 7 shows the nondimen-
sional energy flux for 1000 modes for the case of
d ¼ 0:75: As in the case of the knife-edge spectrum,
the step spectrum is red with mode 1 accounting
for 75% of the total sum in (36). Fig. 8 shows the
fraction of energy flux radiated to the shallow side
of the step relative to the total flux. In the limit of
infinitesimal topography, the energy flux radiated
to each side is equal, as expected from symmetry.
However, the energy flux radiated to the shallow
side of the step drops to less than 10% for dX0:25:
The asymptotic behavior of (36) as d-0 can be
derived through analysis of terms in (32)–(34) and
the use of (30) and (31). It can be shown that for
modes with noOðd�1Þ;

lim
d-0

an ¼ � lim
d-0

bn ¼ �ð�1Þnd; ð37Þ

which implies

lim
d-0

Fstep ¼F0d
2

XOðd�1Þ

n¼0

n�1

¼F0d
2 lnðad�1Þ þ smaller terms: ð38Þ

The leading term in (38) provides an excellent
approximation to Fstep in the limit of small d when
aC3:4: We compare (36) to the linear theory
solution for energy flux by tidal flow over a two-
dimensional slope up to a shelf. Specifically, we
will examine a topographic slope with the
profile hðxÞ ¼ p�1h0 tan�1ðx=bÞ: We note that this
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Fig. 6. A snapshot of instantaneous baroclinic velocity (u1 and u2 at ot ¼ 0; 2p; 4p;y; from (25)), normalized by the barotropic

current amplitude, for a topographic step with d ¼ 0:75: Dark gray shading on the deep side of the step indicates regions where
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arctan slope is related to the spatial derivative
of the Witch of Agnesi profile, just as the
step relates to the knife-edge. The linear conver-
sion rate for this slope can be calculated using
the theory of Llewellyn Smith and Young

(2002) as

Fslope ¼F0d
2
XN
n¼1

n�1e�4nd=eð2�dÞ

¼ � F0d
2 lnð1� e�4d=eð2�dÞÞ; ð39Þ
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where the slope parameter for the maximum
topographic steepness is given by

e ¼ a�1p�1
h0

b
: ð40Þ

In the limit of d=e51; the conversion rate is
approximated by

FslopeC� F0d
2 ln

2� d
4

� 	
e
d

� �
: ð41Þ

Furthermore, if both d51 and d=e51;

FslopeCF0d
2 lnð1

2
e=dÞ; ð42Þ

which to lowest order in d is the same as (38) for
the step energy flux. Unlike the case of d51 and
d=e51 for a ridge as in (24), (42) remains
dependent on e=d; and hence the width of the
sloping region, even in the limit of an infinitely
deep ocean.
Fig. 9 shows the ratio of Fstep to Fslope for the

case of a critical slope. In the limit of d51; the step
and the slope produce the same energy flux, as
expected from (38) and (42). However, this ratio
increases rapidly as d is increased, with
Fstep=FslopeC1:3 for d ¼ 0:001: Normalizing Fstep

by Fslope with e ¼ 6:8 produces a curve that
approaches unity smoothly in the limit of d ¼ 0:
The energy flux from the topographic step exceeds
the linear prediction by more than a factor of 4 for
d > 0:3:

4. Internal tide generation at topography of finite

width

4.1. A top-hat ridge

The formulation and solution technique for the
step is readily adapted to the problem of internal
tide generation by a top hat, rather than knife-
edge ridge. As shown in Fig. 10, we still consider a
ridge of height h0 in an ocean of depth H ; but now
give it a width 2L: The barotropic tide is, as before,
U0 cosot in regions 1 and 3, and H=ðH � h0Þ
times this in region 2. The baroclinic part of the
solution in regions 1 and 3 is now composed of
internal modes propagating away from the ridge,
but in region 2 the baroclinic solution must be
standing waves. Symmetry conditions require that
w ¼ 0 at x ¼ 0; so that we may write the baroclinic
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solution in regions 1 and 2 as

u1 ¼ Re U0

XN
n¼1

an cos
npz

H

� �
eiðknxþotÞ

( )
;

u2 ¼ Re U0

XN
n¼1

bn cos
npz

H � h0

� �
cos k0

nxeiot

( )
;

ð43Þ

w1 ¼ Re �iaU0

XN
n¼1

an sin
npz

H

� �
eiðknxþotÞ

( )
;

w2 ¼ Re aU0

XN
n¼1

bn sin
npz

H � h0

� �
sin k0

nxeiot

( )
:

ð44Þ

The solution in region 3 is as in region 1 with a
change of sign in kn and w: As for the step, the
total horizontal velocity must match across x ¼
�L for �H þ h0ozo0 and be zero for
�Hozo� H þ h0; and w must also be contin-
uous at x ¼ �L for �H þ h0ozo0: As for the
step, this leads to two coupled matrix equations
for the coefficients an and bn; though these
coefficients may now be complex. Because of the
symmetry of the problem, the matching conditions
at x ¼ 7L lead to exactly the same matrix
equations as for the step. However the total energy
flux away from the ridge is now given by
F0

P
N

n¼1 n�1janj2: We proceed much as before by
solving the problem for 2000 modes for a variety
of values of the ratio d ¼ h0=H and for various
values of the width parameter x ¼ apL=H :
Fig. 11 shows the internal tide energy flux

radiated from the top-hat ridge compared with

that from the knife edge, as a function of x and for
various values of the depth ratio d ¼ h0=H: As
required, the energy flux ratio tends to 1 for an
infinitely narrow ridge with x ¼ 0: It is also easily
seen from the structure of the problem that the
solution is periodic in x; with a period of 2p: The
energy flux is, in fact, periodic with a period of p
and symmetric about x ¼ p=2: It may seem a bit
physically surprising that for x ¼ p; or any integer
multiple of this, the radiated energy is the same as
from a knife edge, but the most interesting result
is the weak dependence of the flux on the depth
ratio d: Even for d as small as 0.1, the maximum
increase in energy flux, over that for the knife edge,
is only about 70%, and is much less for a ridge
that occupies a significant fraction of the water
column. The knife edge thus seems to be a good
model for many tall ridges in the ocean. For very
small values of d; the internal tide is as for two
steps. However, if x is an integer multiple of p; the
waves generated at each edge of the ridge
destructively interfere. For x well away from
multiples of p; and given the asymptotic fluxes
(24) and (38), the energy flux is much greater than
for a knife edge of the same height.

4.2. A top-hat trench

It is also straightforward to extend the above
problem to a trench of depth h0 in an ocean of
depth H elsewhere (Fig. 12). The energy flux
clearly vanishes for x ¼ 0 at which the trench has
collapsed to zero width. Interestingly, as a
consequence of the periodicity of the problem,
this result of zero flux also applies if x is an integer
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multiple of p: Fig. 13 shows the energy flux for a
trench compared with that for a ridge of the same
width as a function of the ratio d ¼ h0=H; where h0
is the depth of the trench or height of the ridge
relative to z ¼ �H : For small values of d the
trench, like the ridge, generates internal tides as
from two steps. For x away from integer multiples
of p; the energy flux from the trench is almost the
same as from the ridge. As d increases, the range in
x of this near equality is reduced and only holds
exactly at x ¼ p=2: The results show that for a

trench, unlike the situation for a ridge, the energy
flux generated is a rather sensitive function of the
width.

5. Discussion

5.1. The Hawaiian Ridge

Our model of internal tide generation at a knife-
edge ridge can serve as a crude model for internal
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tide generation at the Hawaiian Ridge, or other
tall ridges. The Hawaiian Ridge has been the focus
of numerous internal tide studies (Ray and
Mitchum, 1996, 1997; Kang et al., 2000; Pinkel
et al., 2000; Merrifield et al., 2001), and Althaus
et al. (in press) have observed internal tides from
the knife-edge like Mendocino Escarpment. Here,
we approximate the Hawaiian Ridge as a knife-
edge ridge with d ¼ 0:75 (h0 ¼ 3000 m and
H ¼ 4000 m). The nondimensional energy flux
spectrum for this case is shown in Fig. 3. We
now seek a dimensional estimate of the energy
flux. We use N ¼ 5
 10�3 s�1 as a rough scale for
the stratification at 1000 m depth, near the critical
generation point on the ridge. We take other
parameters as o ¼ 1:4
 10�4 s�1; f ¼ 5

10�5 s�1; and U0 ¼ 0:02 m s�1 to estimate Fknife ¼
11; 000 W m�1: Taking 2000 km as the Hawaiian
Ridge length, this implies 21 GW of M2 internal
tide production. This estimate is close to the
20 GW estimated by Egbert and Ray (2000, 2001)
for the total barotropic tidal conversion occurring
at Hawaii, but larger than the model result by
Merrifield et al. (2001) of 9 GW for the energy flux
radiated away from the ridge. We note that our
parameter values are somewhat subjective. The

depth of the Hawaiian Ridge cannot realistically
be characterized by a single value of d: Also, the
barotropic current amplitude varies significantly
over the Hawaiian Ridge, and a 40% change in the
value of U0 results in a factor of two change in
Fknife: Additionally, if WKB stretching of depth is
considered to account for varying stratification
with depth, a more appropriate value of d is
given by the ratio of stretched variables, dWKB ¼
ð #H � ð dH � h0H � h0ÞÞ= #H; where #zD

R 0

z
ðNðz0Þ=Nref Þ dz0

(Leaman and Sanford 1975). Here, Nref is a
reference value of the stratification, which may
be taken as the stratification value at the ridge
crest where the critical internal tide generation
occurs. Using an exponential stratification, NðzÞ ¼
N0e

z=b with N0 ¼ 0:00524 s�1 and b ¼ 1300 m; we
estimate dWKB ¼ 0:44 for the Hawaiian Ridge.
With U0 ¼ 0:02 m s�1; this implies Fknife ¼
3000 W m�1; or roughly 6 GW summed around
the ridge.
While the total energy flux is sensitive to the

choice of parameters, the ratio of the mode-1
energy flux to the total energy flux is not. Fig. 14
shows this ratio for general d: For the case of d ¼
0:75; mode 1 carries roughly 75% of the total flux.
Ray and Mitchum (1997) have used sea-surface
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altimetry data to estimate that 15 GW of mode-1
internal tide energy is radiated by the Hawaiian
Ridge. This is indeed 75% of the Egbert and Ray
(2000, 2001) estimate for the total internal-tide
energy flux. We note that a knife-edge ridge of
height d ¼ 0:65 generates a mode-1 baroclinic
response containing roughly 80% of the total flux.

5.2. Internal tide generation at multiple steps

Following Stigebrandt (1980), several studies
have applied the result for internal tide generation
at a single step to arrangements of multiple steps
(Sj .oberg and Stigebrandt, 1992; Gustafsson, 2001).
These models attempt to represent arbitrary
topography as a series of vertical pillars, with
internal tide generation occurring at the steps
between them. Stigebrandt (1980) assumed that
internal tide energy was radiated to the deep ocean
side of the step only. He applied this simplification
in fjords where the radiation of the internal tide
onto a shallow sill was assumed to be negligible.
However, Sj .oberg and Stigebrandt (1992) and
Gustafsson (2001) apply this simplification to
topographic steps in the deep ocean where the
deep and shallow sides of the step are of similar

depth. Furthermore, these studies treat each topo-
graphic step as an independent generator of internal
tides, ignoring the interference between internal
tides produced at two or more nearby steps. This
simplification is clearly applicable to fjords, where
one topographic step is used to represent a sill.
However, multiple steps are needed to represent
general topography in the deep ocean, and the
neglect of interference phenomena makes the
usefulness of the resulting estimates questionable.
We have examined the Sj .oberg and Stigebrandt

(1992) energy flux estimate for the Witch of Agnesi
topography. As discussed previously, the linear
theory conversion rate for the witch is given by
(22). Here, we will focus on the limit of d=e51;
with Fwitch ¼ F0ðp2=4Þd

2: The witch topography
can be represented as a series of vertical pillars,
and Sj .oberg and Stigebrandt (1992) estimate the
internal tide energy flux from each pillar as

Fpillar ¼ 2F0

XN
j¼1

j�1
sin2ðjp½1� d�Þ

p2j2ð1� dÞ2
; ð45Þ

where the sum is over modes with index j: For each
pillar, d is taken as the difference in height from
the neighboring pillar normalized by the water
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depth above the pillar. In the case where the
difference in height between pillars is small
compared to the total depth ðd51Þ; (45) can be
expressed as

Fpillar ¼ 2F0d
2

XOðd�1Þ

j¼1

j�1ð1þOð2dÞÞ: ð46Þ

Here, the approximation is valid out to jCOðd�1Þ:
Sj .oberg and Stigebrandt (1992) and Gustafsson
(2001) truncate the summation in (45) at mode 10.
The total energy-flux (per unit cross-stream width)P

Fpillar is calculated by summing the conversion
rates of all the pillars.
Fig. 15 shows the Witch of Agnesi topography

represented as a series of vertical pillars. Four
different representations of the witch are shown

for an increasing number of pillars ðnÞ: In each
case, (45) was used to estimate the energy flux for
each pillar. The ratio

P
Fpillar=Fwitch is reported in

upper right of each panel. The witch is coarsely
resolved by 3 pillars in panel a, and panels b–d
show successively more numerous pillars with
smaller steps which resolve the topography with
increased accuracy. The general trend is thatP

Fpillar approaches zero linearly as the number
of steps is increased (panel e). We note that
Sj .oberg and Stigebrandt (1992) and Gustafsson
(2001) represent an obstacle’s total height ðh0Þ with
n steps, such that d for each pillar is H�1ðh0=nÞ: It
follows from (46) that

X
Fpillarpn 
 H�2 h20

n2
ln n: ð47Þ
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Since Sj .oberg and Stigebrandt (1992) and Gus-
tafsson (2001) truncate the summation at j ¼ 10;
their energy flux estimates are proportional to n�1

rather than n�1 ln n: Fig. 15e confirms thatP
Fpillarpn�1; causing the energy flux estimate

to approach zero as the number of pillars becomes
large. This is a general problem, not related to
truncating the sum in (46), and not limited to any
specific topographic shape.
Thus, in cases where a series of steps are needed

to represent topography, the estimates of Sj .oberg
and Stigebrandt (1992) and Gustafsson (2001) will
be sensitive to the number of steps used to resolve
the bathymetry. While the energy flux estimates
presented in these studies are plausible, their
results must be viewed as fortuitous. A valid
model for internal tide generation at a series of
steps must include interference phenomena occur-
ring between internal tides generated at neighbor-
ing steps. Interference effects allow for
convergence of internal tide estimates as the
number of steps is increased to better resolve the
topography.

6. Conclusion

A knife-edge ridge may be regarded as a simple
model for an isolated ridge of supercritical
steepness such as Hawaii. We have found that in
the limit of infinitesimal amplitude topography, a
knife-edge ridge produces exactly twice the
amount of energy flux as the linear prediction for
critical topography. We contrast this to the
estimate of Balmforth et al. (2002) for a gaussian
ridge. They find that at critical steepness, the
energy flux produced by the ridge is 1.14 times
greater than the linear prediction. Generalizing, we
conclude that in the infinitesimal topography limit
ðd51Þ; increasing the steepness from e ¼ 1 to e ¼
N increases the power production by only a
further 75%. However, we note that for a knife-
edge ridge of finite amplitude, the energy flux can
considerably exceed the linear theory estimates.
We have further found that the knife-edge ridge is
an efficient generator for the first baroclinic mode.
For 0:35odo0:9; mode-1 accounts for 50% or
more of the total energy flux. It seems likely that

for large amplitude ridges such as Hawaii, the
internal tide energy flux is largely determined by
the overall topographic height, and not by finer
scale roughness along the ridge. This contrasts the
internal tide generation occurring at mid-ocean
ridges, where the energy flux is produced by
roughness at all scales (e.g., St. Laurent and
Garrett, 2002).
The case of a topographic step was also

considered. In the limit of infinitesimal topogra-
phy, the energy flux of the step equals the linear
theory prediction for a slope of critical steepness.
Energy flux estimates for step topography have
been previously employed in calculations by
Sj .oberg and Stigebrandt (1992) and Gustafsson
(2001). In those studies, deep ocean topography
was represented as pillars of varying height, and
estimates of internal tide energy flux were made at
the steps between adjacent pillars. Since Sj .oberg
and Stigebrandt (1992) and Gustafsson (2001)
regard each step as an independent generator of
the tides, their estimates are entirely dependent on
the number of pillars used to represent the
topography. In the limit of many pillars for which
the topography is finely resolved, the Sj .oberg and
Stigebrandt (1992) and Gustafsson (2001) calcula-
tions predict a vanishing energy flux.
For the case of mid-ocean ridges such as the

Mid Atlantic Ridge, changes in depth over the
lateral scale of the mode-1 tidal wavelength
ðOð150 kmÞÞ are generally less than 500 m: This
provides a rough estimate for the height h0 of
topographic obstacles along the mid-ocean ridge.
Furthermore, the mean depth H of a mid-ocean
ridge system can vary from 3000 to 5000 m: Thus,
0:1odo0:2 is a rough estimate of the amplitude
range for typical mid-ocean ridge topographies.
These regions are also characterized as subcritical
(St. Laurent and Garrett, 2002). It therefore seems
reasonable to use linear theory for the internal
tides generated at mid-ocean ridge topographies.
The complex topography at these sites can then be
modeled as individual Fourier components, and
the total baroclinic response is determined through
superposition. The simple models for knife-edge,
step, and top-hat topography are not useful for
calculating internal tide energy flux at these
sites. Additionally, the methods of Sj .oberg and
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Stigebrandt (1992) and Gustafsson (2001) will not
produce reliable estimates of energy flux for mid-
ocean ridge regions.
In contrast, ridges associated with oceanic

island and trench systems, such as the Hawaiian
and Aleutian Ridges, are both large amplitude
ð0:5odo1Þ and supercritical. Linear theory for the
internal tides will significantly under-estimate the
energy flux produced at these topographies. We
propose that the simple model for the knife-edge
ridge can serve as the basis for energy flux
estimates for these features.

Acknowledgements

The authors acknowledge the support of the US
Office of Naval Research and the Natural Science
and Engineering Council of Canada. DP-J thanks
NSERC for an Undergraduate Student Research
Award. We thank Eric Kunze, and three anon-
ymous reviewers for helpful comments.

References

Althaus, A.M., Kunze, E., Sanford, T.B. Internal tide radiation

from Mendocino Escarpment. Journal of Physical Oceano-

graphy, in press.

Baines, P.G., 1973. The generation of internal tides by flat-

bump topography. Deep-Sea Research 20, 179–205.

Baines, P.G., 1982. On internal tide generation models. Deep-

Sea Research 29, 307–338.

Balmforth, N.J., Ierley, G.R., Young, W.R., 2002. Tidal

conversion by nearly critical topography. Journal of

Physical Oceanography 32, 2900–2914.

Bell, T.H., 1975. Lee waves in stratified flows with simple

harmonic time dependence. Journal of Fluid Mechanics 67,

705–722.

Cox, C.S., Sandstrom, H., 1962. Coupling of surface and

internal waves in water of variable depth. Journal of the

Oceanographic Society of Japan 20th Anniversary Volume,

499–513.

Craig, P.D., 1987. Solutions for internal tide generation

over coastal topography. Journal of Marine Research 45,

83–105.

Egbert, G.D., Ray, R.D., 2000. Significant dissipation of tidal

energy in the deep ocean inferred from satellite altimeter

data. Nature 405, 775–778.

Egbert, G.D., Ray, R.D., 2001. Estimates of M2 tidal energy

dissipation from TOPEX/POSEIDON altimeter data. Jour-

nal of Geophysical Research 106, 22475–22502.

Gustafsson, K.E., 2001. Computations of the energy flux to

mixing processes via baroclinic wave drag on barotropic

tides. Deep-Sea Research 48, 2283–2295.

Hibiya, T., 1986. Generation mechanism of internal waves by

tidal flow over a sill. Journal of Geophysical Research 91,

7696–7708.

Kang, S.K., Foreman, M.G.G., Crawford, W.R., Cherniawsky,

J.Y., 2000. Numerical modeling of internal tide generation

along the Hawaiian Ridge. Journal of Physical Oceano-

graphy 30, 1083–1098.

Khatiwala, S., 2003. Generation of internal tides in the ocean.

Deep-Sea Research I 50, 3–21.

Larsen, L.H., 1969. Internal waves incident upon a knife edge

barrier. Deep-Sea Research 16, 411–419.

Leaman, K.D., Sanford, T.B., 1975. Vertical energy

propagation of inertial waves: a vector spectral analysis

of velocity profiles. Journal of Geophysical Research 80,

1975–1978.

Li, M. Energetics of internal tides radiated from deep-ocean

topographic features. Journal of Physical Oceanography,

submitted for publication.

Llewellyn Smith, S.G., Young, W.R. 2002. Conversion of the

barotropic tide. Journal of Physical Oceanography 32,

1554–1566.

Llewellyn Smith, S.G., Young, W.R. Tidal conversion by a very

steep ridge. Journal of Fluid Mechanics, submitted for

publication.

Merrifield, M.A., Holloway, P.E., Shaun Johnston, T.M., 2001.

The generation of internal tides at the Hawaiian Ridge.

Geophysical Research Letters 28, 559–562.

Pinkel, R., Munk, W., Worcester, P., et al., 2000. Ocean mixing

studied near Hawaiian Ridge. EOS, Transactions of the

American Geophysical Union, 81, pp. 545, 553.

Rattray, M., 1960. On the coastal generation of internal tides.

Tellus 12, 54–61.

Ray, R., Mitchum, G.T., 1996. Surface manifestation of

internal tides generated near Hawaii. Geophysical Research

Letters 23, 2101–2104.

Ray, R., Mitchum, G.T., 1997. Surface manifestation of

internal tides in the deep ocean: observations from

altimetry and island gauges. Progress in Oceanography 40,

135–162.

Robinson, R.M., 1969. The effects of a barrier on internal

waves. Deep-Sea Research 16, 421–429.

St. Laurent, L., Garrett, C., 2002. The role of internal tides in

mixing the deep ocean. Journal of Physical Oceanography

32, 2882–2899.

Singh, S., 1997. Fermat’s Enigma: The Quest to Solve the

World’s Greatest Mathematical Problem. Walker and Co.,

New York, 288pp.

Sj .oberg, B., Stigebrandt, A., 1992. Computations of the

geographical distribution of the energy flux to mixing

processes via internal tides and the associated vertical

circulation in the ocean. Deep-Sea Research 39, 269–291.

Stigebrandt, A., 1980. Some aspects of tidal interaction with

Fjord Constrictions. Estuarine and Coastal Marine Science

11, 151–166.

ARTICLE IN PRESS

L. St. Laurent et al. / Deep-Sea Research I 50 (2003) 987–1003 1003


	The generation of internal tides at abrupt topography
	Introduction
	Internal tide generation at a knife-edge ridge
	Internal tide generation at a step
	Internal tide generation at topography of finite width
	A top-hat ridge
	A top-hat trench

	Discussion
	The Hawaiian Ridge
	Internal tide generation at multiple steps

	Conclusion
	Acknowledgements
	References


