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Summary:

An Earth-attached and thus rotating reference frame is almost always used for the analysis of
geophysical flows. The equation of motion transformed into a steadily rotating reference frame includes two
terms that involve the rotation vector; a centrifugal term and a Coriolis term. In the special case of an
Earth-attached reference frame, the centrifugal term is exactly canceled by gravitational mass attraction and
drops out of the equation of motion. When we solve for the acceleration seen from an Earth-attached frame,
the Coriolis term is interpreted as a force. The rotating frame perspective gives up the properties of global
momentum conservation and invariance to Galilean transformation. Nevertheless, it leads to a greatly
simplified analysis of geophysical flows since only the comparatively small relative velocity, i.e., winds and
currents, need be considered.

The Coriolis force has a simple mathematical form,�2˝ � V 0M , where˝ is Earth’s rotation vector,
V 0 is the velocity observed from the rotating frame andM is the particle mass. The Coriolis force is
perpendicular to the velocity and can do no work. It tends to cause a deflection of velocity, and gives rise to
two important modes of motion: (1) If the Coriolis force is the only force acting on a moving particle, then
the velocity vector of the particle will be continually deflected and rotate clockwise in the northern
hemisphere and anticlockwise in the southern hemisphere. These so-called inertial oscillations are a first
approximation of the upper ocean currents that are generated by a transient wind event. (2) If the Coriolis
force is balanced by a steady force, say a pressure gradient, then the resulting wind or current is also steady
and is perpendicular to the force. An approximate geostrophic momentum balance of this kind is the defining
characteristic of the large scale, extra-tropical circulation of the atmosphere and oceans.

1



Contents

1 The defining characteristic of large-scale, geophysical flows. 3
1.1 Classical mechanics on a rotating Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The plan and the goal of this essay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 About this essay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Noninertial reference frames and inertial forces. 8
2.1 Kinematics of a translating reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Kinematics of a rotating reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Stationary) Inertial; Rotating) Earth-Attached . . . . . . . . . . . . . . . . . . 16
2.2.2 Remarks on the transformed equation of motion . . . . . . . . . . . . . . . . . . . . . 18

3 Inertial and noninertial descriptions of elementary motions. 19
3.1 Switching sides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 To get a feel for the Coriolis force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Zero relative velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 With relative velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 An elementary projectile problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 From the inertial frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 From the rotating frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Application to the rotating Earth. 28
4.1 Cancelation of the centrifugal force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Earth’s figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Vertical and level in an accelerating reference frame . . . . . . . . . . . . . . . . . . 30
4.1.3 The equation of motion for an Earth-attached frame . . . . . . . . . . . . . . . . . . . 31

4.2 Coriolis force on motions in a thin, spherical shell . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Why do we insist on the rotating frame equations? . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Inertial oscillations from an inertial frame . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Inertial oscillations from the rotating frame . . . . . . . . . . . . . . . . . . . . . . . 36

5 Adjustment to gravity, rotation and friction. 39
5.1 A dense parcel on a slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Dense parcels on a rotating slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Inertial and geostrophic motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Energy budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Summary and closing remarks. 45

7 Appendix A: circular motion and polar coordinates 47

8 Appendix B: Adjustment to gravity and rotation in a single fluid layer 49

Cover page graphic:The Earth image was made by satglobe.m, from the Matlab File Central.

2



1 THE DEFINING CHARACTERISTIC OF LARGE-SCALE, GEOPHYSICAL FLOWS. 3

1 The defining characteristic of large-scale, geophysical flows.

The large-scale, horizontal flows of Earth’s atmosphere and ocean take the form of circulations around
centers of high or low pressure. Global-scale circulations include the atmospheric jet stream that encircles
the mid-latitudes in both hemispheres (Fig. 1), and the oceanic circumpolar current that encircles the
Antarctic continent. Smaller scale circulations often dominate the weather. Hurricanes and mid-latitude
storms, for example, have a more or less circular flow around a low pressure center, and many regions of the
ocean are filled with slowly revolving eddies having high or low pressure anomalies. The pressure anomaly
that is associated with each of these circulations can be understood as the direct consequence of mass excess
or deficit in the overlying fluid.

What is at first surprising is that large scale mass and pressure anomalies persist for many days or weeks
even in the absence of an external energy source. The flow of mass that would be expected to accelerate
down the pressure gradient and disperse the mass and pressure anomaly does not occur. Instead, large-scale
winds and currents are observed to flow in a direction that almost parallel to lines of constant pressure and
from this we can infer that the pressure gradient force, which is normal to lines of constant pressure, must be
nearly balanced by a second force, the Coriolis force,1; 2 that tends to deflect winds and currents to the right
in the northern hemisphere and to the left in the southern hemisphere.3 A momentum balance between a
pressure gradient and the deflecting Coriolis force is called a geostrophic balance, and is perhaps the defining
characteristic of large scale atmospheric and oceanic flows outside of equatorial regions.

We attribute quite profound physical consequences to the Coriolis force, and yet we cannot point to a
physical interaction as the cause of the Coriolis force in the direct and simple way that we can relate pressure
anomalies to the mass field. Rather, the Coriolis force arises from motion itself, and specifically from our
common practice to analyze the atmosphere and ocean using an Earth-attached and thus rotating and
noninertial reference frame. This makes the Coriolis force distinct from other important forces in ways and
with consequences that are the theme of this essay.

1.1 Classical mechanics on a rotating Earth

For the purpose of studying the Coriolis force we need consider the motion and dynamics of only a single
particle, or the equivalent for a fluid, a single parcel. If the parcel is observed from an inertial reference

1Footnotes provide references, extensions or qualifications of material discussed in the main text, and homework assignments;
they may be skipped on first reading.

2After the French physicist and engineer, Gaspard G. de Coriolis, 1792-1843, whose seminal contributions include the systematic
derivation of the rotating frame equation of motion and the development of the gyroscope. An informative history of the Coriolis
force is by A. Persson, ’How do we understand the Coriolis force?’,Bull. Am. Met. Soc., 79(7), 1373-1385 (1998).

3’What’s it do right on the equator?’ (S. Adams,It’s Obvious You Won’t Survive by Your Wits Alone, p. 107, Andrews and McNeil
Press, Kansas City, Kansas, 1995). By symmetry we would expect that the Coriolis deflection does not occur on the equator, and the
contrast between equatorial and mid-latitude circulation patterns (i.e., the pressure and velocity fields) is therefore of great interest
here. How would you characterize the difference between mid-latitude and tropical regions of Fig. 1? You might also want to visit the
web site of Fleet Numerical Meteorology and Oceanography Center, https://www.fnmoc.navy.mil and then follow links to publicly
accessible data, MyWxmap, and then choose an equatorial region and map of interest.
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Figure 1: A weather map showing conditions at 500 mb over the North Atlantic on 20 March, 2004, produced
by the Fleet Numerical Meteorology and Oceanography Center.3 Variables are temperature (colors, scale at
right is degrees C), the height of the 500 mb pressure surface (white contours, values are approximately meters
above sea level) and the wind vector (as ’barbs’ at the rear of the vector, one thin barb = 10 knots� 5 m s�1,
one heavy barb = 50 knots). Note that the wind vectors appear to be nearly parallel to the contours of constant
height everywhere poleward of about 10o latitude, indicative of an approximate geostrophic balance. Three
things to note: (1) This weather map depicts the pressure field by showing the height of a constant pressure
surface, rather than the pressure at a constant height. Elevated height of a pressure surface is consistent with
high pressure at the same level, and a height gradient is equivalent to a pressure gradient. (2) The winds
plotted here are a combination of observed winds and model-predicted winds. The models are not constrained
to yield a geostrophic balance, though that usually appears to hold closely outside of equatorial regions. (3)
The dominant feature on the 500 mb surface (a middle level of the atmosphere) and at mid-latitudes is almost
always the jet stream. On long-term average, the jet stream winds blow from west to east and the 500 mb
pressure surface slopes upwards toward lower latitude. Any particular realization of the jet stream is likely
to exhibit pronounced north-south undulations. On this day the jet stream winds were southwesterly over
the North Atlantic in the latitude range between about 35 N and 55 N. This fairly common pattern transports
relatively warm, moist air toward Northern Europe, and has been argued to be a significant part of the reason
that Northern Europe enjoys relatively benign winters (Seager, R., D. S. Battisti, J. Yin, N. Gordon, N. Naik,
A. C. Clement and M. Cane, ’Is the Gulf Stream responsible for Europe’s mild winters?’, Q. J. R. Meteorol.
Soc.,128, pp. 1-24, 2002.)
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frame, then the classical (Newtonian) equation of motion is just

d.M V /

dt
D F C g�M;

whered=dt is an ordinary time derivative,V is the velocity in a three-dimensional space, andM is the
parcel’s mass. The mass will be presumed constant in all that follows, and the equation of motion rewritten as

dV

dt
M D F C g�M: (1)

F is the sum of the forces that we can specifya priori given the complete knowledge of the environment,
e.g., a pressure gradient, or frictional drag with the ground or adjacent parcels, andg� is gravitational mass
attraction. These are said to be central forces insofar as they are effectively instantaneous, they act in a radial
direction between parcels, and hence they occur as action-reaction force pairs. For the purpose at hand it is
appropriate to make two strong simplifications ofF : 1) we will specifyF independently of the motion of
surrounding parcels, and, 2) we will make no allowance for the continuity of volume of a fluid flow, i.e., that
two parcels can not occupy the same point in space. As a result, our solutions will apply strictly only to a
very special class of fluid flows — those that are spatially homogeneous.

This inertial reference frame4 equation of motion has two fundamental properties that we note here
because we are about to give them up:

Global conservation.For each of the central forces acting on the parcel there will be a corresponding
reaction force acting on the part of the environment that sets up the force. Thus the global change of
momentum , parcel plus the environment, due to the sum of all of the forcesF C g�M is zero. Usually our
attention is focused on the local problem, i.e., the parcel only, with global conservation taken for granted and
not analyzed explicitly.

Invariance to Galilean transformation. Eq. (1) should be invariant to a steady (linear) translation of the
reference frame, often called a Galilean transformation. A constant velocity added toV will cause no change
in the time derivative, and if added to the environment should as well cause no change in the forcesF or
g�M . Like the global balance just noted, this property is not invoked frequently, but is a powerful guide to
the appropriate forms of the forcesF . For example, a frictional force that satisfies Galilean invariance
should depend upon the spatial difference of the velocity with respect to a surface or adjacent parcels, and
not the parcel velocity only.

When it comes to practical analysis of the atmosphere or ocean, true (literal) inertial reference frames
are hardly accessible, and we invariably use a reference frame that is attached to the Earth. Some of the

4It is worthwhile to define ’inertial’, an adjective that arises over and over again in this essay, as does ’reference frame’. Inertia
has Latin rootsin+artis meaning without art or skill and secondarily, resistant to change. Since Newton’sPrincipia physics usage
has emphasized the latter, a parcel having inertia will remain at rest, or if in motion, continue without change unless subjected to
an external force. By reference frame we mean a coordinate system that serves to arithmetize the position of parcels, a clock to tell
the time, and an observer who makes an objective record of positions and times. A reference frame may or may not be attached to
a physical object. In this essay we suppose purely classical physics so that measurements of length and of time are identical in all
reference frames. This common sense view of space and time begins to fail when velocities approach the speed of light, which is not
an issue here. An inertial reference frame is one in which all parcels have the property of inertia and in which the total momentum is
conserved, i.e., all forces occur as action-reaction force pairs. How this plays out in the presence of gravity will be discussed briefly
in Section 3.1.
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reasons for this are discussed in a later section, 4.3; for now we are concerned with the consequence that,
because of the Earth’s rotation, an Earth-attached reference frame is significantly noninertial for the
large-scale motions of the atmosphere and ocean. The equation of motion (1) transformed into an
Earth-attached reference frame (examined in detail in Sections 2 and 4.1) is

dV 0

dt
M D � 2˝�V 0M C F 0 C gM; (2)

where the prime on a vector indicates that it is observed from the rotating frame,˝ is Earth’s rotation vector
andgM is the time-independent inertial force, gravitational mass attraction plus the centrifugal force
associated with Earth’s rotation. This combined inertial force will be called ’gravity’ and discussed further in
Section 4.1. Our main interest is the term,2˝�V 0M , commonly called the Coriolis force in geophysics.
The Coriolis force has a very simple mathematical form; it is always perpendicular to the parcel velocity and
will thus act to deflect the velocity unless it is balanced by another force, e.g., very often a pressure gradient
as noted in the opening paragraph.

1.2 The plan and the goal of this essay

Eq. (2) applied to geophysical flows is not controversial, and if our intentions were strictly practical we
could just accept it, as we do a few fundamental concepts of classical mechanics, e.g., mass and gravitational
mass attraction, and move on to applications. However, the Coriolis force is not a fundamental concept of
that kind and yet for many students (and more) it has a certain similar, mysterious quality. The plan and the
goal of this essay is to take a rather slow and careful journey from Eq. (1) to (2) so that at the end we should
be able to explain:5

1) The origin of the term 2˝�V 0M , and in what respect it is appropriate to call it the Coriolis
’force’. We have already hinted that the Coriolis term represents an inertial force (reviewed in Section 2.1)
that arises from the rotation of a reference frame. The origin is thus mainly kinematic, i.e., more
mathematical than physical, and we begin in Section 2.2 with the transformation of the inertial frame
equation of motion Eq. (1) into a rotating reference frame and Eq. (2). What we should call the Coriolis term
is less clear than is Eq. (2) itself; in the classical dynamics literature the same term is called an acceleration,
a pseudo force, a virtual force, an apparent force, an inertial force — our choice when we do not have to be
concise — anoninertial force, or, most equivocal of all, a fictitious correction force.6 We will stick with just
plain ’Coriolis force’ on the basis of what the Coriolis term does, considered in Sections 3, 4 and 5, and
summarized on closing in Section 6.

5’Explanation is indeed a virtue; but still, less a virtue than an anthropocentric pleasure.’ B. van Frassen, ’The pragmatics of
explanation’, inThe Philosophy of Science, Ed. by R. Boyd, P. Gasper and J. D. Trout. (The MIT Press, Cambridge Ma, 1999).

6The latter is by by J. D. Marion,Classical Mechanics of Particles and Systems(Academic Press, NY, 1965), who describes the
plight of a rotating observer as follows (the double quotes are his): ‘... the observer must postulate an additional force - the centrifugal
force. But the ”requirement” is an artificial one; it arises solely from an attempt to extend the form of Newton’s equations to a non
inertial system and this may be done only by introducing a fictitious ”correction force”. The same comments apply for the Coriolis
force; this ”force” arises when attempt is made to describe motion relative to the rotating body.’ We are inclined to be more inclusive
regarding reference frames and observers, probably because we anticipate being rotating observers. Our position will be that all
reference frames and observers are equally valid. Noninertial reference frames do indeed incur inertial forces that are not found in
otherwise comparable inertial frames, but these inertial forces are notad hoccorrections as Marion’s quote (taken out of context)
might seem to imply.
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2) The global conservation and Galilean transformation properties of Eq. (2).Two simple applications
of the rotating frame equation of motion are considered in Section 3. These illustrate the often marked
difference between inertial and rotating frame descriptions of the same motion, and they also show that the
rotating frame equation of motion doesnot retain these fundamental properties.

3) The relationship between the Coriolis and centrifugal forces, and the absence of the latter in Eq.
(2). The special and especially important case of an Earth-attached reference frame is discussed in Section 4.
As we will see, Eq. (2) applies on a rotating planet, say, where the centrifugal force is exactly canceled, and
does not obtain for a general rotating reference frame.

4) The new modes of motion in Eq. (2) compared with Eq. (1), and the geostrophic balance commonly
observed to hold in the atmosphere and ocean.A very simple problem that illustrates some consequences
of the Coriolis force is treated in Section 5. Eq. (2) admits two modes of motion dependent upon the Coriolis
force; a free oscillation, usually called an inertial oscillation, and forced, steady motion, called a geostrophic
wind or current when the forceF 0 is a pressure gradient.7

1.3 About this essay

This essay is pedagogical in aim and style. It has been written for students who are beginning a quantitative
study of Earth science and geophysical fluid dynamics and who have some background of classical
mechanics and applied mathematics. Rotating reference frames and the Coriolis force are discussed in many
classical mechanics texts8 and in most fluid mechanics textbooks that treat geophysical flows.9 There is
nothing fundamental and new added here, but the hope is that this essay will make a useful supplement to
these and other sources10 by providing somewhat greater mathematical detail than do most fluid dynamics
texts (in Section 2), while emphasizing relevant geophysical phenomena that are missed in most physics

7By now you may be thinking that all this talk of ’forces, forces, forces’ is tedious, and even a bit archaic. Modern dynamics
is increasingly developed around the concepts of energy, action and minimization principles, which are very useful in some special
classes of fluid flow. However, it remains that the vast majority of fluid mechanics proceeds along the path of Eq. (1) laid down by
Newton. In part this is because energy is not strictly conserved in most real fluid flows.

8In order of increasing level: A. P. French,Newtonian Mechanics(W. W. Norton Co., 1971); A. L. Fetter and J. D. Walecka,
Theoretical Mechanics of Particles and Continua(McGraw-Hill, NY, 1990); C. Lanczos,The Variational Principles of Mechanics
(Dover Pub., NY, 1949). A clear treatment by variational methods is by L. D. Landau and E. M. LifshitzMechanics, (Pergamon,
Oxford, 1960).

9Textbooks on geophysical fluid dynamics emphasize mainly the consequencesof Earth’s rotation; excellent introductions at about
the level of this essay are by J. R. Holton,An Introduction to Dynamic Meteorology, 3rd Ed.(Academic Press, San Diego, 1992), and
a particularly thorough account of the Coriolis force is by B. Cushman-Roisin,Introduction to Geophysical Fluid Dynamics(Prentice
Hall, Engelwood Cliffs, New Jersey, 1994). Somewhat more advanced is A. E. Gill,Atmosphere-Ocean Dynamics(Academic Press,
NY, 1982).

10There are several essays or articles that, like this one, aim to clarify the Coriolis force. A fine treatment in great depth is
by H. M. Stommel and D. W. Moore,An Introduction to the Coriolis Force(Columbia Univ. Press, 1989); the present Sec-
tion 4.1 owes a great deal to their work. A detailed analysis of particle motion including the still unresolved matter of the ap-
parent southerly deflection of dropped particles is by M. S. Tiersten and H. Soodak, ‘Dropped objects and other motions rel-
ative to a noninertial earth’,Am. J. Phys., 68(2), 129–142 (2000). An excellent web page for general science students is
http://www.ems.psu.edu/%7Efraser/Bad/BadFAQ/BadCoriolisFAQ.html
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Figure 2: Two reference frames are
represented by coordinate axes that
are displaced by the vectorXo that
is time-dependent. In this Section 2.1
we consider only a relative translation,
so that frame two maintains a fixed
orientation with respect to frame one.
The rotation of frame two will be con-
sidered beginning in Section 2.2.

texts (in Sections 4 and 5).11

This text is meant to be accompanied by five Matlab scripts that allow for a wide range of
experimentation and better graphical presentation than is possible in a hard copy.12 This text and the Matlab
scripts may be freely copied and distributed for personal, educational purposes. The essay may be cited as an
unpublished manuscript available from the author’s web page. Comments and questions are encouraged and
may be addressed to the author at jprice@whoi.edu.

2 Noninertial reference frames and inertial forces.

The first step toward understanding the origin of the Coriolis force is to describe the origin of inertial forces
in the simplest possible context, a pair of reference frames that are represented by displaced coordinate axes,
Fig. (2). Frame one is labeledX andZ and frame two is labeledX 0 andZ0. Only relative motion is
significant, but there is no harm in assuming that frame one is stationary and that frame two is displaced by a
time-dependent vector,Xo.t/. The measurements of position, velocity, etc. of a given parcel will thus be
different in frame two vs. frame one; just how the measurements differ is a matter of pure kinematics. There
is no physics involved until we use the accelerations to write an equation of motion, e.g., Eq. (2).

11The Coriolis force is exploited to measure the angular velocity required for vehicle control systems,
http://www.siliconsensing.com, and to measure mass transport in fluid flow, http://www.micromotion.com.

12The Matlab scripts — rotation.m, Coriolis.m, Coriolis-forced.m, partslope.m and geoadjPE.m — can be recov-
ered from the Mathworks File Exchange archive, http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do
in the ’Earth Sciences’ category where the file name is Coriolis, or from the author’s web page,
http://www.whoi.edu/science/PO/people/jprice/class/Coriolis.zip, where the most recent draft of this manuscript may also be
found, http://www.whoi.edu/science/PO/people/jprice/class/aCt.pdf
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2.1 Kinematics of a translating reference frame

If the position vector of a given parcel isX when observed from frame one, then from within frame two the
same parcel will be observed at the position

X 0 D X � Xo:

The position vector of a parcel thus depends upon the reference frame. Suppose that frame two is translated
and possibly accelerated with respect to frame one, while maintaining a constant orientation (rotation will be
considered shortly). If the velocity of a parcel observed in frame one isV D dX=dt , then in frame two the
same parcel will be observed to have velocity

dX 0

dt
D

dX

dt
�

dXo

dt
:

The accelerations are similarlyd2X=dt2 and

d2X 0

dt2
D

d2X

dt2
�

d2Xo

dt2
: (3)

We can assume without loss of generality that frame one is an inertial reference frame, i.e., that parcels
observed in frame one have the property of inertia so that their momentum changes only in response to a
force,F , i.e., Eq. (1). From Eq. (1) and from Eq. (3) we can easily write down the equation of motion for
the parcel as observed from the accelerating frame two:

d2X 0

dt2
M D �

d2Xo

dt2
M C F C g�M: (4)

Terms of the sort�.d2Xo=dt2/M appearing in the frame two equation of motion (4) will be called
’inertial forces’, and when these terms are nonzero, frame two is said to be ’noninertial’. As an example,
suppose that frame two is subject to a constant acceleration,d2Xo=dt2 D exax C ezaz whereax; az > 0

so that the acceleration of frame two relative to frame one is upward and to the right in Fig. (2). All parcels
observed from within frame two would then appear to be subject to an inertial force,�.exax C ezaz/M;

directed downward and to the left, and exactly opposite the acceleration of frame two with respect to frame
one. This inertial force is exactly proportional to the mass of the parcel, regardless of what the mass is, and
so evidently it is an acceleration that is imposed, and not a forceper se. In this important regard, these
inertial forces are indistinguishable from gravitational mass attraction. If the inertial forces are dependent
only upon position, as is gravitational mass atraction, then they might as well be added withg� to make a
single acceleration field, usually termed gravity and denoted by just plaing. Indeed, it is only the gravity
field, g, that can be observed directly (more in Section 4.1). But unlike gravitational mass attraction, there is
no physical interaction involved in producing an inertial force, and hence there is no action-reaction force
pair. Global momentum conservation thus does not obtain in the presence of inertial forces. There is indeed
something equivocal about these so-called inertial forces, and is not unwarranted that many authors6 deem
these terms to be ’virtual’ or ’fictitious correction’ forces.

Whether an inertial force is problematic or not depends entirely upon whetherd2Xo=dt2 is known or
not. If it should happen that the acceleration of frame two is not known, then all bets are off. For example,



2 NONINERTIAL REFERENCE FRAMES AND INERTIAL FORCES. 10

imagine observing the motion of a pendulum within an enclosed trailer that was moving along in
stop-and-go traffic. The pendulum would be observed to lurch forward and backward as if the local
gravitational acceleration was changing randomly with time, and we would soon conclude that dynamics in
such a noninertial reference frame was going to be a very difficult endeavor. We could at least infer that an
inertial force was to blame if it was observed that all of the parcels in the trailer, observers included,
experienced exactly the same unaccounted acceleration. Very often we do know the relevant inertial forces
well enough to use noninertial reference frames with great precision, e.g., Earth’s gravity field is well-known
from extensive and ongoing survey and the Coriolis force can be readily calculated.

In the specific example of reference frame translation considered here we could just as well transform
the observations made from frame two back into the inertial frame one, use the inertial frame equation of
motion to make a calculation, and then transform back to frame two if required. By that tactic we could
avoid altogether the seeming delusion of an inertial force. However, when it comes to the observation and
analysis of Earth’s atmosphere and ocean, there is really no choice but to use an Earth-attached and thus
rotating and noninertial reference (discussed in Section 4.3). That being so, we have to contend with the
Coriolis force, an inertial force that arises from the rotation of an Earth-attached frame. The kinematics of
rotation add a small complication (next section), but if you followed the development of Eq. (4), then it is
fair to say that you already understand the essential origin of the Coriolis force.

2.2 Kinematics of a rotating reference frame

The second step toward understanding the origin of the Coriolis force is to learn the equivalent of Eq. (3) for
the case of a steadily rotating (rather than translating) reference frame. For this purpose it is helpful, if
somewhat redundant, to develop the component-wise form of the equations of motion in parallel with the
geometric, vectorial form used above. Reference frame one can again be assumed to be stationary and is
defined by a triad of orthogonal unit vectors,e1; e2; e3, that are time-independent (Fig. 3). A parcel P can
then be located by a position vectorX

X D e1x1 C e2x2 C e3x3; (5)

where the Cartesian (rectangular) components,xi , are the projection ofX onto each of the unit vectors in
turn. It is useful to rewrite Eq. (3) using matrix notation; the unit vectors are made the elements of a row
matrix,

E D Œe1 e2 e3�; (6)

and the componentsxi are the elements of a column matrix,

X D

2
4

x1

x2

x3

3
5 : (7)

Eq. (3) may then be written in a way that conforms with the usual matrix multiplication rules as

X D EX: (8)

For our purpose it is essential to know how the position, velocity and acceleration vectors will appear
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Figure 3: (a) A parcel P is located by the tip of a position vector,X . The stationary reference frame has solid
unit vectors that are presumed to be time-independent, and a second, rotated reference frame has dashed unit
vectors that are labeledJei . The reference frames have a common origin, and rotation is about thee3 axis. The
unit vectore3 is thus unchanged by this rotation and soJe3 D e3. This holds also for̋ 0 D ˝ , and so we will
use˝ exclusively. The angle� is counted positive when the rotation is counterclockwise. (b) The components
of X in the plane ofe1 ande2 arex1; x2 in the stationary reference frame, andx0

1
; x0

2
in the rotated reference

frame. To compute the components appropriate to the rotated frame notice thatx2 D L1CL2, L1 D x1tan� ,
andx0

2
D L2cos� . From this it follows thatx0

2
D .x2 � x1tan�/cos� D �x1sin� C x2cos� , which is

consistent with Eq. (9).

when observed from a second, rotating reference frame, since such is a reference frame attached to the
rotating Earth. In all that follows it is assumed that the motion of the rotating frame can be represented by a
single rotation vector,̋ , that can be used to align thee3 unit vector with no loss of generality, Fig. (3a). We
can also align the origins of the stationary and rotating reference frames because the Coriolis force is
independent of position (Section 2.2).

Position: The rotated frame two is presumed to be at an angle� relative to the stationary frame (Fig. 3b).
The components,x0

i, are the projection ofX onto the rotated unit vectors, theJei , and are

X0 D

2
4

x1 cos� C x2 sin�
�x1 sin� C x2 cos�

x3

3
5 : (9)

This can be factored into the product of the rotation matrix,R,

R D

2
4

cos� sin� 0

� sin� cos� 0

0 0 1

3
5 ; (10)
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and the stationary frame components,X, as
X0 D RX: (11)

The position vector observed from the rotated frame two will be denoted byX 0; to constructX 0 we sum the
rotated components,X0, times a set of unit vectors that are fixed and thus

X 0 D e1x0
1 C e2x0

2 C e3x0
3 D EX0 (12)

For example, the position vectorX of Fig. (3) is at an angle of about 45 degrees counterclockwise from the
e1 unit vector and the rotated frame is at� D 30 degrees counterclockwise from the stationary frame one.
That being so, the position vector viewed from the rotated reference frame,X 0, makes an angle of 45 - 30 =
15 degrees with respect to thee1 (fixed) unit vector seen within the rotated frame, Fig. (4). As a kind of
verbal shorthand we might say that the position vector has been ’transformed’ into the rotated frame by Eq.
(12). But what we mean in full is that the components of the position vector are transformed by Eq. (11) and
then summed with fixed unit vectors as in Eq. (12) to yield what should be regarded as an entirely new
vector,X 0. It bears some emphasis thatX 0 is the position vector as seen from the rotating reference frame,
i.e., the way it looks to an observer who is attached to the rotating frame.13

Velocity: The velocity of parcel P seen in the stationary frame is just the time rate of change of the
position vector seen in that frame,

dX

dt
D

d

dt
EX D E

dX
dt
;

sinceE is time-independent. The velocity of parcel P as seen from the rotating reference frame is similarly

dX 0

dt
D

d

dt
EX0 D E

dX0

dt
;

which indicates that the time derivatives of the rotated components are going to be very important in what
follows. For the first derivative we find

dX0

dt
D

d.RX/
dt

D
dR
dt

X C R
dX
dt
: (13)

The second term on the right side of Eq. (13) represents velocity components from the stationary frame that
have been transformed into the rotating frame, as in Eq. (11). If the rotation angle� was constant so thatR
was independent of time, then the first term on the right side would vanish and the velocity components

13If the rotation matrix is not already somewhat familiar to you then you may want a more extensive discussion than is given
here. A very concise and clear reference is by J. PettofrezzoMatrices and Transformations(Dover Pub., New York, 1966). An
excellent all-around reference for undergraduate-level applied mathematics including coordinate transformations is by M. L. Boas,
Mathematical Methods in the Physical Sciences, 2nd edition(John Wiley and Sons, 1983). Note that some authors define the angle
� to be the angle turned by the vector components rather than the angle turned by the unit vectors, as is presumed here. Four
questions/assignments for you: 1) Verify that the unit vectors that define the rotated frame can be related to the unit vectors of the
stationary frame by the relationJE D ER�1, whereR�1 is the inverse (and also the transpose) of the rotation matrix. 2) Computex0

1
by the method of Fig. (3b) and by using that the magnitude of the vectorX is invariant to rotation of the coordinate system. 3) Show
that our formula for the transformation of components, Eq. (11), is a specific example of the transformation rule for contravariant
components,x0

i D xj .@x
0
i=@xj /; where summation occurs over the indexj . 4) Finally, and most importantly, verify Eqs. (11) and

(12) by some direct experimentation; if these somewhat formal-looking equations do not have an immediate and concrete meaning
for you, then the remainder of this important section will be a loss.
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Figure 4: (a) The position vectorX seen from the stationary reference frame. (b) The position vector as seen
from the rotated frame, denoted byX 0. Note that in the rotated reference frame the unit vectors are labeled
ei since they are fixed; when these unit vectors are seen from the stationary frame, as on the left, they are
labeledJei . If the position vector is stationary in the stationary frame, then� C  D constant . The angle 
then changes asd =dt D �d�=dt D �˝, and thus the vectorX 0 appears to rotate at the same rate but in the
opposite sense as does the rotating reference frame.

would transform exactly as do the components of the position vector. In that case there would be no Coriolis
force.

When the rotation angle is time-varying, as we intend it will be here, the first term on the right side of
Eq. (13) is non-zero and represents a velocity component that is induced solely by the rotation of the
reference frame. With Earth-attached reference frames in mind, we are going to take the angle� to be

� D �0 C˝ t;

where˝ is Earth’s rotation rate, a constant defined below. Though˝ is constant, the associated reference
frame is nevertheless accelerating and is noninertial in the same way that circular motion at a steady speed is
accelerating because the direction of the velocity vector is continually changing. Given this�.t/, the
time-derivative of the rotation matrix is

dR
dt

D ˝

2
4

� sin�.t/ cos�.t/ 0

� cos�.t/ � sin�.t/ 0

0 0 0

3
5 ; (14)

which, notice, this has all the elements ofR, but shuffled around. By inspection, this matrix can be factored
into the product of a matrixC (c

¯
ross-product) andR as

dR
dt

D ˝ CR.�.t//; (15)
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Figure 5: The position vectorX 0 seen from the
rotating reference frame. The unit vectors that
define this frame,Jei , appear to be stationary
when viewed from within this frame, and hence
we label them withei (not primed). Assume that
˝ > 0 so that the rotating frame is turning coun-
terclockwise with respect to the stationary frame,
and assume that the parcel P is stationary in the
stationary reference frame so thatdX=dt D 0.
Parcel P as viewed from the rotating frame will
appear to move clockwise at a rate that can be
calculated from the geometry. Let the rotation in
a time intervalıt be given byı D �˝ıt ; in
that time interval the tip of the vector will move
a distance given by the magnitude of the vector
times ı , i.e., ıX 0 D jX 0jı and in a direc-
tion that is perpendicular toX 0. The velocity of
parcel P seen from the rotating frame and due
solely to the coordinate system rotation is thus
limıt!0

ıX 0

ıt
D �˝�X 0:

where the matrixC is

C D

2
4

0 1 0

�1 0 0

0 0 0

3
5 D

2
4

1 0 0

0 1 0

0 0 0

3
5R.�=2/: (16)

Substitution into Eq. (13) gives the velocity components appropriate to the rotating frame

d.RX/
dt

D ˝CRX C R
dX
dt
; (17)

or if we use the. /0 notation to indicate multiplication byR, then

dX0

dt
D ˝CX0 C

�
dX
dt

�0
: (18)

Multiplication by C acts to knock out the component. /3 that is parallel tő and causes a rotation of�=2 in
the plane perpendicular tő . The vector equivalent of̋ CX0 is thus the cross product,�˝�X 0 (Figs. 5,
6). The vector equivalent of Eq. (18) is then

dX 0

dt
D �˝�X 0 C

�
dX

dt

�0
(19)

The relation between time derivatives given by Eq. (19) is quite general; it applies to all vectors, e.g.,
velocity vectors, and moreover, it applies for vectors defined at all points in space.14 Hence the relationship

14Imagine arrows taped to a turntable with random orientations. Once the turntable is set into (solid body) rotation, all of the
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Figure 6: A schematic showing the relationship
of a vectorX , and various cross products with
a second vector̋ (note the signs). The vector
X is shown with its tail perched on the axis of
the vector̋ as if it were a position vector. This
helps us to visualize the direction of the cross-
products, but it is important to note that the re-
lationship among the vectors and vector products
shown here holds for all vectors, regardless of
where they are defined in space or the physical
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sent.

between the time derivatives may be written as an operator equation,

d. /0

dt
D �˝�. /0 C

�
d. /

dt

�0
(20)

that is valid for all vectors. From left to right the terms are: 1) the time rate of change of a vector as seen in
the rotating reference frame, 2) the cross-product of the rotation vector with the vector and 3) the time rate
change of the vector as seen in the stationary frame and then rotated into the rotating frame. One way to
describe Eq. (20) is that the time rate of change and prime operators do not commute, the difference being
the cross-product term which, notice, represents a time rate change in thedirectionof the vector, but not the
magnitude. Term 1) is the time rate of change that we observe directly or that we seek to solve when we are
working from the rotating frame.

Acceleration: Our goal is to relate the accelerations seen in the two frames and so we differentiate Eq.
(18) once more and after rearrangement of the kind used above find that the components satisfy

d2X0

dt2
D 2˝C

dX0

dt
�˝2C2X0 C

 
d2X
dt2

!0

: (21)

Multiplication by the matrixC2 D CC,

C2 D

2
4

�1 0 0

0 �1 0

0 0 0

3
5 D

2
4

1 0 0

0 1 0

0 0 0

3
5R.�/;

knocks out the component corresponding to the rotation vector˝ and reverses the other two components;

arrows will necessarily rotate at the same rotation rate regardless of their position or orientation. The rotation will, of course, cause a
translation of the arrows that depends upon their location, but the rotation rate is necessarily uniform. This is of some importance for
our application to a rotating Earth, since Earth’s motion includes a rotation about the polar axis, as well as an orbital motion around
the Sun and yet we represent Earth’s rotation by a single vector.
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the vector equivalent of̋ 2C2X0 is thus�˝ � ˝ � X 0. The vector equivalent of Eq. (21) is then15

d2X 0

dt2
D � 2˝�

dX 0

dt
� ˝�˝�X 0 C

 
d2X

dt2

!0

(22)

Note the similarity with Eq. (3). From left to right the terms of this equation are 1) the acceleration as seen in
the rotating frame, 2) the Coriolis term, 3) the centrifugal16 term, and 4) the acceleration as seen in the
stationary frame and then rotated into the rotating frame. As before, term 1) is the acceleration that we
directly observe or analyze when we are working from the rotating reference frame.

2.2.1 Stationary) Inertial; Rotating ) Earth-Attached

The third and final step toward the origin of the Coriolis force is to specify exactly what we mean by an
inertial reference frame, and so define departures from inertial for the rotating frame two. To make frame one
inertial we presume that the unit vectorsei could in principle be aligned on the distant, fixed stars.17 The
rotating frame two is presumed to be attached to Earth, and the rotation rate˝ is then given by the rate at
which the same fixed stars are observed to rotate overhead, one revolution per sidereal day, 23 hrs, 56 min
and 9 sec, or

˝ D 7:2921�10�5 rad sec�1:

Earth’s rotation rate is very nearly constant, and the axis of rotation maintains a nearly steady bearing on a
point on the celestial sphere that is close to the North Star, Polaris.18

15The relationship between the stationary and rotating frame velocity vectors defined by Eq. (20) is clear visually and becomes
intuitive given a little familiarity. The same can not be said for the accelerations, Eq. (22), which makes it very important that you
verify Eq. (21) and then Eq. (22). Take care to distinguish dX’/dt from (dX/dt)’ by means of Eqs. (17) and (20).

16’Centrifugal’ and ’centripetal’ have Latin roots,centri+fugereand centri+peter, meaning center-fleeing and center-seeking,
respectively. Taken literally they would indicate the sign of a radial force, for example. However, they are very often used to mean
the specific term!2r , i.e., centrifugal force when it is on the right side of an equation of motion and centripetal acceleration when it
is on the left side.

17‘Fixed stars’ serve as sign posts for the spatially-averaged mass of the universe on the hypothesis that inertia arises whenever
there is an acceleration (linear or rotational) with respect to the mass of the universe as a whole. This grand idea was expressed
most forcefully by the Austrian philosopher and physicist Ernst Mach, and is often termed Mach’s Principle (see, e.g., J. Schwinger,
Einsteins LegacyDover Publications, 1986; M. Born,Einstein’s Theory of Relativity, Dover Publications, 1962). Mach’s Principle
seems to be in accord with all empiricaldata, but is not, in and of itself, a mechanism of inertia. A new hypothesis takes the form of so-
called vacuum stuff that is presumed to pervade all of space and provides a local mechanism for resistance to accelerated motion (see
P. Davies, ‘On the meaning of Mach’s principle’, http://www.padrak.com/ine/INERTIA.html). This may sound unlikely, but is akin
to the spirit of Quantum Electro Dynamics, which has been spectacularly succesful as an explanatory mechanism for electromagnetic
interactions. Thus the debate between Newton and Leibniz over the reality of absolute space, seemingly settled in favor of relative
space and Mach’s Principle, has been revived and is at the center of some of the most fundamental research in modern physics: the
physical origin of inertia is not a settled issue.

Observations on the fixed stars are an exquisitely precise means to define the rotation rate of an Earth-attached reference frame,
and for example, the rotation rate sensors noted in footnote 11 read out the Earth’s rotation rate with respect to the fixed stars as a
kind of gage pressure, called ’Earth rate’. There is, evidently, a meaningful, absolute rotation rate. On the other hand, observations
of the fixed stars can not, in general, be used in the same way to define the translation or (linear) acceleration of a reference frame.
The only way to know if a reference frame that is aligned on the fixed stars is inertial is to carry out mechanics experiments and test
whether Eq.(1) holds. If it does, the frame is inertial.

18There are small but observable variations of Earth’s rotation rate due mainly to changes in the atmosphere and ocean circulation
and mass distribution within the cryosphere, see B. F. Chao and C. M. Cox, ‘Detection of a large-scale mass redistribution in the
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Assume that the inertial frame equation of motion is

d2X
dt2

M D F C G�M and
d2X

dt2
M D F C g�M (23)

(G� is the component matrix ofg�). The acceleration and force can always be viewed from another
reference frame that is rotated (but not rotating) with respect to the first frame,

 
d2X
dt2

!0

M D F0 C G0
�M and

 
d2X

dt2

!0

M D F 0 C g 0
�M; (24)

as if we had chosen a different set of fixed stars or multiplied both sides of Eq. (22) by the same rotation
matrix. This equation of motion preserves the global conservation and Galilean transformation properties of
Eq. (23). To find the rotating frame equation of motion, we use Eqs. (21) and (22) to eliminate the rotated
acceleration from Eq. (24) and then solve for the acceleration seen in the rotating frame: the components are

d2X0

dt2
M D 2˝C

dX0

dt
M �˝2C2X0M C F0 C G0

�M; (25)

and the vector equivalent is

d2X 0

dt2
M D � 2˝�

dX 0

dt
M � ˝�˝�X 0M C F 0 C g�

0M (26)

Notice that Eq. (26) has the form of Eq. (4), the difference being that the noninertial reference frame is
rotating rather than merely translating. If the origin of this noninertial reference frame was also accelerating,
then we would have a third inertial force term,�.d2Xo=dt2/M . Notice too that we are not yet at Eq. (2); in
Section 4.1 we will indicate how the centrifugal force term and gravitational mass attraction combine intog.

terrestrial system since 1998,’ Science,297, 831–833 (2002), and R. M. Ponte and D. Stammer, ‘Role of ocean currents and bottom
pressure variability on seasonal polar motion,’J. Geophys. Res., 104, 23393–23409 (1999). The inclination of the rotation vector
with respect to the orbital plane also varies by a few degrees on a time scale of several tens of thousands of years and the direction of
the rotation axis precesses on a similar time scale. These slow variations of Earth’s orbital parameters (slow for our present purpose)
may be an important element of climate, see e.g., J. A. Rial, ‘Pacemaking the ice ages by frequency modulation of Earth’s orbital
eccentricity,’Science, 285, 564–568 (1999).

As well, Earth’s motion within the solar system and galaxy is much more complex than a simple spin around the polar axis. Among
other things, the Earth orbits the Sun in a counterclockwise direction with a rotation rate of 1.9910�10�7 sec�1, that about 0.3% of
the rotation rate̋ . Does this orbital motion enter into the Coriolis force, or otherwise affect the dynamics of the atmosphere and
oceans? The short answer is no and yes. We have already fully accounted for the rotation of the Earth when we measured the rotation
rate with respect to the fixed stars. Whether this rotation is due to a spin about an axis centered on the Earth or due to a solid body
rotation about a displaced center is not relevant for the Coriolis forceper se, as noted in the discussion of Eq. (20). However, since
Earth’s polar axis is tilted significantly from normal to the plane of the Earth’s orbit, and since the polar axis remains nearly aligned
on the North Star throughout an orbit, we can ascribe the rotation˝ to spin alone. The orbital motion about the Sun does give rise
to tidal forces, which are small but important spatial variations of the centrifugal/gravitational balance that holds for the Earth-Sun
and for the Earth-Moon as a whole (described particularly well by French8). A question for you: What is the rotation rate of the
Moon? Hint, make a sketch of the Earth-Moon orbital system and consider what we observe of the Moon from Earth. What would
the Coriolis and centrifugal forces be on the Moon?
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2.2.2 Remarks on the transformed equation of motion

Once we have in hand the transformation rule for accelerations, Eq.(22), the path to the rotating frame
equation of motion is short and direct — if Eq. (24) holds in a given reference frame, say an inertial frame,
then Eqs. (25) and (26) hold exactly in a frame that rotates at the constant rate and direction˝ with respect
to the first frame. The rotating frame equation of motion includes two terms that are dependent upon the
rotation vector, the Coriolis term,2˝�.dX 0=dt/, and the centrifugal term,̋ �˝�X 0. Very often these
terms are written on the left side of an equation of motion as if they were going to be regarded as part of the
acceleration,

d2X 0

dt2
M C 2˝�

dX 0

dt
M C ˝�˝�X 0M D F 0 C g�0M: (27)

If we compare the left side of Eq. (27)19 with Eq. (22) it is evident that the rotated acceleration is equal to
the rotated force,  

d2X

dt2

!0

M D F 0 C g�0M;

which is well and true (and the same as Eq. 24). However, it is crucial to understand that the left side of Eq.
(27) taken all at once isnot the acceleration that we observe or seek to analyze when we use a rotating
reference frame; the acceleration we observe in a rotating frame isd2X 0=dt2, the first term only. Once we
solve ford2X 0=dt2, it follows that the Coriolis and centrifugal terms are, figuratively or literally, sent to the
right side of the equation of motion where they are interpreted as if they were forces. Therein lies the fate of
the Coriolis and centrifugal terms and there too is the seed of our possible confusion regarding these terms.

When the Coriolis and centrifugal terms are regarded as forces — as we intend they should be when we
use a rotating reference frame — they have some peculiar properties. From Eq. (27) (and Eq. (4)) we can see
that the centrifugal and Coriolis terms are inertial forces and are exactly proportional to the mass of the
parcel observed,M , whatever that mass may be. The acceleration field for these inertial forces arises from
the rotational acceleration of the reference frame, combined with relative velocity for the Coriolis force.
They differ from central forcesF andg�M in the respect that there is no physical interaction that causes the
Coriolis or centrifugal force and hence there is no action-reaction force pair. As a consequence the rotating
frame equation of motion does not retain the global conservation of momentum that is a fundamental
property of the inertial frame equation of motion and central forces (an example of this nonconservation is
described in Section 3.4). Similarly, we note here only that invariance to Galilean transformation is lost since
the Coriolis force involves the velocity and not just the velocity derivatives. ThusV 0 is an absolute velocity
in the rotating reference frame of the Earth. If we need to call attention to these special properties of the
Coriolis force, then the usage Coriolisinertial force seems appropriate because it is free from the taint of
unreality that goes with ’virtual force’, ’fictitious correction force’, etc., and because it gives at least a hint at
the origin of the Coriolis force. It is important to be aware of these properties of the rotating frame equation
of motion, and also to be assured that in most analysis of geophysical flows they are of no great practical
consequence. What is important is that the rotating frame equation of motion offers a very significant gain in
simplicity compared to the inertial frame equation of motion (discussed in Section 4.3).

19Recall that˝ D ˝ 0 and so we could put a prime on every vector in this equation. That being so, we would be better off to
remove the visually distracting primes and simply note that the resulting equation holds in a steadily rotating reference frame. We
will hang onto the primes for now, since we will be considering both inertial and rotating reference frames until Section 5.
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The Coriolis and centrifugal forces taken individually have simple interpretations. From Eq. (26) it is
evident that the Coriolis force is normal to the velocity,dX 0=dt , and to the rotation vector,̋ . The Coriolis
force will thus tend to cause the velocity to change direction but not magnitude, and is appropriately termed
a deflecting force as noted in Section 1. The centrifugal force is in a direction perpendicular to and directed
away from the axis of rotation. Notice that the Coriolis force is independent of position, while the centrifugal
force clearly is not. The centrifugal force is independent of time. How these forces effect dynamics in
simplified conditions will be considered further in Sections 3, 4.3 and 5.

3 Inertial and noninertial descriptions of elementary motions.

To appreciate some of the properties of a noninertial reference frame we will analyze several examples of
(truly) elementary motions whose inertial frame dynamics is very simple and familiar. The only issue will be
how these motions appear from a noninertial reference frame. (Readers who find these examples just too
elementary may skip the bulk of this section, but should take a look at the summary, 3.4.) Our specific aim is
to see how the inertial forces — gravity, centrifugal and Coriolis — depend upon the reference frame. The
analysis is very straightforward in that all we plan to do is evaluate the appropriate equation of motion, Eq.
(23) or (26), in highly simplified conditions. In another respect it is slightly subtle insofar as the terms that
represent inertial forces will seem to change identity, as if by fiat. To understand that there is more to the
analysis than relabeling and reinterpreting terms in an arbitrary way, it will be very helpful for you to make a
sketch of each case and to pay close attention to the acceleration, especially.

As we will describe below, there is an important difference between what we could term the contact
forces,F , that act over the surface of the parcel, and the force of gravity,gM , which is an inertial force that
acts throughout the body of the parcel. To measure the contact forces we could enclose the parcel in a
wrap-around strain gage that measures and reads out the vector sum of the tangential and normal stress
acting on the surface of the parcel. To measure gravity we could measure the direction of a plumb line,
which we could then use to define vertical, and so align theez unit vector. The amplitude of the acceleration
could then be measured by observing the period of oscillation of a simple pendulum.20

3.1 Switching sides

Consider a parcel of massM that is at rest and in contact with the ground, say, in a reference frame where
the acceleration of gravity is known from independent observations. The strain gauge will read out a contact
forceFz, which, from the perspective of the parcel is upwards. The vertical component of the equation of

20A plumb line is nothing more than a weight, the plumb bob, that hangs from a string, the plumb line. When the plumb bob is at
rest, the plumb line is then parallel to the acceleration field. If the weight is displaced and released, it becomes a simple pendulum,
and the period of oscillation,P , can be used to infer the amplitude of the acceleration,g D L=.P=2�/2, whereL is the length of
the plumb line. If the reference frame is attached to the rotating Earth, then the measured inertial acceleration includes a contribution
from the centrifugal force, discussed in Section 4.1. The motion of the pendulum will be effected also by the Coriolis force, and
in this context a simple pendulum is often termed a Foucault pendulum, discussed further in a later footnote 32. In this section we
consider gravity, rather than gravitational mass attraction and centrifugal force due to Earth’s rotation separately. When centrifugal
force arises here, it will be due to a very rapidly rotating platform noted explicitly.
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A characterization of the forces on geophysical flows.

central inertial Galilean invariant
contact forces yes no yes
grav. mass attraction yes yes yes
Coriolis no yes no
centrifugal no yes yes

Table 1: Contact forces are pressure gradients and frictional forces. In this table we also ignore electromag-
netic forces that are usually very small.

motion is then
d2z

dt2
M D Fz � gM:

If we evaluate the acceleration,d2z=dt2 D 0, then

0 D Fz � gM; (28)

which indicates a static force balance between the contact force,Fz D gM , the weight of the parcel, and the
downward force of gravity. Suppose that we observe the same parcel from a reference frame that is in
free-fall and so is accelerating downwards at the rate�g.21 When viewed from this reference frame the
parcel appears to be accelerating upwards at the rateg that is just the complement of the acceleration of the
free-falling frame. In this frame there is no gravitational force, and so the only force we recognize as acting
on the parcel is the contact force, which is unchanged from the case before,Fz D gM . The equation of
motion for the parcel observed from this free-falling reference frame is then

d2z0

dt2
M D Fz ;

or if we evaluate the acceleration,d2z0=dt2 D g,

gM D Fz: (29)

Notice that in going from Eq. (28) to Eq. (29) the contact force is unchanged (invariant) while the term
involving g� has switched sides;g is an inertial force in the reference frame appropriate to Eq. (28) and is
transformed into an acceleration in the free-falling reference frame described by Eq. (29). The equation of
motion makes prefectly good sense either way. As we will see next, the same sort of thing happens with
centrifugal and Coriolis inertial forces when we transform to or from a rotating reference frame.

21Gravitational mass attraction is an inertial force and a central force that has a very long range. Imagine two gravitating bodies
and a reference frame attached to one of them, say parcel one, which will then be observed to be at rest. If parcel two is then found
to accelerate towards parcel one, the total momentum of the system (parcel one plus parcel two) will not be conserved, i.e., in effect,
gravity would not be recognized as a central force. A reference frame attached to one of the parcels is thus not inertial. To define an
inertial reference frame in the presence of mutually gravitating bodies we can use the center of mass of the system, and then align on
the fixed stars. This amounts to putting the entire system into free-fall with respect to any larger scale (external) gravitational mass
attraction (for more on gravity and inertial reference frames see http://plato.stanford.edu/entries/spacetime-iframes/).
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Now consider the horizontal motion and dynamics of this parcel, so that gravity and the vertical
component of the motion can be ignored. We will presume thatF D 0, and hence the inertial frame equation
of motion expanded in polar coordinates (derived in Appendix A and repeated here for convenience),

d2X

dt2
M D

 
d2r

dt2
� r!2

!
M er C

�
2!

dr

dt
C r

d!

dt

�
M e�

D Frer C F�e�; (30)

vanishes term by term. Suppose that the same parcel is viewed from a steadily rotating reference frame and
that it is at a distancer 0 from the origin of the rotating frame. Viewed from this frame the parcel will have a
velocity V 0 D �˝ � X 0 and will appear to be moving around a circle of radiusr 0 D constant and in a
direction opposite the rotation of the reference frame,! 0 D �˝, just as in Figure (5). The rotating frame
equation of motion in polar coordinates is just

d2X 0

dt2
M D

 
d2r 0

dt2
� r 0! 02

!
M e 0

r C
�

2! 0 dr 0

dt
C r 0 d!

0

dt

�
M e 0

�

D
�
r 0˝2M C 2˝! 0r 0M C F 0

r

�
e 0

r C
�

�2˝
dr 0

dt
M C F 0

�

�
e 0

�: (31)

We presume that we can read the strain gage from this rotating frame as well, and note thatF 0
r D F 0

�
D 0.

All of the other azimuthal component terms vanish individually, but three of the radial component terms are
nonzero,

�r 0! 02 D r 0˝2 C 2˝! 0r 0; (32)

and indicate an interesting balance between the centripetal acceleration,�r 0! 02 (left hand side), and the sum
of the centrifugal and Coriolis inertial forces=M (right hand side, and note that! 0 D �˝).22 Interesting
perhaps, but disturbing as well; a parcel that is at rest in the inertial frame and subject to no (horizontal)
forces whatever has acquired a rather complex momentum balance simply because it has been observed from
a rotating reference frame. It is sorely tempting to deem the Coriolis and centrifugal terms of Eq. (32) to be
’virtual’, or ’fictitious, correction’ forces, as is often done,6 and to be consistent we should do the same for
the centripetal acceleration term. But labeling terms this way may only obscure the fundamental issue —
that inertial forces are relative to a reference frame. As we found in the example of a free-falling reference
frame, this applies just as much for gravitational mass attraction as it does for centrifugal and Coriolis forces.

3.2 To get a feel for the Coriolis force

The centrifugal force is something that we encounter in daily life. For example, a runner havingV D 5 m
sec�1 and making a moderately sharp turn, radiusR D 15 m, will easily feel the centrifugal force,
.V 2=R/M � 0:15gM , and will compensate instinctively by leaning toward the center of the turn. It would
never occur to the runner to label the centrifugal force as anything other than real.

22Two problems for you: 1) Given the polar coordinate velocity, Eq. (70), show that Eq. (31) can be derived also from the vector
form of the equation of motion, Eq. (26). 2) Sketch the balance of forces in Eq. (31) in a case where the rotation rate˝ is positive
and then again where it is negative. Is this consistent with Eq. (26)?



3 INERTIAL AND NONINERTIAL DESCRIPTIONS OF ELEMENTARY MOTIONS. 22

The Coriolis force associated with Earth’s rotation is very subtle by comparison, only about
2˝VM � 10�4gM for the same runner. To experience the Coriolis force in the same direct way that we
can feel the centrifugal force, i.e., to feel it in your bones, thus will require a platform having a rotation rate
that exceeds Earth’s rotation rate by a factor of about 104. A typical merry-go-round having a rotation rate of
about˝ D 2�=12rad sec�1 = 0.5 rad sec�1 is ideal. We are going to calculate the forces that you will feel
while sitting or walking about on a merry-go-round, and so will need to estimate your mass, sayM D 75 kg
(approximately the standard airline passenger before the era of super-sized meals and passengers).

3.2.1 Zero relative velocity

To start, let’s presume that you are sitting quietly near the outside radiusr D 6 m of a merry-go-round that it
is rotating at a steady rate,̋ = 0.5 rad sec�1. How does the momentum balance of your motion depend
upon the reference frame, whether inertial or rotating, that is used to observe and describe your motion?

Viewed from an approximateinertial frame outside of the merry-go-round (fixed stars are not required
given the rapid rotation rate), the polar coordinate momentum balance Eq. (30) with! D ˝ and
dr=dt D d!=dt D F� D 0 reduces to a two term radial balance,

�r˝2M D Fr ; (33)

in which a centripetal acceleration (�M ) is balanced by an inward-directed radial (contact) force,Fr . We
can readily evaluate the former and find�r˝2M D Fr D �112 N, which is equal to the weight on a mass
of Fr=g D 11:5 kg for a nominalg. This is just what the strain gauge (the one on the seat of your pants)
would read out.

Viewed from therotating reference frame, i.e., your seat on the merry-go-round, you are stationary
and of course not accelerating. To evaluate the rotating frame momentum equation, Eq. 31, we thus set
! 0 D 0; r 0 = constant, and are left with a two term radial force balance,

0 D r 0˝2M C F 0
r : (34)

The physical conditions are unchanged and thus the strain gage reads out exactly as before, and
F 0

r D Fr D �112 N. What has changed is that the termr 0˝2M , an acceleration in the inertial frame, is now
on the right side of the momentum equation and is the centrifugal force. Within the rotating frame, the
centrifugal force is quite vivid; it appears that you are being pushed outwards, or centrifugally, by an inertial
force that is opposed by the centripetal contact forceF 0

r . This is exactly the relationship between weight and
a contact force described in Section 3.1. The centrifugal force produces a radial acceleration on every
stationary object that depends only upon the radius,r 0. For example, a plumb line makes an angle to the
vertical ofarctan.r 0˝2=g/, where the vertical direction andg are in the absence of rotation. The
centrifugal force thus contributes to the direction and magnitude of the time-independent acceleration field
observed in the rotating frame, an important point that we will return to in Section 4.1.

3.2.2 With relative velocity

Most merry-go-rounds have signs posted which caution riders to remain in their seats once the ride begins.
This is a good and prudent rule, of course, but if your goal is to get a feel for the Coriolis force then you may
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decide to go for a (very cautious) walk on the merry-go-round. We will presume that the relative velocity,
i.e., your walking velocity, is specified, and then calculate the contact force that must be exerted by the
merry-go-round upon you as a consequence.

Azimuthal relative velocity: Let’s assume that you walk azimuthally so thatr D 6 m and constant. A
reasonable walking pace under the circumstance is aboutUw D 1:5 m s�1, which corresponds to a relative
rotation rate! 0 D 0:25 rad sec�1, and recall that̋ D 0:5 rad sec�1. Let’s also assume that you walk in the
direction of the merry-go-round rotation so that! D ˝ C ! 0 D 0:75 rad sec�1.

From theinertial frame momentum equation (30) we can readily calculate that the centripetal force
required to maintainr D constant at this greater angular velocity is

�r!2M D �r.˝ C ! 0/2M D Fr � �253 N;

or roughly twice the force required when you were seated. If you then reverse direction and walk at the same
speed against the rotation of the merry-go-round,Fr is reduced to about -28 N. This pronounced variation of
Fr with ! 0 is a straightforward consequence of the quadratic dependence of centripetal acceleration upon the
rotation rate,!.

When this motion is viewed from therotating frame of the merry-go-round, we distinguish between
the rotation rate of the merry-go-round,̋, and the relative rotation rate,! 0, due to your walking speed. The
radial component of the rotating frame momentum equation reduces to

�r 0! 02M D .r 0˝2 C 2r 0˝! 0/M C F 0
r : (35)

The term on the left is the comparatively small centripetal acceleration; the first term on the right is the usual
centrifugal force, and the second term on the right,2r 0˝! 0, is the Coriolis force. The Coriolis force is
substantial,2r 0˝! 0M ˙ 112 N, with the sign determined by the direction of your motion relative to˝. If
˝ > 0 and! 0 > 0 then the Coriolis force is positive and radial and to the right of and normal to the
azimuthal relative velocity. Given what we found in the previous paragraph, it is tempting to identify the
Coriolis force as the (relative)velocity-dependent part of the centrifugal force. This is, however, somewhat
loose and approximate; loose because the centrifugal force is defined to be dependent upon rotation rate and
position only and approximate because this ignores the small centripetal acceleration term.

Radial relative velocity: If you are still able, consider a (very cautious) walk in the radial direction. To
isolate the effects of radial motion we will presume that your radial speed is constant atdr 0=dt D 1 m s�1

and that you walk along a radial line so that your rotation rate also remains constant at! D ˝. In practice
this is very difficult to do for more than a few steps, but that will suffice. The resulting contact forceF is
then in the azimuthal direction, and its magnitude and sense can most easily be interpreted in terms of the
balance of angular momentum,A D !r 02M: In this circumstance the rate of change of your angular
momentumA has been fully specified,

dA

dt
D 2˝r 0 dr 0

dt
M D r 0F� ;

and must be accompanied by an azimuthal torque,r 0F� , exerted by the merry-go-round upon you.

Viewed from aninertial frame , the azimuthal component of the momentum balance, Eq. (30), reduces
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to

2˝
dr

dt
M D F� ; (36)

whereF� � �75 N for the given data. The azimuthal contact forceF� has the form of the Coriolis force,
but remember that we are viewing the motion from an inertial frame so that there is no Coriolis force. If the
radial motion is inward so thatdr=dt < 0; thenF� must be negative, or opposite the direction of the
merry-go-round rotation, since your angular momentum is necessarily becoming less positive. (Be sure that
these signs are clear before going on to consider this motion from the rotating frame.)

From within therotating frame , the momentum equation reduces to an azimuthal force balance

0 D �2˝
dr 0

dt
M C F 0

� ; (37)

where�2˝ dr 0

dt
M is the Coriolis force andF 0

�
D F� as before. The contact force exerted by the

merry-go-round,F 0
�
, is balanced by an inertial force, the Coriolis force, in the direction opposed toF 0

�
. For

example, if your radial motion is inward,dr 0

dt
� 0; then the Coriolis force,�2˝ dr 0

dt
M � 0, is to the right of

and normal to your relative velocity, just as we would have expected from the vectorial Coriolis force. This
interpretation of a Coriolis force is exactly parallel to the interpretation of centrifugal force in the example of
steady, circular motion and Eq. (34): an acceleration seen from an inertial frame appears to be an inertial
force when viewed from the rotating frame.

Be careful! If you have a chance to do this experiment some day you will learn from direct experience
whether the Coriolis force is better described as real or as a fictitious correction force. Ask permission of the
operator before you start walking around, and exercise genuine caution. The Coriolis force is an inertial
force and so is distributed throughout your body. If the contact force between you and the merry-go-round
acted only through the soles of your sneakers, say, then the result would be a significant force couple tending
to tip you over. It is therefore essential that you maintain a secure hand grip at all times. The radial Coriolis
force associated with azimuthal motion is much like an increase or slackening of the centrifugal force and so
is not particularly difficult to compensate. However, the azimuthal Coriolis force associated with radial
motion is quite surprising, even assuming that you are the complete master of this analysis. If you do not
have access to a merry-go-round or if you feel that this experiment might be unwise, then see Stommel and
Moore10 for alternate ways to accomplish some of the same things.

3.3 An elementary projectile problem

A very simple projectile problem can reveal some other aspects of rotating frame dynamics. Assume that a
projectile is launched at a speedU0 and at an angle to the grounďfrom a locationŒx y� D Œ0 y0�. The
only force presumed to act on the projectile after launch is the downward force of gravity,�gM e3, which is
the same in either reference frame.
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Figure 7: Trajectory of a parcel launched with a horizontal velocity in the positive y-direction as seen from
an inertial reference frame (solid line, displaced in the y-direction only), and as seen from a rotating frame
(dashed, curves lines). The left and right panels are 3-dimensional and plan views. The dotted curve is with
the Coriolis force only (the motivation for this is in Section 4). This trajectory has the form of a circle, and if
the projectile had not returned to the surface,z D 0; it would have made a complete loop back to the starting
point.

3.3.1 From the inertial frame

The equations of motion and initial conditions in Cartesian components are linear and uncoupled;

d2x

dt2
D 0I x.0/ D 0;

dx

dt
D 0; (38)

d2y

dt2
D 0I y.0/ D y0;

dy

dt
D U0 cosˇ;

d2z

dt2
D �gI z.0/ D 0;

dz

dt
D U0 sinˇ;

whereM has been divided out. The solution for0 < t < 2U0 sinˇ
g

x.t/ D 0; (39)

y.t/ D y0 C tU0 cosˇ;

z.t/ D t.U0 sinˇ �
1

2
gt/

is in Fig. (7).

3.3.2 From the rotating frame

How would this same motion look when viewed from a rotating reference frame? And, how could we
compute the motion from within a rotating reference frame?
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Figure 8: (a) The distance from the
origin in the horizontal plane for the
trajectories of Fig. (7). The dis-
tance from the origin is identical for
the inertial and rotating trajectories,
and reduced for the Coriolis trajec-
tory (discussed in Section 4). (b)
The distance along the path in the
horizontal plane for the same trajec-
tories. The slope gives the speed of
the parcel. The inertial and Corio-
lis frame trajectories retain their ini-
tial speed and are identical; the rotat-
ing frame trajectory accelerates due
to the centrifugal force.

The first question can be answered most directly by rotating the trajectory, Eq. (39), via the rotation
matrix, Eq. (12),X0 D RX with � D ˝ t , and with the result

x0.t/ D .y0 C tU0 cosˇ/ sin.˝ t/; (40)

y 0.t/ D .y0 C tU0 cosˇ/ cos.˝ t/;

z0.t/ D z D t.U0 sinˇ �
1

2
gt/;

valid over the time interval as before. Thez component is unchanged in going to the rotating reference frame
since the rotation axis was aligned withz. This is quite general; motion that is parallel to the rotation vector
˝ is unchanged. On the other hand, motion in the.x; y/-plane perpendicular to the rotation vector can be
altered quite substantially, depending upon the phase˝ t . In the case shown in Fig. (7), the change of phase
is 2.0 at the end of the trajectory, so that rotation effects are prominent.23 One important aspect of the
trajectory is not changed, however, the (horizontal) radius,

q
x02 C y 02 D

q
x2 C y2;

since the coordinate systems have coincident origins (Fig. 8a)

How could we compute the trajectory in the rotating frame? The Cartesian component equations in the
rotating frame are a bit awkward (the x-component only):

d2x0

dt2
D 2˝

dy 0

dt
C˝2 x02

p
x02 C y 02

:

23A well-thrown baseball travels at about 45 m s�1. How much will it be deflected as it travels over a distance of 30 m? Use the
nominal Earth’s rotation rate (as we will see in Section 4.2 this is appropriate for the north pole). A long-range artillery shell has an
initial speed of about 700 m s�1. Assuming the shell is launched at angle to the ground of 30 degrees, how much will it be deflected
over its trajectory (ignoring air resistance)?
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An elementary problem in the inertial frame transforms into a pair of coupled, nonlinear equations in the
rotating frame (z0 D z). We can always solve these equations numerically, but we are better off in this and
many problems involving rotation to use cylindrical polar coordinates where we can take advantage of what
we have already learned about the rotating frame solution. We know that

r 0 D r D y0 C tU0 cosˇ;

and that the angle in the inertial frame,� , is constant in time since the motion is purely radial and for the
specific case considered,� D �=2. The rotation rates are related by! 0 D �˝; and thus

� 0 D �=2 �˝ t:

Both the radius and the angle increase linearly in time, and the horizontal trace of the trajectory as seen from
the rotating frame is Archimedes spiral (Fig. 7, lower).

When viewed from the rotating frame, the projectile is obviously deflected to the right, and from the
azimuthal component of Eq. (31) we readily attribute this to the Coriolis force,

2! 0 dr 0

dt
M D �2˝

dr 0

dt
M;

since! 0 D ˝. Notice that the horizontal speed and thus the kinetic energy increase with time (Fig. 8,
lower). The rate of increase of rotating frame kinetic energy (per unit mass) is

dV 02=2

dt
D

d.U 2
0

C r 02˝2/=2

dt
D

dr 0

dt
r 0˝2

where the term on the right side is the work done by the centrifugal force,r 0˝2; on the radial velocity,
dr 0=dt . If the projectile had not returned to the ground, its speed would have increased without limit so long
as the radius increased, a profoundly unphysical result of the rotating frame dynamics.24

3.4 Summary

This analysis of elementary motions can be summarized with four points:

1) It’s our choice. We can make an exact and self-consistent explanation of forced or free motion observed
from either an inertial frame or from a rotating frame. If the latter, then in addition to the usual central
forces,F 0 (suitably rotated), there will also arise Coriolis and centrifugal forces. To say it a little differently,
there is nothing that occurs in the rotating frame dynamics that can not be understood in terms of inertial
frame dynamics and forcesF . We can use either reference frame — inertial or rotating — that best suits the
circumstance.

2) But be consistent.The choice of reference frames is binary, as is the existence or not of the Coriolis and
centrifugal forces; either it’s inertial, in which case there is no Coriolis or centrifugal force, or it’s rotating,

24In the previous example, walking around on a merry-go-round, we indicated that you would be able to feel the Coriolis force
directly. Imagine that you are riding along on this projectile (don’t try this one at home) — would you be able to feel the Coriolis
force?
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and there definitely is (notwithstanding they may be negligibly small). If we choose to (or must) use a
rotating frame, then there is no good in calling or thinking of the Coriolis force thereafter as a pseudo force,
or a fictitious correction force that seems to question whether the Coriolis force is a full-fledged member of
the equation of motion. (And yet, whether we should call it a force or an acceleration is less clear, and
considered on closing in Section 6.)

3) Was that an explanation?In the example of azimuthal relative motion on a merry-go-round (Section
3.2.2) the magnitude and direction of the Coriolis force can be thought of as the relative-velocity dependent
component of centrifugal force (roughly speaking); in the example of radial relative motion it is equal to the
force required to maintain angular momentum balance. These two examples have the feeling of a physical
explanation of the Coriolis force but it is probably more appropriate to regard them as a demonstration since
they are not general.25

4) Gains and losses; global conservation.There is no physical agent or interaction that causes the Coriolis
force and so there is no object that is accelerated in the opposite direction by a reaction force. In the same
way, there is no source for the work done by the centrifugal force (Section 3.3.2). Global conservation of
momentum and energy thus fail to hold when we interpret the Coriolis and centrifugal terms as if they were
forces, i.e., if we choose a noninertial, rotating reference frame. Nevertheless, the interpretation of
geophysical flow phenomena is usually far simpler when viewed from an Earth-attached, rotating reference
frame, as we will see in Section 4.3.

4 Application to the rotating Earth.

The equations of motion appropriate to the atmosphere and ocean differ from that considered up to now in
two significant ways. First, it isn’t just the reference frame that rotates, but the entire Earth, ocean and
atmosphere, aside from the comparatively small (but very important!) relative motion of winds and ocean
currents. One consequence of the solid body rotation of the Earth is that the horizontal component of the
centrifugal force on a stationary parcel is exactly canceled by a component of the gravitational mass
attraction. Thus the centrifugal force does not appear in the rotating frame dynamical equations for the
atmosphere and oceans, a welcome simplification (Section 4.1). Second, because the Earth is nearly
spherical, the rotation vector is not perpendicular to the plane of horizontal motions except at the poles. This
causes the horizontal component of the Coriolis force to vary with latitude (Section 4.2). Lastly, we will
compare inertial and rotating frame descriptions of a simple geophysical phenomenon (Section 4.3), and
explain why we persist in using the rotating frame equations.

25I began working on the topic of this essay with the hope of finding or developing aphysicalunderstanding and explanation of
the Coriolis force. After a while I concluded that it is futile and even misguided to expect a physical explanation of the Coriolis force
since it’s origin is mainly kinematic, and moreover, because the Coriolis force has plainly unphysical consequences, the disruption of
global momentum conservation. However, other authors, notably Stommel and Moore,10 indicate that there is a possible (classical)
physical understanding of the Coriolis force, and so perhaps this is a matter of semantics only — the meaning ofphysical— rather
than hard facts, since we all agree on Eq. (2).
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4.1 Cancelation of the centrifugal force

To understand how the centrifugal force is canceled we consider briefly the balance of gravitational mass
attraction and centrifugal forces on a rotating Earth. To be sure, the details of this first subsection are a bit
beyond the minimum discussion needed for our purpose, but are inherently interesting. A more compact
though more abstract way to come to the same result is to consider the definition and measurement of
vertical and level in an accelerated fluid environment, Section 4.1.2.

4.1.1 Earth’s figure

If Earth was a perfect, homogeneous sphere, the gravitational mass attraction at the surface,g�, would be
directed towards the center (Fig. 9). Because the Earth is rotating, every parcel on the surface is also subject
to a centrifugal force of magnitude̋ 2R sin� , whereRe is the nominal Earth’s radius, and� is the
colatitude (�/2 - latitude). This centrifugal force has a component parallel to the surface (a shear stress)

C� D ˝2Re sin� cos� (41)

that is directed towards the equator (except at the equator where it is vertical).26 C� is not large compared to
g�, C�=g� � 0:002 at most, but it has been present since the Earth’s formation. A fluid can not sustain a
shear stress without deforming, and over geological time this holds as well for the Earth’s interior and crust.
Thus it is highly plausible that the Earth long ago settled into an equilibrium configuration in which thisC�

is exactly balanced by a component of the gravitational (mass) attraction that is parallel to the displaced
surface and poleward.

26Ancient critics of the rotating Earth hypothesis argued that loose objects on a spinning sphere should fly off into space, which
clearly does not happen. Even so, given this persistent centrifugal force, why don’t we drift towards the equator? Alfred Wegner
proposed this as the motive force of Earth’s moving continents (see D. McKenzie, ’Seafloor magnetism and drifting continents’, inA
Century of Nature, 131-137. Ed. by L. Garwin and T. Lincoln, The Univ. of Chicago Press, Chicago, Il, 2003.).
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To make what turns out to be a rough estimate of the displaced surface,�, we will assume that the
gravitational mass attraction remains that of a sphere and that the meridional slope times the gravitational
mass attraction is in balance with the tangential component of the centrifugal force,

g�
Re

d�

d�
D ˝2Re sin� cos�: (42)

This may then be integrated with latitude to yield the equilibrium displacement

�.�/D
Z �

0

˝2R2
e

g�
sin� cos�d� D

˝2R2
e

2g�
sin�2 C constant: (43)

When this displacement is added onto a sphere the result is an oblate (flattened) spheroid, (Fig. 9), which is
consistent with the observed shape of the Earth.27 A convenient measure of flattening is
F D .Reqt � Rpol/=Reqt , where the subscripts refer to the equatorial and polar radius. Earth’s flatness is
F D 0:0033, which seems quite small, but is nevertheless highly significant in ways beyond that considered
here.28 The flatness of a rotating planet is given roughly byF � ˝2R=g: If the gravitational acceleration at
the surface,g, is written in terms of the planet’s mean radius,R, and density,�, thenF D ˝2=.4

3
�G�/;

whereG D 6:67�10�11 m3 kg�1 s�2 is the universal gravitational constant. The rotation rate and the
density vary a good deal among the planets, and consequently so doesF . The gas giant, Saturn, has a
rotation rate a little more than twice that of Earth and a very low mean density, about one eighth of Earth’s.
The result is that Saturn’s flatness is large enough,F � 0:10, that it can be discerned through a good
backyard telescope (Fig. 9).

4.1.2 Vertical and level in an accelerating reference frame

Closely related is the notion of ’vertical’. When we measure vertical we do so by means of a plumb bob that
hangs in the direction of the gravitational acceleration, also called the plumb line, and that by definition is
vertical. Following the discussion above we know that the time-independent, acceleration field is made up of
two contributions, the first and by far the largest being mass attraction,g�, and the second being the
centrifugal acceleration associated with the Earth’s rotation,C , Fig. (9). Just as on the merry-go-round, this
centrifugal acceleration adds with the gravitational mass attraction to give the net acceleration,g D g� C C ,
a vector (field) whose direction and magnitude we measure with a plumb bob and by observing the period of
a simple pendulum. A surface that is normal to the gravitational acceleration vector is said to be a level

27The pole-to-equator rise given by Eq. (43), is about 11 km. Precise observations show that Earth’s equatorial radius,
Reqt D 6378:2, is greater than the polar radius,Rpol D 6356:7 km, by about 21.5 km. This simple model underestimates this
displacement because the mass displaced from the pole towards the equator causes a small equatorward mass attraction that is suffi-
cient to compensate for about half of the meridional tilt effect; thus still more mass must be displaced towards the equator in order
to achieve a gravitational/rotational equilibrium. The net result is about a factor two greater displacement than Eq. (43) indicates (a
very interesting discussion of Earth’s shape is available online from http://www.mathpages.com/home/kmath182.htm).

A comprehensive source for physical data on the planets is by C. F. Yoder, ‘Astrometric and geodetic data on Earth and the solar
system,’ Ch. 1, pp 1–32, ofA Handbook of Physical Constants: Global Earth Physics (Vol. 1). American Geophysical Union (1995).

28To note just two: 1) Earth’s ellipsoidal shape must be accounted for in highly precise, long range navigation systems, particularly
GPS, while shorter range or less precise systems can approximate the Earth as spherical. 2) Because the Earth is not perfectly
spherical, the gravitational tug of the Sun, Moon and planets can exert a torque on the Earth and thereby perturb Earth’s rotation
vector.18
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surface in as much as the acceleration component parallel to that surface is by definition zero. A level surface
can be defined by observing the free surface of a water body that is at rest (in the rotating frame), since a
resting fluid can sustain only normal stresses, i.e., pressure but not shear stress. Thus the measurements of
vertical or level that we can readily make necessarily include the centrifugal force. The happy result is that
the rotating frame equation of motion applied in an Earth-attached reference frame, Eq. (2), does not include
the centrifugal force associated with Earth’s rotation (and neither do we tend to roll towards the equator!).

4.1.3 The equation of motion for an Earth-attached frame

The inertial and rotating frame momentum equations are listed again for convenience using velocity in place
of the previous time rate change of position,

dV

dt
M D F C g�M; and; (44)

dV 0

dt
M D �2˝�V 0M � ˝�˝�X 0M C F 0 C g 0

�M; (45)

and note that the velocityV of Eq. (44) is the total velocity,V D V˝ C V 0, whereV˝ D �˝ � X is the
velocity associated with the solid body rotation of the Earth (Section 2.2). Now we are going to assume the
result from above that there exists a tangential component of gravitational mass attraction that exactly
balances the centrifugal force due to Earth’s rotation and that we define vertical in terms of the
measurements that we can readily make.32 The equations of motion are then, for the inertial frame,

dV

dt
M D ˝�˝�X M C F C g�M (46)

and for the rotating frame,
dV 0

dt
M D � 2˝�V 0M C F 0 C gM: (47)

Finally we have come to Eq. (2), which we now see is the rotating frame equivalent of Eq. (46) (and we will
return to these equations in Section 4.3).29

29This notion of vertical and level turned out to have considerable practical importance beginning on a sweltering September
afternoon when the University Housing Office notified you that, because of an unexpectedly heavy influx of freshmen, your old and
comfortable dorm room was not going to be available. As a consolation they offered you the use of the merry-go-round (the one in
Section 3.3, and still running) at the local, failed amusement park that the University had just gobbled up. You accept. The centrifugal
force, amusing at first, was soon a huge annoyance; you had recurring nightmares that you were camping on a mountainside and just
about to slide out of bed and over a cliff. To counteract this you decide to build up the floor of the merry-go-round so that the tilt
of the floor, combined with the vertical gravitational acceleration, would be just sufficient to balance the centrifugal force, as in Eq.
(42). A quick calculation and you find that a parabolic displacement,� / r2, would be just the thing. A plumb line will then be
normal to the new floor at every point, and hence the new floor will be a level surface in the acceleration field of your rotating dorm
room. Make sure that we have this right, and specifically, how much does the outside edge (r D 6 m) have to be built up to achieve
this? Assuming that your bed is 2 m long and flat, can the acceleration field be made zero at both ends at once? (Or is that that why
you call it ’the tidal basin’?) How is the calibration of your bathroom scale effected? Visitors are always very impressed with your
rotating, parabolic dorm room, and to make sure they have the full experience you send them to the refrigerator for a cold drink.
Describe what happens next using Eq. (47). Is their route relevant?
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4.2 Coriolis force on motions in a thin, spherical shell

Application to geophysical flows requires one further small elaboration because the rotation vector makes a
considerable angle to the vertical except at the poles. An Earth-attached coordinate system is usually
envisioned to haveex in the east direction,ey in the north direction, and horizontal is defined by a tangent
plane to Earth’s surface. The vertical direction,ez, is thus radial with respect to the spherical Earth. The
rotation vector̋ thus makes an angle� with respect to the local horizontalx0; y 0 plane, where� is the
latitude of the coordinate system and thus

˝ D 2˝ cos.�/ey C 2˝ sin.�/ez:

If V 0 D U 0ex C V 0ey C W 0ez, then the Coriolis force (/M ) is

2˝�V 0 D
.2˝ cos.�/W 0 � 2˝ sin.�/V 0/ex C .2˝ sin.�/U 0 � 2˝ cos.�/W 0/ey C 2˝U 0 sin.�/ez: (48)

Large scale geophysical flows are very flat in the sense that the horizontal components of wind or
current are very much larger than the vertical component,U 0 / V 0 � W 0, simply because the oceans and
the atmosphere are quite thin, having a depth to width ratio of about 0.001. The ocean and atmosphere are
stably stratified in the vertical, which still further inhibits the vertical component of motion. For these large
scale (in the horizontal) flows, the Coriolis terms multiplyingW 0 in thex andy component equations are
thus very much smaller than the terms multiplied byU 0 or V 0 and as an excellent approximation may be
ignored. The Coriolis terms that remain are those having the sine of the latitude, and the important
combination

f D 2˝ sin� (49)

is dubbed the Coriolis parameter. In the vertical component of the momentum equation the Coriolis term is
usually much smaller than the gravitational acceleration, and it too is usually dropped. The result is the thin
fluid approximation of the Coriolis force in which only the horizontal force due to horizontal motions is
retained,

2˝�V 0 � f �V 0 D f V 0ex C f U 0ey ; (50)

and wheref is f times the local vertical unit vector). Notice that the Coriolis parameterf varies with the
sine of the latitude, having a zero at the equator and maxima at the poles;f < 0 for southern latitudes.30

For problems that involve parcel displacements,L, that are very small compared to the radius of the
Earth,R, a simplification off is often appropriate. The Coriolis parameter may be expanded in a Taylor
series about a central latitude,y0,

f .y/ D f .y0/C .y � y0/
df

dy
jy0

CHOT (51)

and if the second term is demonstrably much smaller than the first term, which follows ifL � Re, then the
second and higher terms may be dropped to leavef D f .y0/, a constant. Under this so-calledf -plane

30The Coriolis parameterf vanishes at the equator, but the Coriolis force does not, in general. To see this, consider relative
velocities that are either eastward or northward, and sketch the resulting Coriolis force/ �2˝ � V 0 at several latitudes that span
pole-to-pole.
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approximation31 the period of inertial motions,2�=f , is just a little bit less than 12 hrs at the poles, a little
less than 24 hrs at 30 N or S, and infinite at the equator. The period of inertial motions is sometimes said to
be half of a ’pendulum day’, the time required for a Foucault pendulum to precess through2� radians.32

4.3 Why do we insist on the rotating frame equations?

We have emphasized that the rotating frame equation of motion has some inherent awkwardness, viz., the
loss of Galilean invariance and global momentum conservation. Why, then, do we insist upon using the
rotating frame equations for nearly all of our analyses of geophysical flow? The reasons are several, any one
of which would be compelling, but beginning with the fact that the definition and implementation of an
inertial frame (outside of the Earth) is simply not a viable option; whatever simplicity we might gain by
omitting the Coriolis force would be lost to difficulty with observation. Consider just one aspect of this: the
inertial frame velocity,V D V˝ C V 0; is dominated by the solid body rotationV˝ D ˝Recos.latitude/,
whereRe is earth’s nominal radius, 6365 km, and thusV˝ � 400 m s�1 near the equator. By comparison, a
large wind speed at mid-level of the atmosphere isV 0 � 50 m sec�1 and a large ocean current isV 0 � 2 m
sec�1. The very large velocityV˝ is accelerated centripetally by a tangential (almost) component of
gravitational mass attraction associated with the ellipsoidal shape of the Earth discussed in Section 4.1 that is
larger than the Coriolis force in the ratioV˝=V 0 that is O(10) for the atmosphere, or much more for ocean
currents. The inertial frame equations have to account forV˝ and this very large centripetal force explictly,
and yet our interest is almost always the small relative motion of the atmosphere and ocean,V 0, since it is the
relative motion that transports heat and mass over the Earth. In that important regard, the solid body rotation
velocity V˝ is invisible to us Earth-bound observers, no matter how large it is. To say it a little differently —
it is the relative velocity that we measure when observe from Earth’s surface, and it is the relative velocity
that we seek for most any practical purposes. The Coriolis force follows.33

31The next approximation to Eq. (51) is to retain the first order term, with the symbolˇ often used to denote the first derivative,
viz., f D f0 C .y � y0/ˇ, the beta-plane approximation. A profound change in dynamics follows on this seemingly small change
in the Coriolis parameter (see GFD texts9).

32The effect of Earth’s rotation on the motion of a simple (one bob) pendulum, called a Foucault pendulum in this context, is
treated in detail in many physics texts by e.g., Marion6, and will not be repeated here. Here are a few questions, however. Can you
calculate the Foucault pendulum motion by rotating the inertial frame solution for a simple pendulum? What approximation(s) have
you made in doing this? How does the time required for precession through 360 degrees depend upon latitude? What happens when
the pendulum’s natural frequency (in the absence of Earth’s rotation) equals the Earth’s rotation rate? Given the rotated trajectory,
can you show that the acceleration of the bob for very short times is consistent with the rotating frame equations of motion?

Foucault pendulums are commonly used as displays in science museums (where, let’s admit it, they fare badly compared to almost
any other exhibit). Much better is to make and observe your very own Foucault pendulum, which need be nothing more than a simple
pendulum having two readily engineered properties. First, the e-folding time of the motion due to frictional dissipation must be long
enough, at least 20-30 min, that the precession will become apparent. This can be most easily achieved by using a dense, smooth and
symmetric bob having a weight of about half a kilogram or more, and suspended on a fine, smooth monofilament line. It is helpful
if the length can be made several meters or more. Second, the pendulum should not interact appreciably with its mounting. This is
harder to evaluate, but generally requires a very rigid support, and a bearing that can not exert torque, for example a needle bearing.
You should plan to bring a simple and rugged pocket pendulum with you on your merry-go-round ride (Section 3.2), where rotational
effects are not the least bit subtle. How do your observations of this rotating frame pendulum (even if qualitative) compare with your
solution for a Foucault pendulum? (Hint - consider the initial condition.)

33Imagine that Earth’s atmosphere is viewed from space, and that we make a map of the absolute velocity,V 0 C V˝ . How would
this compare (qualitatively) with the weather map of Fig. (1), and how would the pressure surfaces appear in such a map? (Hint, Fig.
9)



4 APPLICATION TO THE ROTATING EARTH. 34

4.3.1 Inertial oscillations from an inertial frame

Given that our goal is the relative velocity, then the rotating frame equation of motion is generally much
simpler and more appropriate than is the inertial frame equation of motion. To help make this point we will
analyze the free oscillations of Eqs. (46) and (47), i.e.,F D F 0 D 0, usually called inertial oscillations, that
are interesting in their own right. The domain is presumed to be a small region centered on the pole so that
latitude = 90 degrees, and the domain is, in effect, flat. We will consider only horizontal motions, and
assume the realistic condition that the motion will be a small perturbation away from the solid body rotation,
V 0 � V˝ . The motion viewed from the inertial frame is thus almost circular and it is appropriate to use the
cylindrical coordinate momentum equation, Eq. (30) (dividing out the constantM ):

d2r

dt2
� r!2 D �˝2r; (52)

2!
dr

dt
C r

d!

dt
D 0: (53)

Notice that when! D ˝ anddr=dt D 0, the motion is balanced in the sense thatd2r=dt2 D 0 andr

remains constant. We are going to assume an initial condition that is a small radial perturbation away from
such a balanced state,r D Ro and! D ˝. Since there is no tangential force, Eq. (53) may be integrated,

!r2 D ˝R2
o D A; (54)

which shows that the angular momentum,A, is a conserved quantity. Eq. (54) can then be used to eliminate
! from Eq. (52) to yield an equation forr.t/ alone,

d2r

dt2
�

A2

r3
D �˝2r: (55)

To solve this equation it is convenient to move the centripetal acceleration termA2=r3 to the right side
where it will be summed with the centripetal force,

d2r

dt2
D

A2

r3
�˝2r; (56)

yielding what looks just like an equation of motion. However, it is important to understand thatd2r=dt2 is
not the radial component of acceleration in either an inertial or a rotating reference frame (cf. Eqs. 30 and
31) and to acknowledge this explicitly, the right hand side of Eq.(56) will be called apseudo(or false) force.
None of this effects the solutionper se, but only the words we use and the inferences we might then draw.
And specifically, if you measured the radial force/M on the parcel you wouldn’t findA2=r3 �˝2r; but
rather�˝2r , the right hand side of Eq. (55).

Eq. (56) is a well-known, nonlinear oscillator equation and is not difficult to solve. However, because
our interest is in the case of small displacements away from the balanced state,r D Ro, a simplification is
appropriate. To clarify what is meant by small displacement it is helpful to write the radius as

r.t/ D Ro.1 C ı.t//:
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whenı is small, roughlyı � 0:1.

The meaning of ’small displacement’ is thatı should be small compared to 1. Substitution into Eq. (56) and
rearrangement yields

d2ı

dt2
D ˝2.1 C ı/�3 �˝2.1 C ı/: (57)

When we plot the right side of Eq. (57) it is evident that the net pseudo force is a nearly linear function ofı

providedı � 0:1. To exploit this we can expand the nonlinear term of Eq.(57) in Taylor series aboutı D 0,

d2ı

dt2
D ˝2.1 � 3ı C 6ı2 C HOT / �˝2.1 C ı/

� �4˝2ı; (58)

whereHOT are terms that are higher order inı. For small displacements the quadratic and higher order
terms may be neglected, leaving a simple harmonic oscillator equation, Eq. (58), at a frequency2˝.

If the initial condition is a radial impulse that gives a radial velocityV0; then the initial condition for Eq.
(58) is

dı

dt
.t D 0/ D .Vo=Ro/ cos2˝ t :

The solution forı is
ı.t/ D .V0=2˝/ sin.2˝ t/

and the radius is then
r.t/ D Ro.1 C ı0 sin.2˝ t//; (59)

whereı0 D V0=2˝: The corresponding angular rotation rate can be found by using Eq. (59) together with
the angular momentum conservation Eq. (54),

!.t/ D
˝

.1 C ı0 sin.2˝ t//2
� ˝.1 � 2ı0 sin.2˝ t//: (60)

When graphed, these show that the parcel moves in an ellipsoidal orbit, Fig. (11, left panels), that crosses the
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(balanced) radiusr D Ro four times per complete orbit. The rotating frame turns through 180 degrees just as
the parcel returns tor D Ro the second time, after completing a full cycle of the oscillation. When viewed
from the rotating frame (Fig. 11, right panels), the parcel appears to be moving in a clockwise-orbiting,
circular path, with a frequency 2̋.34

4.3.2 Inertial oscillations from the rotating frame

It is convenient to expand the rotating frame equation of motion (47) in Cartesian coordinates. Since we have
restricted the analysis above to small displacements we can utilize the f-plane approximation that takesf as
a constant. Thus the horizontal componentsU 0; V 0 follow

d

dt

�
U 0

V 0

�
D f

�
�V 0

U 0

�
: (61)

Given that the initial condition is an impulse causing a small velocityV0 in the y-direction then the solution
for velocity and displacement is just

�
U 0

V 0

�
D V0

�
sin.f t/

cos.f t/

�
and

�
X 0

Y 0

�
D ı0

�
1 � cos.f t/

sin.f t/

�
: (62)

The velocity of the parcel seen from the rotating frame,V 0, rotates at a rate off D 2˝ in a direction
opposite the rotation of the reference frame,˝.35 This is exactly the result found in the inertial frame
analysis but was far simpler to obtain because we did not have to account for the total velocity,
V D V˝ C V 0, but the relative velocity only. From the rotating frame perspective, Eq. (47), the rotation of
the velocity vector is attributable to deflection by the Coriolis force.36 This kind of motion, termed an inertial
oscillation,37 is frequently observed in the upper ocean following a sudden shift in the wind speed or
direction (Fig. 12).

34Which is justoppositethe sense of rotation̋ . Can you use Eqs. (59) and (60) to explain why?
35Two questions for you: 1) How does this compare with the momentum balance and motion described by Eq. (32)? 2) Suppose

that the impulse was in the azimuthal direction, what would change?
36We noted in Section 3.4 that the rotating frame equations of motion does not support global momentum conservation or Galilean

invariance. The former can be seen by noting that if all forces except Coriolis were zero, and the initial condition included a velocity,
then that velocity would be continually deflected and change direction (as an inertial oscillation) with nothing else showing a reaction
force; i.e., global momentum would not be conserved. This evident nonconservation is ignorable in most practical analyses because
the Coriolis force is not a spontaneous source of energy. And, when a central forceF produces a change of momentum in our parcel,
the corresponding reaction force�F generates the complementary change of momentum in the (global) environment that would then
undergo a compensating Coriolis deflection. It should be noted that the extent of the global domain within which we can presume
exact momentum conservation is not obvious, see, e.g., http://chaos.fullerton.edu/�jimw/nasa-pap/

The Coriolis force is isomorphic to the Lorentz force,qV �B ; on a moving, charged particle in a magnetic fieldB . Thus a
charged particle moving through a uniform magnetic field will be deflected into a circular orbit with the cyclotron frequency,qB=M ,
analogous to an inertial oscillation at the frequencyf . This isomorphism is highly suggestive; General Relativity predicts that a
rotating (massive) object is accompanied by a ’gravitomagnetic’ field analogous to a magnetic field, and that gives rise to a Coriolis-
like force on moving objects. The upcoming Gravity Probe B satellite mission aims to test this aspect of General Relativity; see
http://einstein.stanford.edu/

37The name ‘inertial oscillation’ is very widely accepted but is not highly descriptive of the dynamics in either the rotating or
inertial reference frame. For the rotating frame, ‘Coriolis oscillation’ might be more appropriate, and for the inertial frame see D. R.
Durran, ‘Is the Coriolis force really responsible for the inertial oscillation?’Bull. Am. Met. Soc., 74(11), 2179–2184 (1993).
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Figure 11: The two-dimensional trajectory of a parcel subject to a centripetal force,�r˝2, as if it were on
a frictionless parabolic surface. The initial velocity was a solid body rotation in balance with the centripetal
force, and a small radial impulse was then superimposed. In this case the ratioV 0=V˝ � 0:2, which is
far larger than actually occurs in the ocean or atmosphere. The left column shows the resulting ellipsoidal
trajectory as seen from an inertial frame, along with the circular trajectory that is seen from a rotating frame
(indicated by the rotating, solid unit vectors). The right column shows the trajectory as seen from the rotating
frame only, along with the solution computed in the rotating frame (shown as green dots). These lie exactly
on top of the ’observed’ trajectory and are very difficult to discern if color is not displayed; see the script
Coriolis.m12 that includes this and a number of other cases. Click on the lower half of this figure to start an
animation.
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Figure 12: (a and b) Ocean currents at a depth of 25 m, measured by a current meter deployed southwest of
Bermuda. The time scale is in inertial periods, which are nearly equal to days at this latitude. Hurricane Felix
passed over the current meter mooring at the time noted at upper left, and the strong and rapidly changing
wind stress produced energetic, clockwise rotating currents within the upper ocean. To a first approximation
these are inertial oscillations. They differ from pure inertial oscillations in that their frequency is usually
a few percent higher thanf , and their amplitude e-folds over about 5-15 days. These small departures
from pure inertial motion are indicative of wave-like dynamics that is not accessible in the single parcel
model used here (see the simulation of geostrophic adjustment in Appendix B). (c) Acceleration estimated
from the current meter data asdV 0=dt C 2˝ � V 0, as if the measurements were made on a specific parcel.
(A question for you: what assumption is implicit in this switch from a parcel to a fixed location? Hint:
recall the discussion in Sec. 1.1 regarding the single parcel model.) The large acceleration to the west
northwest corresponds in time to the passage of Felix. The direction of the estimated acceleration is roughly
parallel to the observed winds (not shown here), consistent with being the divergence of wind stress, mainly.
Notice also the much smaller oscillations having a period of about 0.5 inertial periods (especially fort >
8). These are very likely due to pressure gradients associated with the semidiurnal tide. This is a small
part of the data described in detail by Zedler, S.E., T.D. Dickey, S.C. Doney, J.F. Price, X. Yu, and G.L.
Mellor, ’Analysis and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed
Mooring site: August 13-23, 1995’,J. Geophys. Res., 107, (C12),25-1 - 25-29, (2002), available online at
http://www.opl.ucsb.edu/tommy/pubs/SarahFelixJGR.pdf.
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5 Adjustment to gravity, rotation and friction.

The last problem we consider gives some insight into the establishment of a geostrophic momentum balance,
which, as noted in the opening section, is the defining characteristic of large scale flows of the atmosphere
and ocean. We are going to stay entirely within an Earth-attached, rotating reference frame, and the Coriolis
force will be quite important in some parts of the parameter space (and, dare we say it, considered altogether
’real’).

5.1 A dense parcel on a slope

We will model the motion of a single parcel38 on a rotating Earth (so there is no centrifugal force) and that is
subjected to a force that is suddenly turned on att D 0. This force could be a wind stress, a pressure
gradient, or the buoyancy force on a relatively dense parcel released onto a sloping sea floor. This latter has
the advantage of being similar to the gravitational force due to a tilted Earth’s surface (Section 4.1), and so
we will take the force to be buoyancy,b D g ı�

�o
times the bottom sloperh D ˛ey; with ı� the density

anomaly of the parcel with respect to its surroundings (assumed constant),�o a nominal sea water density,
1030 kg m�3 , h the bottom depth and̨ the slope of the bottom. The depthh is presumed to vary linearly in
y only and hence this buoyancy force will appear in they-component equation only. If the parcel is in
contact with a sloping bottom, then it is plausible that the momentum balance should include a frictional
term due to bottom drag. The task of estimating an accurate bottom drag for a specific case is beyond the
scope here, and we will represent bottom drag by the simplest linear (or Rayleigh) drag law in which the
drag is presumed to be proportional to and antiparallel to the velocity difference between the current and the
bottom, i.e., bottom dragD �k.V � Vbot/.39 The ocean bottom is at rest in the rotating frame and hence
Vbot D 0 and omitted from here on. From observations of ocean currents we can infer that a reasonable
value ofk for a density-driven current on a continental shelf isk D O.10�5/ sec�1. Thusk is roughly an
order of magnitude smaller than a typical mid-latitude value off . Sincek appears in the momentum
equations in the same way thatf does we can anticipate that rotational effects will be dominant over
frictional effects. The equations of motion are then:

dU

dt
D f V � kU; (63)

dV

dt
D �f U � kV C b˛;

38The applicability of this single-parcel model to the geostrophic adjustment of a real fluid is partial and in fact it omits some of
the most interesting aspects. Specifically, if the applied force,F , is a pressure gradient associated with a mass anomaly, thenF will
vary with time as the mass anomaly moves during the adjustment process. Once you understand this single-parcel model you should
continue on with a study of geostrophic adjustment in a fluid model, perhaps via the Matlab script geoadjPE.m, also available from
the Mathworks File Central, and see Appendix B for an animation from this model.

39A linear drag law of this sort is most appropriate as a model of viscous drag in a laminar boundary layer within which� D � @U
@z

,
where� is the viscosity of the fluid. The boundary layer above a rough ocean bottom is almost always fully turbulent above a very
thin, O(10�3 m), laminar sublayer that is in contact with the bottom. If the velocity used to estimate drag is measured or computed
for a depth that is within the fully turbulent boundary layer, as it is bound to be, then the appropriate drag law can be approximated
as independent of the viscosity and is quadratic in the velocity,� / �U 2.
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and we assume initial conditionsU.0/ D 0;V .0/ D 0: The depth of the parcel can be computed
diagnostically from they position and the known slope. Notice that we have dropped the superscript prime
that had previously been used to indicate the rotating frame variables and we have used the thin fluid
approximation for the Coriolis terms. We also use thef �plane approximation thatf = constant since
typical parcel displacements are very small compared to the Earth’s radius. The solutions of this linear
model are not complex,

U.t/ D
b˛

k2 C f 2
Œf � exp.�tk/.f cos.f t/ � k sin.f t//� ; (64)

V .t/ D
b˛

k2 C f 2
Œk � exp.�tk/.f sin.f t/C k cos.f t//� ;

though they do contain three parameters along with the time, and hence represent a fairly large parameter
space. We are not interested in any one solution as much as we are in understanding the qualitative effects of
rotation and friction upon the entire family of solutions. How can we display the solution to this end?

One approach that is very widely applicable is to rewrite the governing equations or the solution using
nondimensional variables. This will serve to reduce the number of parameters to the fewest possible. To
define these nondimensional variables we begin by noting that there are three external parameters in the
problem (external in that they do not vary with a dependent variable): the buoyancy and bottom slope,b˛,
which always occur in this combination and so count as one parameter, the Coriolis parameter,f , an inverse
time scale, and the bottom friction coefficient,k, also an inverse time scale. To form a nondimensional
velocity,U� D U=Ugeo, we have to make an estimate of the velocity scale as the product of the acceleration
and the time scalef �1 asUgeo D .b˛/=f and thusU� D U=.b˛=f / and similarly for theV component. To
define a nondimensional time we need an external time scale and choose the inverse of the Coriolis
parameter,t� D tf , rather thank�1, since we expect that rotational effects will dominate frictional effects in
most cases of interest. Rewriting the governing equations in terms of these nondimensional variables gives

dU�
dt�

D V� � EU�; (65)

dV�
dt�

D �U� � EV� C 1;

and initial conditionsU�.0/ D 0; V�.0/ D 0: The solution to these equations,

U�.t�/ D
1

1 C E2
Œ1 � exp.�Et�/.cos.t�/ � E sin.t�//� ; (66)

V�.t�/ D
1

1 C E2
ŒE � exp.�Et�/.sin.t�/C E cos.t�//� ;

U� D
U

b˛=f
; V� D

V

b˛=f
; t� D tf and E D k=f;

shows explicitly that the single nondimensional parameterE D k=f serves to define the parameter space of
this problem.40 E, often termed the Ekman number, is the ratio of frictional to rotational forces on the
parcel. Thus in place of large friction or large rotation, we have instead large or smallE, which implies a
standard of comparison. The trajectories computed from Eq. (66) for several values ofE are in Fig. (13a).

40A brief introduction to the method and uses of dimensional analysis at about the level of this essay is



5 ADJUSTMENT TO GRAVITY, ROTATION AND FRICTION. 41

0 5 10 15 20 25 30

0

5

10

15

20

25

30

 x/(bα/f2)

 y
/(

bα
/f2 ) E = 1 

E = 5 

E = 0.2 

E= 0.04 

E = 0 

bα

a

Figure 13: (a) Trajectories of dense parcels released from rest onto a sloping bottom computed by integrating
the horizontal velocity, Eq. (66). The buoyancy force is toward positivey and the Ekman number,E, has the
value shown next to a trajectory. Notice that for values ofE small compared to 1, the long term displacement
is nearly at right angles to the imposed force, indicative of geostrophic balance. (b) The force balance (solid
arrows) and the time-mean motion (the dashed vector) for the caseE D 0:2. The angle of the velocity with
respect to the isobaths isE D k=f , the Ekman number. The Coriolis force (/M ) is labeled�f � V where
f is f times a vertical unit vector. Simulations of this sort are carried out by the script partslope.m.12 An
animation of several trajectories is in the following figure.
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Figure 14: A simulation of the motion of dense parcels released onto a slope, computed by partslope.m.
Northern hemisphere is assumed, and the Ekman number is 0., 0.05 and 0.25 for the red, green and blue
trajectories, respectively. The elapsed time in units of inertial periods (IP) is at upper left.

5.2 Dense parcels on a rotating slope

5.3 Inertial and geostrophic motion

The solution Eq. (66) can be envisioned as the sum of two distinct modes of motion, a time-dependent,
oscillatory motion, the now familiar inertial oscillation,

�
U�
V�

�
/

�
cos.t�/
sin.t�/

�
;

by J. F. Price, ‘Dimensional analysis of models and data sets’,Am. J. Phys., 71(5), 437–447 (2003) and
available online from http://www.whoi.edu/science/PO/people/jprice/class/DA.pdf, or from the Mathworks File Exchange,
http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do, under the categories ‘Mathematics’, ‘Linear Algebra’, and
where the file name is Danalysis. There are usually several plausible ways to accomplish a nondimensionalization. For example, in
this problem we could have used1=k to measure (or nondimensionalize) the time. How would this change the solution, Eq. (66)?
By simplifying the form of an equation, dimensional analysis can help make clear the comparative sizes of terms; this is effectively
what we did in the analysis of Section 4.3.1. With this idea in mind, take another look at Eq. (56) and try measuring (or normalizing)
the radius byRo and the time by̋ �1. How does your result compare with Eq. (56)?
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Figure 15: Observations of density and currents along the southern flank of the Scotland-Iceland Ridge, about
90 km west of the Faroe Islands. The dense water found along the bottom is an outflow from the Norwegian-
Greenland Sea that has come through the narrow Faroe Bank Channel (about 15 km width, at latitude 62
North) and that will eventually settle into the deep North Atlantic. The units of density are kg m�3, and 1000
has been subtracted away. Currents were measured at the thick vertical line shown on the density section.
The density section is aligned normal to the isobaths and the current appeared to be flowing roughly along
the isobaths, but the direction was temporally varying. What is clearer is that the core of the dense water has
descended roughly 200 m between this site and the narrow Faroe Bank Channel, about 90 km upstream from
this site. A question: which trajectory of Fig. (13) is analogous to this current? Said a little differently, what
is the approximate Ekman number of this current?

and a time mean motion that could also be called a geostrophic current,
�

U�
V�

�
/
�

1

E

�
:

In this linear model the amplitude of either mode41 is directly proportional to the velocity scale,
Ugeo D b˛=f . For a dense water parcel on a continental slope (Fig. 15) rough values are
b D g.ı�/=�0 � g0:5=1000 D 10�2 m sec�2, ˛ D 1:3�10�2, and f at 62 degrees latitude = 1.3
�10�4 sec�1, and thus a typical geostrophic density current has a speedUgeo � 0:5 m sec�1, Fig. (15).

The inertial oscillations found in this solution are the consequence of starting from a state of rest and
the imposition of what amounts to an impulsively started external force (the buoyancy force). This is not an

41This usage of ’mode’ may be a little unusual; the intent is to identify a possible two term balance within the equation of motion,
i.e., between a pressure gradient and the Coriolis force, for example. By this we are not asserting that such a balance necessarily holds
strictly even within our very simple models but rather that modes are a kind of vocabulary useful for describing the complex balances
that actually do occur. When the equations or physical phenomenon are nonlinear, as they usually are, then the actual solution or flow
will not be a sum over the modes computed individually. Beyond those already noted, what other modes could be present in Eqs.
(66)?
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especially realistic model of a density current released onto a continental slope, but it does serve as a first
approximation of the rapidly changing wind stress exerted upon the upper ocean during the passage of a
storm (Fig. 12). A pure inertial oscillation, that is, an exact two term balance between the time rate of change
and the Coriolis force (Eq. 61), would not evolve with time in the sense that the amplitude and frequency
would remain constant. The (near) inertial oscillations of Figs. (12) and (13) decrease with time; the latter
decay with time as exp.�Et�/ on account of bottom drag.42

5.4 Energy budget

The energy budget for the parcel makes an interesting diagnostic. To find the energy budget (per unit mass)
we simply multiply thex-component momentum equation byU� and they-component equation byV� and
add:

d.U 2
� C V 2

� /=2

dt�
D V� � E.U 2

� C V 2
� /: (67)

The Coriolis terms add to zero, and the rate of work by the buoyancy force isV� in these nondimensional
units. It can be helpful to integrate with time to see energy changes;

.U 2
� C V 2

� /=2 D
R t

o
V�dt� �

R t
o

E.U 2
� C V 2

� /dt�

KE D BW � FW

(68)

where KE is the kinetic energy,BW is the work by the buoyancy force (proportional to the change of the
potential energy),

BW D
Z t

o

V�dt� D ız
b

U 2
geo

D ız
f 2

b˛2
;

whereız D
R t

o V˛dt is the change in the depth of the parcel (dimensional units), andFW is the work by the
bottom friction (Fig. 16). The Coriolis forceper sedrops out of the energy budget since it is normal to the
current and does no work.

Nevertheless, rotation has a profound effect on the energy budget overall in as much as the cross-isobath
component of the mean motion (which carries the parcel to greater bottom depth and thus releases potential
energy) is directly proportional to the Ekman number, from Eq. (66),

V�
U�

D E;

(Fig. 13b) and thus inversely proportional tof for a given frictional coefficient,k. Whether friction or
rotation is dominant, and thus whether circulations are rapidly dissipated or long-lived, depends solely upon

42A couple of questions for you: 1) Can you devise an initial condition for this problem that would eliminate the inertial oscil-
lations? Could you make the inertial oscillations larger than those shown in Fig. (13a)? To test your hypothesis you might try
experimenting with the Matlab script partslope.m 2) Draw the vector force balance for inertial oscillations (include the acceleration)
with and without bottom drag as in Fig. (13b). Explain how the amplitude can decay while the frequency is unaltered.
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Figure 16: The energy budget for the
trajectory of Fig. (13) havingE D
0:2. These data are plotted in a nondi-
mensional form in which the energy or
work is normalized by the square of
the velocity scale,Ugeo D b˛=f and
time is nondimensionalized by the in-
ertial period,2�=f . After inertial os-
cillations are damped away, the energy
balance settles into a balance between
work by the buoyancy force, BW, and
work against bottom (frictional) drag,
FW.

the Ekman number in this highly simplified system.43 In the limit E ! 0 the time-averaged motion becomes
perpendicular to the buoyancy force and the parcel coasts along isobaths with no energy exchanges and no
temporal evolution, the energy budget consequence of geostrophic motion. A crucial, qualitative effect of
rotation is that it makes possible a steady balance between the external force and the Coriolis force, where in
the absence of rotation the only possible steady balance is between the external force and friction. Thus
rotation admits the comparatively long-lived (geostrophic) circulations that make up the most important
winds and ocean currents outside of tropical regions (e.g., Fig. 1).44

6 Summary and closing remarks.

To close we will return to the first of the topics/questions noted in Section 1.2 — the origin of the term
2˝ � V 0M , and whether it is appropriate to think of this term as the Coriolis ’force’. Before we respond
directly to this we should recognize that if we had the ability to compute trajectories in an inertial frame, we
could then transform those trajectories into the rotating frame and would never have to consider the Coriolis
force (an example of this procedure was in Section 3.4). Appealing as that is, inertial frame solutions are
almost never attempted for oceanic and atmospheric flows, which in practice are much more readily analyzed

43Two questions for you: (1) Can you show that the time-averaged solution of the single parcel model is the solution of the time-
averaged model equations? Suppose the model equations were not linear, then what? (2) How would geostrophic adjustment look
if viewed from an inertial frame, as in Fig. (11a)? Consider that there is an initial, balanced solid body rotation, and then impose a
small radial or azimuthal force. Compare your (qualitative) result with the solution computed by the script Coriolis-forced.m.

44An exact geostrophic balance thus implies exactly steady motion. The atmosphere and ocean evolve continually, and so
geostrophic balance must be an approximation to the momentum balance of large-scale, extra-tropical motions, albeit a very good
one. To understand how or why atmospheric and oceanic circulations evolve will evidently require an understanding of the small
departuresfrom geostrophic balance of these motions, a task that is well beyond the scope here. We may have noticed that geostrophy
does not appear to hold even approximately in near-equatorial regions (Fig. 1), and the single parcel model seems to indicate as much;
for a givenk, E will become very large as the latitude goes to zero and hence geostrophy would not hold at low latitudes because
of large frictional effects. The conclusion is correct, but the reason is not, and positively misleading. Long before being damped by
friction, an equatorial mass and pressure anomaly will disperse into large scale gravity waves that may propagate for thousands of
kilometers along the equator. The rapid and far reaching gravity wave response of equatorial regions is a key element of the El Nino
phenomenon that could not have been anticipated from the single parcel model considered here. It isn’t exactly that the single parcel
model is wrong, so much as it is irrelevant (because it is incomplete) when applied to near-equatorial regions. This kind of failure of
an otherwise useful model is a fairly common occurrence in fluid mechanics. (An animation of geostrophic adjustment that gives a
suggestion of this gravity wave response is in Appendix B).
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from an Earth-attached, rotating reference frame (Section 4.3). Once we decide to use a rotating frame, the
centrifugal and Coriolis forces are exact consequences of transforming the equation of motion (Section 2.4);
there is nothingad hocor discretionary about their appearance in the rotating frame equation of motion.6 In
the special case of an Earth-attached and essentially fluid reference frame that is in gravitational-rotational
equilibrium, the centrifugal force is exactly canceled by a small component of gravitational mass attraction
(Section 4.1).

The Coriolis and centrifugal forces are inertial forces that arise from the rotational acceleration of a
reference frame rather than from an interaction between physical objects. This has significance on two
levels. (1) Since there is no physical origin for these forces, neither should we expect a physical explanation
of these forces. The sole, reliable explanation of these terms is their origin in the transformation law for
acceleration combined with our practice to observe and analyze the acceleration as seen in the rotating frame
(Section 2.5). (2) Because the centrifugal and Coriolis are not central forces they contribute peculiar,
unphysical behavior to the rotating frame dynamics. Recall the elementary trajectory of Section 3.4; when
observed from a rotating frame the parcel veered to the right as expected from the deflecting Coriolis force.
However, there was no object in the environment that revealed a corresponding reaction force. Similarly, the
parcel speed and kinetic energy increased with time due to work by the centrifugal force, and yet there was
no source for the energy. The rotating frame equation of motion thus does not support global conservation of
momentum and neither does it preserve invariance to Galilean transformations. In practical analysis these are
not serious flaws, and are more than compensated by the simplicity of the rotating frame equations compared
to their inertial frame counterpart (Section 4.3).

What we call the Coriolis term, e.g., whether an acceleration or a force,is a matter of choice, of course,
though our usage should reflect our understanding and guide our subsequent interpretation along useful lines.
The former is sensible insofar as the Coriolis term arises from the transformation of acceleration, and too
because it is independent of the mass of the parcel. However, when we use an Earth-attached, rotating
reference frame we seek to analyze (and necessarily observe) the acceleration seen in the rotating frame,
d2X 0=dt2, and not the rotated acceleration,.d2X=dt2/0, of which the Coriolis term is a part (Section 2.5).
To understand the contribution of the Coriolis term to the acceleration that we observe, it is then natural to
regard the Coriolis term as the Coriolisforce, for example in the interpretation of pressure and wind fields
(Fig. 1) or of the motion of dense parcels along a slope (Fig. 13b). In the end, this seems the most important
consideration. But we have also emphasized throughout that the Coriolis force is something apart from a
central force, such as a pressure gradient or frictional force. If it is helpful to acknowledge this, then we
could say instead Coriolisinertial forcewhich gives at least a hint at the origin, in the rotational motion of
Earth itself.
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useful comments.

7 Appendix A: circular motion and polar coordinates
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Figure 17: The unit vectorse1; e2 de-
fine a stationary reference frame. The
unit vectors for a polar coordinate sys-
tem,er ande�, are defined at the po-
sition of a given parcel, P. These unit
vectors are time-dependent since the
angle� is time-dependent.

Rotational phenomena are often analyzed most efficiently with cylindrical polar coordinates, reviewed
here briefly. The vertical coordinate is exactly thez or x3 of Cartesian coordinates, and we need consider
only the horizontal (two-dimensional) position, which can be specified by a distance from the origin, r, and
the angle,� between the radius vector and (arbitrarily) thex1 axis (Fig. 17). The corresponding unit vectors
are given in terms of the time-independent Cartesian unit vectors that define the stationary frame by

er D cos.�/e1 C sin.�/e2 and; e� D �sin.�/e1 C cos.�/e2: (69)

The position vector in this system is
X D rer ;

and hence the velocity is

dX

dt
M D

dr

dt
erM C r

der

dt
M D

dr

dt
M er C r!M e�; (70)

where we have taken account of the time-dependence ofer and! D d�=dt . Continuing, the equation of
motion is

d2X

dt2
M D

 
d2r

dt2
� r!2

!
M er C

�
2!

dr

dt
C r

d!

dt

�
M e� (71)

D Frer C F�e�: (72)

Notice that there are acceleration terms,r!2 and2! dr
dt
; that look just like the centrifugal and Coriolis forces

(and are sometimes deemed to be such, even by otherwise very careful authors, e.g., Boas,13 p. 399), though
this equation holds in an inertial frame where centrifugal and Coriolis forces (or accelerations)do not arise.

To find the rotating frame equation of motion is straightforward; the radius is identical in the rotating
frame,r 0 D r , since the origins are assumed coincident. The unit vectors are identical since they are defined
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at the location of the parcel,e 0
r D er ande 0

�
D e�; the force components are thus also identical. The only

thing different is that the angular velocity! is decomposed into a time mean and a relative angular velocity,
! D ! 0 C˝. Substituting this into the inertial frame equation of motion Eq. (72), and rearrangement to
move terms containing̋ to the right hand side yields the formidable-looking rotating frame equation of
motion for polar coordinates,

d2X 0

dt2
M D

 
d2r 0

dt2
� r 0! 02

!
M e 0

r C
�

2! 0 dr 0

dt
C r 0 d!

0

dt

�
M e 0

�

D
�
r 0˝2M C 2˝! 0r 0M C F 0

r

�
e 0

r C
�

�2˝
dr 0

dt
M C F 0

�

�
e 0

�: (73)

Notice that there are genuine centrifugal and Coriolis force terms on the righthand side of Eq. (31) and that
we have derived these terms for the third time now; for Cartesian coordinates, Eq. (25), for vectors, Eq. (26),
and here for cylindrical polar coordinates. You should be sure to verify this, as it is perhaps the most direct
derivation of the Coriolis force, and most easily shows how or where the factor of 2 arises.
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8 Appendix B: Adjustment to gravity and rotation in a single fluid layer

This appendix uses a model of a single layer fluid to illustrate some aspects of gesotrophic adjustment. The
model is highly idealized in that it varies in theX or east-west direction only, but is nevertheless a significant
step closer to a realistic model of geostrophic flow than is the single parcel model (it is also somewhat
beyond the scope of this essay). The initial condition is taken to be a ridge in the height of a dense (blue)
layer that is at rest and released at time t = 0. Dimensional variables are chosen with the oceanic main
thermocline in mind; the ridge has a half-width ofL D200 km and a density anomalyı� D 2 kg m3. The
nominal layer thickness isH D 500 m and the ridge has an initial height�o D 100 m. The main (contact)
force on fluid parcels in the dense layer is the gradient of the hydrostatic pressure,P D gı��, and thus an
elevated dense layer is a region of high pressure. Some qualitative features of these simulations are relevant
to the comparison of equatorial and high latitude circulations noted in the discussion of Fig. (1).
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Figure 18: Adjustment to gravity only in a single fluid layer, simulated by the primitive equation model,
geoadjPE.m.12 The present case is set at latitude = 0 so that f = 0 and rotational effects vanish. In the context
of this idealized model, this case is equatorial (the equivalent problem with rotation is shown next). After
the ridge is released, it splits into two equal pieces of amplitude�o=2 that move outward at the long gravity
wave speedC D

p
.gı�=�o/H D 3:1 m s�1, qualitatively like the D’Alembert solution for the initial value

problem of the elementary wave equation. The current, which is shown by the array of lines plotted above the
ridge, is in the X-direction only (left-to-right in this figure), and is scaled withC�o=H D 0.6 m s�1. In this
case the gravity wave dispersion is entirely dominant, and there is no steady response whatever.
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Figure 19: Geostrophic adjustment to gravity and rotation in a single fluid layer, simulated by the primitive
equation model, geoadjPE.m. This case is identical to the previous example except that the latitude = 20
N. When this ridge is released, the resulting gravity waves have a somewhat smaller amplitude than in the
previous (non-rotating) example and their associated current rotates clockwise in time, very much like an
inertial oscillation (cf. Fig. 12). The phase and group speed of the fastest moving waves is about the same
as in the previous example. The key result is that most of this rather wide ridge remains after the pressure
and velocity fields have settled into an approximate geostrophic balance,�f V � �.gı�=�o/@�=@x, where
V is the velocity along the ridge (normal to the page). To begin to understand why rotational effects are
important in this case we can compare the time required for dispersion by gravity waves, roughlyTd D L=C ,
and the time required for rotational effects to become apparent, roughlyTr � 1=f . The ratio of these time
scales gives a nondimensional parameterTd=Tr D Lf=C D L=Rd , whereC=f D Rd is called the radius
of deformation, an important length scale in rotating, stratified flows (see the GFD texts9 for much more on
this). In the oceanic thermoclineat this latitude,Rd � 60 km; the comparable scale of the atmosphere is much
larger,Rd � 1000 km, because the atmosphere is much more strongly stratified. The conditionL=Rd � 1
indicates a wide ridge (in this caseL � 3:3Rd ), most of which will survive geostrophic adjustment, while
a narrow ridge,L=Rd � 1, would be largely dispersed by gravity waves before coming into geostrophic
balance. The previous ’equatorial’ example could be regarded as the limitL=Rd ! 0 in which rotational
effects were negligible (literally zero in that case) compared to gravity wave dispersion.





