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The interaction of zonal currents with topography with applications to the 
Southern Ocean* 

M. S. MCCARTNEY~" 
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Abstract--An analytical model for the interaction of a broad, eastward baroclinic current with 
shallow topographic features in an unbounded [B-plane ocean is developed and solved for three types 
of topography: a meridionally oriented ridge as is found in the central South Pacific and South 
Atlantic sectors of the Southern Ocean, a zonally oriented ridge as is found south of Australia and 
Africa, and an isolated plateau or seamount. The meridional ridge causes a stationary wave pattern 
similar to that believed to occur in the southeast Pacific Ocean. The zonal ridge causes a current 
intensification on the equatorward side of the ridge crest, with intermittent slowed or reversed flow 
and a string of stationary warm core eddies on the poleward side. Comparison is made to CALLAHAN'S 
(1971, JournalofGeophysics Research, 76, 5859-5870) observations of the flow along the ridge south of 
Australia. The isolated seamount forces a Taylor column (warm core anticyclonic eddy) above it, 
and has a stationary meandering wake downstream, sometimes with embedded eddies. 

] .  I N T R O D U C T I O N  

SEVERAL recent papers discuss physical oceano- 
graphic observations in the Southern Ocean and 
establish some interesting correlations between 
the spatial distributions of  quantities like dynamic 
height and the rugged bottom topography of  the 
region. In the present work an attempt to under- 
stand the role of current-bottom topography 
interaction in Southern Ocean dynamics will be 
presented. The model describes the finite ampli- 
tude steady disturbances to a horizontally 
uniform, vertically sheared, eastward stratified 
current caused by its interacting with several types 
of simple shallow topographic features. 

2. F O R M U L A T I O N  

The basic flow field will be characterized by a 
root-mean-square speed U,: 

H 

0 

where U(z') represents a meridionally averaged 
zonal velocity at a height above sea floor of 
z '  and H is the mean depth. In the absence of 
currents the water column is characterized by a 
total density variation Ap and a mean density P,. 
The topography will be characterized by a single 
horizontal scale L and a height h0'. The [~-plane 
will be used throughout : f (y ' )  = f o  + [~Y', with y '  
being the poleward directed coordinate. 

The nondimensional parameters characteriz- 
ing the problem are: 

¢ - -  U, h o _ h ~  8 _ H  
foL H L 

_ gH Ap b - -  [3L2 
S = (SN/fo)' f2  L'  Pr U, 

with N = Brunt-V[iisS.l~i frequency. 

(2.2) 
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A value of U, = 5 cm s -~ seems to be consis- 
tent with CALLAHAN'S (1971) transport measure- 
ments south of  Australia. For [5 : 1.5 x 10 -13 
s -1 cm -x, Ap/p, < 10-s, f0 : 10 -5 s -1, H : 5 kin, 
and restricting L > 100 km gives e < 5 x I0 -3, 
S < 10-1, ~5 < 10 -2, and b > 3. Analytically it 
proves convenient to assume S ,¢ 1; for 
L = 100 km this is marginal. However, the 
observations that will be compared to the model 
results generally have L larger than this. For 
example, in CALLAHAN'S (1971) observation of 
flow along a submarine ridge south of Australia, 
the ridge scale, defined by L = H/HI ,  is greater 
than 100 km. The following analysis formulates 
a model under the assumptions: 

S ~  1, e , ~  1 , 8 <  1 ( 2 . 3 )  

b = 0 ( 1 )  h o =:O(e). 

The pressure and density fields are split into 
dynamic and hydrostatic components: 

p' : pd ÷ prUrfoZps(g) Av p(x, y, z) 

p = p/~ + p,(z) + -s p(x, y, z) ±p, 

(2.4) 

the [3-planef(y) --: fo(l + eb.v), the nondimen- 
sional equations of motion for an inviscid 
Boussinesq fluid are: 

e q - V u - - ( l  + e b y ) v - - :  --p,~, 

e q .  V v  + ( 1  +~by)u  : --py,  

eS ~q 'V ~  . . . .  p , - p ,  (2.6) 

e q ' V p  + Sw dPs___0, and 
dz  

V q "  - : 0 ,  

q being the nondimensional velocity vector and V 
the three-dimensional divergence operator. 

For  small Rossby number, the dependent 
variables are expanded in powers of e, e.g. 
u = u(°) + elu(1) + . . .  The order ~o balances are: 

- -  v(O) = _ px(O), 

u(O) ___ _ py(O), 

p(O) = _ pz(O) (2.7) 

where P0' and P4 are the pressure and density at 
z = 0 in the absence of any motion, and ps and 
p, are the nondimensional hydrostatic fields in 
the absence of any motion and are related by the 
hydrostatic relation 

dP~dz -- S_eL~[Po' + ps(z)]" (2.5) 

S and e were defined in equations (2.2); x and y 
are the eastward and poleward coordinates, 
sealed by L; z is the vertical coordinate zero at 
the bottom, positive upwards, sealed by the mean 
depth H. The separation giving P0, Ap, and 
ps(z) is such that ps(0) = 0 and ps(1) = 1, hence 
Ap gives the total static density range, p and p 
are the nondimensional dynamic pressure and 
density. Scaling horizontal velocities by U,, 
vertical velocity by U,8 with 8 ~ H]L, and using 

V " q(O) = 0, and 

q(O) . Vp(O) = _ S_ dps [w(O ) + ~wO)]. 
e d z  

Equations (2.7) can be manipulated to give: 

w(°) = O, uz(°) = py(O), %(0) = _ px(O), 

pCo) -= _ p(O), (2.8) 

and hence, for S < 1 
q(O).Vp(o) = _ q ( O ) . V p ( o )  = 0 .  (2.9) 

Equation (2.9) can be written in Jacobian form 

py(O) px(O) _ p~O)py(O) = 0, and integrated once 
to give: 
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prO) = F[p(O)]. (2.10) where 

Assuming all streamlines originate upstream 
and the flow upstream to be: 

p(O) _+ _ Uo(z)y, (2.11) 

i.e. a horizontally uniform, vertically sheared, 
eastward directed [for Uo(z) > 0] current, then 
Ftp(°)] in equation (2.10) is 

F[p(O) l = [U~ (z)-] v(o)" (2.12) 
L Go (z)J - 

Substituting Ffp(°)] into equation (2 .10)and 
integrating in z gives: 

prO) = Uo(Z)+(x, y). (2.13) 

I 

Uo = f Uo(z) dz. (2.17) 
0 

1 

Note that Uo(z) is scaled by U, so f Ugdz :- 1. 
0 

Equation (2.16) can be treated in the same 
manner as equation (2.9): written in Jacobian 
form, integrated, and the arbitrary function of 
determined by knowledge of the upstream relation 

---- -- y. Writing ~ = -- y + ?(x, y), this yields: 

V 2~0 -k b U'-oq~ ---- -- Uo(O) h_. (2.18) 

The separable z dependence means that the 
horizontal streamline and isopycnal patterns are 
independent of z. For example, using the thermal 
wind relation in equation (2.8) gives 

q(O) __ Uo(z) [-- qbyt + +~,j] (2.14) 

=-- Uo(z)u(x, y),  

indicating that the velocity vector changes in 
magnitude but not in direction with z. 

The order e 1 balances yield a vorticity 
equation: 

q(O). V[V2 p(0) -k- by] ---- w o), (2.15) 

where V 2 is the horizontal Laplacian operator. 
Equation (2.15) can be vertically integrated, 
because the z dependence of p(0) and q(O) are 
known by equation (2.13) and equation (2.14). 
At z = 1, wtl) is zero, while at z ---- h --- 0 [h =0(e)], 

wO) = q ( O ) . V  h 

u.  V [ V ~ b  + b U o y +  Uo(O) ~]  = O, 

(2.16) 

Several comments can be made about equation 
(2.18). First, it is the same equation one obtains 
for the stream function for the corresponding 
homogeneous fluid problem, where ~r 0 = U0(0) = 1. 
The only effect of stratification in the S : 0(~) 
formulation is to allow vertical shear via Uo(z). 
Secondly, the operator on the left-hand side of 

equation (2.15) is wavelike for ~'0 > 0, evanescent 

for Uo < 0, i.e. depending on the sign of the 
depth averaged approaching velocity. Thirdly, if 
there is no bottom velocity [U0(0) = 0] then the 
current does not feel the bottom (q~ ~ 0). 

In the following sections, solutions to equation 
(2.18) will be presented for three types of topo- 
graphy: a meridional ridge, a zonal ridge, and an 
isolated seamount. In the latter two eases, for 
sufficiently high topography, the solutions to 
equation (2.18) will correspond to closed d? 
contours, and the steps leading from equation 
(2.10) to equation (2.12) and from equation (2.16) 
to equation (2.18) break down because all 
streamlines do not now originate upstream where 

= -- y. In the framework of a temporal initial 
value problem such closed contours contain 
fluid, originally connected to streamlines origina- 
ting upstream, which was trapped within a 
growing meander, closed upon itself, and 
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pinched off. The solutions to equation (2.18) then 
represent the ultimate steady state that such an 
inviscid process would tend to. INGERSOLL (1969) 
argued that with small bottom friction the 
ultimate state within such closed streamlines must 
be stagnation and was able to modify his f-plane 
Taylor column solution to take this into account. 
In the solutions to be presented, this modification 
is not possible, so they must be considered to be 
solutions corresponding to times short compared 
to the viscous time scale. 

3. MERIDIONAL RIDGES 

There have been several previous theoretical 
studies concerning the interaction of a horizon- 
tally uniform zonal barotropic current with 
bottom topography that varies only in the down- 
stream direction. NEUMANN (1960) formulated 
the problem in terms of a linear bottom frictional 
beta-plane model. This model contains as special 
cases the EKMAN (1923) model ([5 ~__ 0) and the 
SVERDRUP (1941) model (zero bottom friction). 
For a Gaussian ridge the Ekman model indicates 
a streamline deflection that is anticyclonic on the 
upstream half and cyclonic on the downstream half 
with a net streamline deflection. The Sverdrup 
model for the same geometry gives first, anti- 
cyclonic deflection upstream of the ridge crest, 
cyclonic over the ridge crest, then anticyclonic 
downstream of the ridge crest; there is no net 
streamline deflection. Neumann's solutions show 
a mixture of these two effects. 

The papers by PORTER and RATTRAY (1964), 
MClNTYRE (1968), and CLARK and FOFONOFF 
(1969) recognized that relative vorticity effects are 
generally as important as 13-effects in typical ocean 
situations. Taking this into account gives a 
nonlinear potential vorticity conservation 
equation. Finite amplitude disturbance solutions 
are presented for various examples of down- 
stream varying topography, their main feature 
(for eastward directed flow) being the existence of 
stationary Rossby waves downstream of the 
topography (or over the topography in the case of 
a step profile). The present model, with h = h(x), 
can be regarded as baroclinic extension of this 
group of barotropic models. 

For topography of the form h ----- h(x) in an 
ocean unbounded in y, ~ = ~(x), hence the 
governing equation becomes 

~ "  + bUo~ ~ - Uo(O)h/~. ( 3 . 1 )  

Equation (3.1) is just a forced spring equation 
with x playing the role of time, ~0 the role of spring 
deflection, and h the forcing. There is no damping 
(which for simple bottom friction would be 
proportional to q~'), so even if h(x) vanishes 
downstream of some location, any oscillations 
set up by the forcing persist there. It can be shown 
that any stationary waves set up by the interaction 
with the topography occur downstream (to the 
east) from the topography; see DGHTrIILL (1966). 

As an example, the solution corresponding to 

h = hoe- tx t, (3.2) 

and satisfying the no upstream wave condition is 

- -  - u 0 ( 0 )  
ho 1 

e l + b t 7  o 

e x x < 0 
e-* + 2(bUo)-tsin[(bUo)ix] x > O" 

(3.3) 

Equation (3.3) gives q~ and 9'  that are continuous, 
but q~" is discontinuous at x = 0; this is because 
of the cusp nature of h: a smoothly varying h has 
a correspondingly smoothly varying % Stream- 
lines corresponding to equation (3.3) with 

bU o = 1 are shown (Fig. 1) for U0(0) ho/~ ~ 2. 
To put the streamline pattern in perspective, 
recall the familiar concept of a noninertial 
barotropic current following lines of constant 

f / H .  In the present formulation this is equivalent 

to following the lines of b~oy  + Uo(0) h/e 

constant = -- ~ob~0 or 

Uo(0) ho 
- -  - -  e -  Ix I. ( 3 . 4 )  

The solution q~ given in equation (3.3) corresponds 
to a streamline equation: 
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Fig. 1. Contours  of  ~ for  the interact ion with a meridion- 
ally-oriented ridge. The  ridge crest line is a long x = 0 
and  the  ridge height is propor t ional  to exp ( - -  I x I); 

b~0 = 1-0. 

U0(0) h0 
1 + 

f ex x < 0  
e -~' + 2(bUo)-~sin[(bffo)~X] x > 0. (3.5) 

The effect of the weak inertia is evident upon 
comparing equation (3.4) and equation (3.5). 
For x < 0, inertia keeps the streamlines from 
deflecting as much as the f / H  contours [because 

bUo/(1 + b~0) < 1]; while downstream inertial 
overshoot leaves the streamlines oscillating about 
the corresponding asymptoticf/H contour. 

The streamlines in Fig. 1 bring to mind the 
dynamic topography contours GORDON and BYE 
(1972) presented. The circumpolar current crosses 
a mid-ocean ridge in the South Pacific and then 
appears to undergo a quasi-steady meandering 
downstream of it. They indicated the wavelength 
to be about 1000 kin. Assuming the waves to be 
stationary barotropic Rossby waves, they com- 
puted a mean flow velocity (from 3. = 2~%/~/U) 
of 50 cm s -1. The present model gives a somewhat 
different wavelength of 

3. = 21t L(bUo) -1/2 (3.6) 

or using equations (2.1), 2.2), and (2.17) 

H 

f U~(z')dz' 

3 . _  o (3.7) 
H 

~ f g(z')dz' 
0 

Given density information and hence the geo- 
strophic velocity field from a meridional section 
across the meander, equation (3.7) could be used 
to estimate bottom velocity; i.e. the density field 
determines U(z') to within an additive constant, 
and equation (3.7) then becomes an equation for 
this constant in terms of the density field, 13 and 3.. 
This calculation was not made for two reasons: 
the non-synoptic nature of the data used in the 
GORDON and BYE (1972) paper makes the error 
bars of estimating 3. excessively large, and the 
stations spacings along the meridional section in 
this area are rather large, so that the geostrophic 
velocity field is not well determined. 

4. ZONAL RIDOES 
The motivation for this particular example is 

CALLA~N'S (1971) paper on the velocity field 
south of Australia. There is a zonally oriented 
mid-ocean ridge to the south and southwest of 
Australia, and Callahan examined data from five 
deep, nearly meridional sections across the ridge 
in the Australian sector. Within the broad 
eastward drift of the Antarctic Circumpolar 
Current he consistently found a high baroclinic 
velocity core embedded on the northern (equator- 
ward) flank of the ridge, and a low baroclinic 
velocity region, sometimes even westward flow, 
on the southern flank. He points out that KORT 
(1963) observed a similar velocity structure in the 
region south of Africa, where another mid-ocean 
ridge runs zonally for some distance. He also 
reported bottom current meter measurements from 
the 132°E section, Eltanin Cruise 41 (ANONYMOUS, 
1972), which indicated a reversed (westward) 
zonal velocity component of almost 6 cm s -x near 
the ridge crest. 

Within the framework of the present model the 
effect of such a zonally oriented ridge can be 
examined by using the following idealized topo- 
graphy: 
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~e+c=Xe-ly I X < 0 

h ho 
le-I yl x > 0 

(4.1) 
In the limit c ~ >> 1, the x dependence of h, 

equation (4.1), is just a step function, and equation 
(4.2) becomes 

Using the constraint of no waves at x ~ -- ~ ,  
the solution to equation (2.18) with this h is: 

= -- Uo(0) h_o e-I y I 

(k s + c4)-lec~x x < 0 

(k~)-l[1 -- c4(k 2 ÷ c4)-lcos k x  
+ c~k(k ~ + e4)-lsin kx] x > O, 

(4.2) 

0 x < 0  
q~ = -  Uo(0) __h° e-lyl  (4.5) 

ek2 [1 -- cos kx] x > 0 

The flow still intensifies on the equatorward side, 
but because of the finite north-south velocities 
induced, the ~3-plane again exhibits its spring-like 
nature, and the streamlines meander downstream 
of x = 0. Isolated stagnation points (q = 0) occur 
on the poleward side if ho/e is greater than: 

where k s = 1 + bUo, and it will be assumed that 
Uo(0) > 0. 

If c 2 ,~ 1 (and c2k .~ 1) then q~ has the simple 
form:  

Uo(0 ) h o e-lyl I e'2x x < 0  (4.3) c? 
e k2 L 1 x > 0  

The zonal velocity field corresponding to equation 
(4.3) is obtained from equation (2.13) and the 
second of equations (2.7), which, dropping the 
superscript (0), gives: 

u = V o ( z )  (1  - %) 

= Uo(z) -- Uo(z)Uo(O) ho e-ly [ 
k s 

{ ec'Xsgn(y) x < 0 

sgn(y) x > 0 
(4.4) 

where sgn(y) = + 1 for y > 1 and -- 1 for y < 1. 
Thus as the current rides up the gradually rising 
exponential skirt upstream of x = 0 it is slowly 
intensified on the equatorward side of the ridge, 
with a slow flow region on the poleward side. If  
U0(0) ho/zk ~ > 1, then the flow reverses on the 
poleward side of the ridge. This structure is in 
agreement with CALLAHAN'S (1971) observations. 

ho) = k ~ 
c 2Uo(0)" (4.6) 

In Fig. 2 streamlines are shown for ho/e = 
(ho/e)c and 2(ho/e),.. Immediately downstream of 
x = 0, the streamlines turn anticyclonically, but 
because of the finite inertia, they overshoot their 
new equilibrium latitudes and then oscillate in x. 
The zonal velocity averaged over a wavelength in x 
is the same as that given in equation (4.4) for 
x > 0 .  

The second case shown in Fig. 2 corresponds 
to twice the critical height. Now there is an array 
of cyclonic eddies on the poleward side of the 
ridge, with region of westward directed flow within 
each. GORDON and BYE (1972) commented that 
the data from the region south of Australia (the 
same area as Callahan's) do not indicate a 
continuous westward drift on the poleward side 
of the ridge, but rather 'a series of filaments of 
westerly flow'. However, the data do not seem to 
be dense enough in space or time to determine 
whether the spatial periodicity indicated in Fig. 2 
actually exists along the ridge south of Australia 
(see Fig. 8). 

In Fig. 3 vertical sections of the zonal velocity 
component are presented for the same two values 
of  ho/z as in Fig. 2. In each case the section runs 
north-south and passes through the stagnation 
point at k x  = r~. The sections can alternatively 
be interpreted as representing the velocity field of  
the e 2 ~ 1 solution, equation (4.4), for x > 0 and 



The interaction of zonal currents with topography with applications to the Southern Ocean 419 

2 M 

I 

Yo 

- r  

- Z  

E r I[ Im r I I I I I I ,  

I fl I I I I , I 

kx 
Fig. 2a. 

i '  r i i I i .... i ~ I ~ ! 

2 

y o 

I I I I 
' OI ; 21 3t 41 g G 7 8 9 1~) Ill 12 t~  14  

kx 
Fig. 2b. 

Fig. 2. Contours of ¥ for the interaction with a zonally-oriented ridge. The ridge crest line is along y = 0; there is 
topography only downstream of x = 0, where it is independent of x; the ridge height is proportional to exp (-[yl).  
(a) corresponds to a ridge height equal to that of equation (4.6) while (b) is twice that value. The dashed lines are the 

= -- 1-693 contours, the outermost closed ¥ contours, which exhibit a stagnation point at kx = (2n -- l)n, 
y = 0.693. This streamline originates at y = + 1.693 upstream; this segment is not shown. Positive y is poleward. 

(hole) = k~/Uo(O) and 2k2/Uo(O). The particular 
Uo(z) used in the calculation was 

Uo(z) = 1.571 exp [--  1.099~(1 - -z)] ,  (4.7) 

which has the property Uo(1)/Uo(O) = 3.0 and has 
maximum vertical shear and curvature at the 
surface. This velocity ratio is roughly what 
Callahan observed (combined bot tom current 
meter data and geostrophic velocity calculations 
from density data), while the strongest vertical 
shear and curvature were near the surface. The 
zonal velocities calculated from equation (4.2) are 
discontinuous at y = 0, reflecting the discon- 
tinuity in ,gh/~y there. A smoothly varying 
topography would have a smoothly varying 
velocity field, still intensified on the equatorward 
side of  ridge crests as in the present example. 

The mechanism of  the current alteration in the 
present example should be contrasted with 
TrIOMPSON'S (1971a, b) mechanism. In the present 
example the current intensification on the equator- 
ward side of  the ridge and slowing on the pole- 
ward side of  the ridge represent basically the 
tendency to follow lines of  constantf/H. Station- 
ary Rossby waves can occur, but, as the c ~ a 1 
example showed, they are not responsible for the 
mean current pattern along the ridge. THOMPSON 
(1971a, b) pointed out that given an existing 
slowly meandering eastward current over a 
north-south linearly sloping bottom, barotropic 
Rossby waves propagating away from the 
meander region will converge momentum into the 
meander region if the ocean depth shoals in the 
poleward direction, but they will remove momen- 
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Fig. 3. Zonal velocity sections through kx  = n, for the 
same case as illustrated in Fig. 2. Positive y is poleward. 
The vertical dependence of the velocity field is exponential 
in character, given by equation (4.7). The contours are 
constant speed lines. The zonal velocity is discontinuous 
at y = 0. (a) corresponds to (ho/e),, equation (4.6) and 
Fig. 2(a); (b) corresponds to 2(ho/e), and Fig. 2(b). The 

cross-hatched region is westward flow. 

tum from the region if the ocean depth deepens 
poleward rapidly enough to counteract the 
planetary [3 effect. This mechanism is not active 
in the present model; it could play a role in 
adjustment problems: response of the current 
system to changes in the approaching flow 
velocity, or problems with either time-dependent 

forcing or some active instability mechanism 
generating time-dependent meanders and eddies. 

Restricting attention to the c 2 >> 1 solution, 
equation (4.5), what happens if the topography 
amplitude changes abruptly at x ---- Xo, i.e. 

h0 0 < X < X o  ~ (4.8) 
ho = hoy x0 < x 

The solution for x < x0 remains unchanged, 
i.e. q~ in equation (4.5); downstream q~ becomes: 

Uo(O) ho 
k s 

e- ly I[y _ m sin(kx -- ~)], (4.9) 

where 

m ----- v/[l -4- (1 -- y) 2 -- 2(1 -- y)cos kxo  (4.10) 

and 

= £ Jr- m -1 ~f_~!. _-- 7) sin kxo ~. (4.11) 
" [1 -- (1 -- )')cos k x o j  

If, in particular, equation (4.9) is examined for 
the case y ---- 0, i.e. no topography downstream of  
x0, isolated stagnation points occur in the wake 
at values of x satisfying: k x  --  ~ = nn/2  (n = 

1, 2, 3 . . . . .  restricted to x > xo), if 

k 2 k 2 1 ho > . . . . . . .  (4.12) 
s m x/2 ~/(i ---cos kxo)" 

This value lies in the range (k2/2, oo). Because the 
flow for x < xo has stagnation points if 
ho/s > k2/2, three distinct configurations occur: 
no stagnation points anywhere, stagnation points 
only for 0 < x < x0, and stagnation points for all 
x >  0. In Fig. 4 streamlines are shown for the 
case shown in Fig. 2(b): hole ---- k s, but with the 
ridge truncated at Xo = 3n/(2k)  (note that if 
xo = 2folk, there is no disturbance downstream). 

There is now a stationary vortex street array 
downstream of the ridge: cyclonic eddies on the 
poleward side, anticyclonic eddies on the equator 
side of y = 0. This wake is of a non-diverging 
variety--the structure is simply periodic in x. 
This is not a general feature for flow past isolated 
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Fig. 4. Contours of ¥ for the interaction with a finite length zonally oriented ridge. Conditions identical to 
Fig. 2(b), except the ridge ends at kx = 3n/2. The smaller dashed ~ contours correspond to ~ = ± 1'347, and they 
originate at y = T 1-347. They are streamlines with stagnation points for the wake, and thus are the outermost 

closed ~ contours. 

topographic features. Indeed, in the next section 
the flow past an isolated circular bump is 
examined--the traditional Taylor column geo- 
metry. A meandering wake is still found, but it is 
of  a radial character and thus decays away from 
the bump. Instead of an infinite number of  eddies 
in a street configuration only a finite number of  
eddies are found. 

5. ISOLATED BUMP 
The particular topography used in this section 

will be an axisymmetric bump with a step- 
function radial dependence: 

h = h  o ,~1 r < l  (5.1) 
L u r > l  

(cylindrical coordinates being used throughout 
this section with 0 measured counterclockwise 
from x direction). 

The solution to equation (2.18) with this h, 
constrained to have no waves far upstream, i.e. 

r ~q~--~0 at r - + ~ ,  

x/2 < 0 < 3x/2, (5.2) 

and also to have continuous q0 and V ?  at r - 1, 
is identical to that given by MCCARTNEY (1975) 
for the case of  a homogeneous fluid on a ~3-plane. 
In the present notation this solution is: 

Uo(O) ho {X + 

m 

i ~x y:(m)Jo(mr ) r < 1 m-:  + 2 , (5.3) 

+ 2 Jx(m) Yo(mr) r > 1 

where m = (b/20) }, J0, and J1 are Bessel functions 
of  the first kind, Yo and I11 are Bessel functions of  
the second kind, and 

X --~ 2 J:(rn) Z d2~,_l(mr) co s[2n -- 1)~?]. (5.4) 
,,= l 2 n  - -  1 

The X term asymptotically cancels the Yo(mr) 
term on the upstream half plane, thus satisfying 
the no upstream wave condition [equation (5.2)]. 

A general expression for the critical height 
for which this solution has a stagnation point 
cannot be obtained from this solution. In Fig. 5 
streamlines are shown for the case of  m = 1 and 
values of  Uo(O)ho/e = 2.0, 4.0, 6.0. In all three 
cases there is a slow flow region over the upstream 
equatorward quadrant of  the bump. For the 
shortest bump, there are no closed streamlines 
in this region, but for the two taller bumps there 
are. These closed streamlines are just the ~-plane 
counterpart of  INGERSOLL'S (1969) ]:plane inertial 
Taylor columns; indeed, his solution* can be ob- 

*Only his inviscid solution is obtained; the solution he 
presented with a stagnant Taylor column--using the 
bottom frictional argument discussed in Section 2--is not 
obtainable from equation (5.3). 
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(a) 

~ "~-J / 

2 \ j "  \,\ // 

{bl 

(c) 

Fig. 5. Contours of ~ for the interaction with an isolated 
circular fiat-topped hump. The bump is indicated by the 
dashed contour, bU. = 1, and U.(O)hde = (a)2, (b)4, and 
(c)6. The closed contour in (b) is the ¥ = 2 contour, while 
the smaller one in (c) is ¥ = 2, the larger ~ = -- 5. The 
outermost closed contours in each case were not computed 

due to the complexity of equation (5.3). 

tained from the present one by taking the double 
limit b ~ 0, S ~ 0. Hoc~ 's  (1973) weakly strati- 
fied Taylor column solution is recovered from the 
present solution by taking only the limit b ~ 0. 
Returning to Fig. 5, on the downstream poleward 
side of the bump there is another slow flow region 
- - a  cyclonic meander. As the bump height 
increases, the amplitude of this meander increases 
until it pinches off forming a cyclonic eddy. 
Similarly, there is an anticyclonic meander to the 
downstream equatorward side that pinches off to 
form an anticyclonic eddy. The meander in 
Fig. 5b resembles GORDON'S (1972, 1975) pictures 
of the interaction of the Antarctic Circumpolar 
Current with the Macquarie ridge complex south- 
west of New Zealand. From the depth of  the 
salinity maximum core layer, he has inferred that 
the dynamic topography exhibits an anticyclonic 
loop over the southernmost end of  the ridge 
system (near 158°W longitude and 58°S latitude). 
In the more recent paper he contours an anti- 
cyclonic eddy over the ridge tip. In both papers a 
cyclonic meander is contoured downstream of the 
ridge tip. 

Another feature of the solution ? in equation 
(5.5) deserves comment. If the value of m is such 
that Jl(m) = 0, then for r > 1, ~ ~ 0. This gives 
a stationary trapped wave disturbance over the 
bump and no disturbance outside the bump. Two 
examples of this resonance phenomenon were 
shown in MCCARXNEY (1975). 

6. PERTURBED DENSITY FIELDS 

The three-dimensional density field corres- 
ponding to the ? solutions presented in the 
previous sections is immediately obtainable from 
equations (2.4) and (2.13), which give: 

P' --P'O_:ps(z ) + e dU0(z) 
Ap S dz [Y -- ?]" (6.1) 

If the restriction to dUo(z)/dz > 0, i.e. maximum 
speeds at surface, is made, then the plots of 
+(x, y) presented in Figs. 1, 2, 4, and 5 also 
represent the intersection of  isopyncal surfaces 
with a horizontal surface, with the density values 
on the contours increasing with increasing y, 
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except in those regions with reversed flow. 
Cyclonic eddies have a local density maximum 
(cold core) while anticyclonic eddies have a local 
density minimum (warm core). The origin of 
these extremes in density can be understood by 
envisioning a startup process in which the 
topography is 'created' at time zero. The stream- 
lines, initially straight, feel the topography, and 
deflect with time until a streamline meanders 
sufficiently strongly to close back upon itself. If 
the meander is cyclonic it traps a core of more 
dense water originating from further poleward, 
much as a Gulf  Stream meander pinches off 
forming a ring with slope water in the core 
(FUGLISTER, 1972). Similarly, an anticyclonic 
eddy pinches off a core of warm water originating 
from further equatorward. 

Returning to Fig. 2, it is seen that the inter- 
action of the current with the semi-infinite cusp- 
cross-section ridge has produced a string of 
cyclonic cold core eddies, while the finite length 
ridge in Fig. 4 has an eddy street of  alternate 
cyclonic cold core and anticyclonic warm core 
eddies. The isolated bump in Fig. 5c has an 
anticyclonic, warm core eddy (Taylor column) 
over the bump, and a cyclonic cold core eddy to 
the downstream poleward side. 

For fixed x = x0, z = Zo, and with 9 given by 
equation (4.5), for the zonal exponential cusp- 
cross-section ridge, equation (6.1) has the form 

P '(X_o: Y, Z?)_ -- Po' = A q- By d- C e-I y I, (6.2) 
Ap 

with A, B, and C being positive constants depend- 
ing on x0 and z0. The values of the constants are 
such that the y variation in equation (6.2) is 
monotonic only if (ho/~) < (ho/e)c given by 
equation (4.6). For larger ho/e, there can be local 
extremes in density as discussed above. In Fig. 6 
plots of the density relation in equation (6.2) are 
presented for two values of the ratio C/B, 1-0 and 
2.0, corresponding to north-south sections 
through the stagnation points, at some depth z, 
of Figs. 2a and 2b. In Fig. 7 data from two 
Eltanin sections, 140 and 128°E (Stas. 891 to 910 
and 869 to 877 in JACOBS, BRUCHHAUSEN and 

0.5 

-3 -2 .-I 0 I 2 5 
Y 

Fig. 6. Plot o f  the var iat ion o f  density w i th  lat i tude at 
fixed depth for k x  = ~ in Fig. 2. The dashed line is the 
density variation corresponding to the uniform approaching 
flow. The upper curve corresponds to Fig. 2(a), the lower 
to Fig. 2(b). The ridge profile is shown at the bottom. 

BAUER, 1970) are presented for comparison with 
Fig. 6, in the form of plots of % at various fixed 
depths versus latitude. The reversal in slope on 
the northern end of the 128°E section is associated 
with an anticyclonic gyre in the Great Bight. At 
Sta. 874 the upper 600 m were essentially homo- 
geneous at a temperature of 8.23 to 8.33°C and 
~r t of 26-93 to 26"94. 

To investigate further the relation between the 
high velocity core and the ridge system south and 
southwest of Australia that Callahan first noted, 
the Eltanin data collection for the area, as 
contained in reports by JACOBS, BRUCHHAUSEN 
and  BAUER (1970), JACOBS, BRUCHHAUSEN, 
ROSSELDT, GORDON, AMOS and BELLIARD (1972), 
and JACOBS, BAUER, BRUCHHAUSEN, GORDON, 
ROOT and ROSSELOT (1974), were examined. The 
values of ~, at 1000 m were specifically examined. 
In Fig. 8 the locations of station pairs with ~t 
differences at 1000 m greater than or equal to that 



4 2 4  M . S .  McCARTNEY 

26.8, , 

269 

2Z{ 

2ZI 

27,2 
27.5 

~t 2Z4 
2Z5 
zzrl 

2Z? 
2ZE 
2Zs 

~oc< 

deplh 

4O0( 

,~00( 

I 
40  4Z 

I t 1 I 

Fig. 7a. 

corresponding to 0.1 per degree latitude are 
plotted on a bot tom topographic chart derived 
from that of  HEEZEN, THARP and BENTLEY (1972). 
On a given section generally only one or two 
station pairs satisfy the criterion. Also shown on 
the chart are those stations pairs showing a a t 
gradient reversal associated with a westward 
baroclinic velocity. After some adjustment at the 
western end, the flow settles down into the 
pattern of  a high velocity core on the northern 
flank of the ridge and intermittent reversed flow 
on the southern flank. Only the ridge crest center 
line is indicated; this is the center of  the irregular, 
less than 3000-m band that defines the ridge in 
the Heezen, Tharp, and Bentley chart. This band 
is typically 2 or 3 degrees wide. East of  140°E, 
things are complicated by the Tasman Plateau, 
which rises to less than 1000 m around 153°E and 
47°S, the Macquarie ridge system along 160°E 
between 51 ° and 59°S (viz. GORDON, 1972), and 
the massive Campbell Plateau (viz. GORDON, 
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Fig. 7b. 
Fig. 7. Plots of density, ~t, versus latitude at various 
values of depth, for sections across the zonal ridge south 
of Australia. Poleward (south) is to the right. The bottom 
contour is an idealization of the ridge cross-section; 
simply straight line segments connecting the station depth 
soundings. (a) is a section along 140°E, Eltanin Stas. 891 
to 910, (b) is a section along 128°E, Ehanin Stas. 877 to 869. 
Note the dip in the lines immediately over the ridge crest 
(Stas. 800 and 872), throughout the water column, the 
strong gradients to the equatorward (north) side, and 
reversed gradients to the poleward (south) side, and 

compare to Fig. 6. 

1975). All three appear to have local high velocity 
regions and local flow reversals. The ridge axis 
has dipped well to the south in this sector (over 
12 ° in latitude). The 0.1 per degree criterion is 
probably not appropriate this far south because 
of the increased homogeneity of the water 
column: GORDON (1975) indicates a high velocity 
core on the northern flank of the ridge between 
62 and 63°S along 170°E, which the present 
criterion misses because of the relatively homo- 
geneous water at 1000 m this far south. 

The vertical density gradient can be obtained 
by differentiating equation (6.1) with respect to z: 
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Fig. 8. Locations of the U.S.N.S. Eltanin station pairs corresponding to steep gradients of ~t at 1000 m ( ~  Ol 
per degree latitude) on north-south sections in the region between 170 and 80°E. These are indicated by eastward 
directed arrows between station dots. The light lines are the 4000-m contours from HEEZEN, THARP and BENTLEY 
(1972); while the dashed line is the centerline of the ridge crest, the band < 3000 m on their chart. The station pairs 
with westward directed arrows are those with reversed or, gradients at 1000 m, and occur in two main areas: inter- 
mittently along the southern side of the ridge and in the Great Bight region south of Australia. The data plotted in 

Fig. 7 from 140 and 128°E can be compared with this chart for additional orientation. 
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1 ~p' d p , ( z ) +  ~ d2U(z) 
[y  - ~1.  (6.3) 

Ap ~z dz S dz ~ 

This gradient has a local extreme (if d2U(z) /dz  2 

:/: 0) at the same horizontal location as any stagna- 
tion points in the flow field. Because the right- 
hand side of equation (6.3) can be written in the 
f o r m f ( z )  - -  g (z )~ ,  the plots of ~(x, y) in Figs. 1, 2, 
4, and 5 also represent contours, in a horizontal 
plane, of constant vertical density gradient. The 
sense of the extreme at the stagnation point is 
determined by the sign of + at the stagnation 
point (+st) and by the sign of d2Uo(z)/dz ~. For 
d2Uo(z)/dz 2 < 0 (which might be expected in the 
near-surface region above the main pycnocline), 
the vertical gradient will have a local maximum 
(minimum) when ~st > 0 ( <  0). The local maxi- 
mum corresponds to a local minimum in vertical 
stability. Thus in the figures, the anticyclonic 
eddies, which have corresponding d?s t ~> 0, will 
have [if d2Uo(z)/dz 2 < 0] a relatively low vertical 
stability. It might be supposed that this, coupled 
with the fact that the eddies represent warmer 
water entrained from lower latitudes, would make 
these anticyclonic eddies particularly susceptible 
to surface cooling and overturning. For regions 
of the water column where d2Uo(z)/dz 2 ~ 0 

(typically below the main pycnocline), the lowest 
local vertical stability is associated with the 
cyclonic eddies (with corresponding ~t  < 0). 

7. CONCLUSIONS 
The solutions presented in the previous section 

show several features that have been observed in 
the Southern Ocean. Upon approaching a 
meridional ridge, a broad eastward current is 
shown to deflect initially equatorward, then 
downstream of the ridge crest to meander 
(Fig. 1); much as GORDON and BYE (1972) 
indicated occurs in the south central Pacific 
Ocean. A zonally oriented ridge causes the 
current to be intensified on the equatorward side 
of the ridge crest, and slowed or reversed on the 
poleward side (Figs. 2, 3, 4, and 6). This agrees 
with CALLAHAN'S (1971) observations on the 

southeast Indian Ocean. Finally an isolated 
bump is shown to force a closed anticyclonic 
Taylor column over the bump, and an extensive 
meandering wake downstream (Fig. 5), with a 
cyclonic meander or eddy to the poleward- 
downstream dominating the meander pattern. 
This pattern is similar to what GORDON (1972, 
1975) observed over the top of and downstream 
of the Macquarie ridge. 

The model should, however, only be regarded 
as a first step in an attempt to understand the role 
of topographic interactions in Southern Ocean 
dynamics. To solve the problem analytically it 
was necessary to restrict the class of basic currents 
to those horizontally uniform. If the more general 
approaching flow p(O) __~ _ Uo(z)g(y) is used, then 
p(O) still has the separable form given in equation 
(2.10); however, the steps leading from equation 
(2.13) to equation (2.15) will now, in general, 
yield a nonlinear equation for +, and recourse to 
numerical methods will probably have to be had. 

Another area for further investigation is the 
extension to ho = O(I) rather than just O [e [ as 
in the present work. Do the present solutions with 
disturbance linearily proportional to hole continue 
to grow for ho = O(1) or does the disturbance 
reach some limiting value for some intermediate 
value of h0? Is this limiting process inherent in a 
purely inviscid h0 = O(1) model, or must some 
mechanism such as INGERSOLL'S (1969) bottom 
frictional spindown for large time be included? 

As a related problem it also would be of 
interest to investigate the equivalent inviscid 
initial value problem to see first whether the large 
time solution approaches the present steady-state 
solutions, and secondly to observe the startup 
process and the details of the eddy pinch-off 
process. Are the large amplitude meander and 
eddy patterns always stationary, or do temporally 
periodic fields or instabilities occur ? 

The model as it stands can be used also to 
examine the flow through a channel with parallel 
walls and various kinds of bottom topography. 
The analysis is more complex because of the 
requirement that q~ = 0 at the channel walls, but 
is straightforward. This kind of model has some 
relevance for the flow through the Drake Passage. 
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