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Air-sea interaction in the Arabian Sea

Arabian Sea
• Cold, salty, deep ML by the Findlater Jet 
• Unstable boundary current, coastal 

upwelling, and strong eddy activity 
• Strong eddy-driven air-sea coupling

- affecting energetics of the current 
system, the low-level structure of the 
FJ, and the monsoon rainfall
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poorly observed and modeled (Slingo et al. 1996). Sea
surface temperature (SST) is an important mechanism
for organizing atmospheric convection as attested by
marked shifts in tropical convection during El Niño
(Wallace et al. 1998). The SST bordering the monsoon
Asia, however, is generally high with small gradients in
space, rendering it ineffective in organizing convection
over the ocean.

The Asian continent and its contrast with the ocean
cause the planetary-scale summer monsoon. Over land,
surface properties such as vegetation and soil moisture
are considered to be important, but their interaction
with precipitation and their role in determining rainfall
distributions are complicated and not well understood.
The Tibetan Plateau, absorbing intense solar radiation,
serves as a massive elevated heat source for the atmo-
sphere (e.g., Yanai and Li 1994), helping energize the
summer monsoon (Hahn and Manabe 1975; Xie and
Saiki 1999; An et al. 2001). In the Asian monsoon do-
main, there are many less remarkable mountain ranges

(!1 km in height). Since they are narrow in width
(500 km or less), we call them mesoscale mountains to
distinguish them from the massive Tibetan Plateau.
While the orographic lifting effects on rainfall are well
known, the effect of mesoscale mountains on the con-
tinental-scale monsoon has rarely been discussed in the
literature, because of inadequate observations. (In fact
the Asian summer monsoon is almost always discussed
as if these mountains do not exist.) Using a suite of new
satellite observations, we show that the mesoscale
mountains of Asia are an important agent for organiz-
ing monsoon convection through a strong interaction
between convection and circulation.

2. Data
We use the following datasets: Tropical Rainfall

Measuring Mission (TRMM) Precipitation Radar (PR)
surface rainfall product 3A25G2 (Kummerow et al.
2000; from December 1997 to September 2004 on a 0.5°
grid); Special Sensor Microwave Imager (SSM/I) rain-

FIG. 1. Jun–Aug climatologies of surface precipitation (mm month"1) based on (a) CMAP, (b) TRMM PR, and (c) SSM/I-gauge
merged products. (d) Land orography (km) and QuikSCAT surface wind velocity (m s"1).
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Eddy-driven air-sea interactions thru wind stress

τ = ρ CD (Ua− Uo) |Ua − Uo|

Ua = Uab + UaSST

Composites in the Southern Oceans
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Figure 1 | Polar orthographic maps of the eddy statistics. a–d, Number of detected eddies in each 60� ⇥4� bin (a) and correlations (CORR) of anomalies
of SST with anomalies of wind speed (b), cloud fraction (c) and rain probability (d). White dots mark bins where correlations are not significant (P> 0.01)
and white areas feature insufficient data; black contours denote the two main fronts of the Antarctic Circumpolar Current (the subantarctic and the
Polar Front29).
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Figure 2 |Mean eddy and pattern of its atmospheric imprint. a, SST (±0.04 �C). b, Wind speed (±0.01 ms�1). c, Cloud fraction (±0.1%). d, Rain rate
(±10�3 mm h�1). Shown are mean composite maps of the >600,000 individual eddy realizations south of 30 �S, divided into anticyclones and cyclones.
White circles mark the eddy core as detected with the Okubo–Weiss parameter and black lines denote sea level anomaly contours associated with the
eddy. Before averaging, the eddies were scaled according to their individual eddy amplitude and radius (R), interpolated and rotated so that the large-scale
wind is from left to right.

to the individual eddy radius, and rotated them according to the
present large-scale wind direction.

A smooth picture of the mean impact of oceanic eddies
on the atmosphere emerges, with the anomalies related to the
eddy cores distinctly standing out from the background (Fig. 2
and Supplementary Fig. S5). This background largely reflects the
large-scale north–south gradients, as the winds are predominantly
westerly at these latitudes. In view of the tight spatial coupling and
the similar circular shape of the atmospheric response and the SST
anomalies (not shown) associated with the eddies, we conclude that
we detected a direct response of the atmosphere to SST anomalies of
ocean eddies and not to the large-scale SST fronts these eddies are

frequently embedded in. The pattern of the atmospheric imprint
by the oceanic eddies is nearly symmetric between the cyclonic
and anticyclonic eddies but of opposite sign, and the maximum
radial extent of the imprint corresponds roughly to 2–3 eddy-core
radii (80–120 km).

The atmospheric imprints are well quantifiable, and al-
though of moderate magnitude relative to the mean state (2–
5%), they are statistically significant (Kolmogorov–Smirnov test,
p = 0.01). Anticyclonic and cyclonic eddies cause maximum
positive and negative anomalies (see Methods), respectively,
with maximum mean anomalies of wind of 0.31 ± 0.01m s�1,
of cloud fraction of 1.7 ± 0.1%, of cloud water content of
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A smooth picture of the mean impact of oceanic eddies
on the atmosphere emerges, with the anomalies related to the
eddy cores distinctly standing out from the background (Fig. 2
and Supplementary Fig. S5). This background largely reflects the
large-scale north–south gradients, as the winds are predominantly
westerly at these latitudes. In view of the tight spatial coupling and
the similar circular shape of the atmospheric response and the SST
anomalies (not shown) associated with the eddies, we conclude that
we detected a direct response of the atmosphere to SST anomalies of
ocean eddies and not to the large-scale SST fronts these eddies are

frequently embedded in. The pattern of the atmospheric imprint
by the oceanic eddies is nearly symmetric between the cyclonic
and anticyclonic eddies but of opposite sign, and the maximum
radial extent of the imprint corresponds roughly to 2–3 eddy-core
radii (80–120 km).

The atmospheric imprints are well quantifiable, and al-
though of moderate magnitude relative to the mean state (2–
5%), they are statistically significant (Kolmogorov–Smirnov test,
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positive and negative anomalies (see Methods), respectively,
with maximum mean anomalies of wind of 0.31 ± 0.01m s�1,
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A smooth picture of the mean impact of oceanic eddies
on the atmosphere emerges, with the anomalies related to the
eddy cores distinctly standing out from the background (Fig. 2
and Supplementary Fig. S5). This background largely reflects the
large-scale north–south gradients, as the winds are predominantly
westerly at these latitudes. In view of the tight spatial coupling and
the similar circular shape of the atmospheric response and the SST
anomalies (not shown) associated with the eddies, we conclude that
we detected a direct response of the atmosphere to SST anomalies of
ocean eddies and not to the large-scale SST fronts these eddies are

frequently embedded in. The pattern of the atmospheric imprint
by the oceanic eddies is nearly symmetric between the cyclonic
and anticyclonic eddies but of opposite sign, and the maximum
radial extent of the imprint corresponds roughly to 2–3 eddy-core
radii (80–120 km).

The atmospheric imprints are well quantifiable, and al-
though of moderate magnitude relative to the mean state (2–
5%), they are statistically significant (Kolmogorov–Smirnov test,
p = 0.01). Anticyclonic and cyclonic eddies cause maximum
positive and negative anomalies (see Methods), respectively,
with maximum mean anomalies of wind of 0.31 ± 0.01m s�1,
of cloud fraction of 1.7 ± 0.1%, of cloud water content of
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Eddy-driven Ekman pumping

τ = ρ CD (Ua− Uo) |Ua − Uo|

DipoleSST and SSH
An anticyclonic eddy in the Southern Ocean (Chelton 2013)
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news & views

Because of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 

OCEAN–ATMOSPHERE COUPLING

Mesoscale eddy effects
Interactions between the ocean and atmosphere are complex. An analysis of satellite data from the Southern 
Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both 
near-surface winds and ocean circulation.

Dudley Chelton
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 

OCEAN–ATMOSPHERE COUPLING

Mesoscale eddy effects
Interactions between the ocean and atmosphere are complex. An analysis of satellite data from the Southern 
Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both 
near-surface winds and ocean circulation.
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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precipitation. The relationships apparently 
hold throughout the Southern Ocean.
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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• Ekman velocities of 2-3 m/day over the 
cold filament, persisting >1 month

25km SCOAR regional coupled model 
simulation for the Indian Ocean

Seo et al. 2008: Modeling of Mesoscale Coupled Ocean-Atmosphere Interaction and its Feedback to Ocean 
in the Western Arabian Sea. Ocean Modell.

WekSST & SSH

Eddy-driven Ekman pumping in the AS

m/day

Wek =
∇×τ
ρ0 f

Wek =
∇×τ

ρ0 ( f +ζ )

ζ/fw at the bottom of ML

• SST and surface current both 
important for Ekman pumping



Relative effects of eddy-driven air-sea 
interaction via SST and surface current?



Quantifying the effect of eddy-driven air-sea coupling

• Seo et al. 2007, 2014
• 7 km O-A resolutions

WRF or bulk physics

τ (Q & FW)

Ocean
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Scripps Coupled Ocean-Atmosphere Regional Model

6-h coupling

Atmosphere
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Smoothing of mesoscale 
SST and Uo

Utot
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Exp τ formulation includes

CTL Tb Te Ub Ue
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Summertime EKE in the CCS

• 42% reduction of EKE by Uo effect, but Ua has no strong effect
• Changes in baroclinic and barotropic energy conversion are small.
• The EKE reduction is largely explained by the enhanced eddy surface drag. 
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SST-induced Ekman pumping (5)440
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To the extent that the high-pass filtered curl of the surface r ⇥ ⌧⌧⌧ investigated here is, to first441

order, a function of the combination of surface current and SST effects, eddy-centric composite442

averages of ˜W
tot

are expected to be qualitatively similar to composite averages of W
tot

.443

Because of the dependence of eddy-induced Ekman pumping on wind direction (section 4)444

the composites of midlatitude eddies investigated here are constructed in 2 different coordinate445

systems, a rotated coordinate systems that aligns the large-scale background wind direction to446

a polar angle of 0� (this corresponds to no rotation for eddies in a westerly wind field) and an447

unrotated, north-south/east-west coordinate system. The wind direction was computed for each448

individual eddy realization as the average large-scale background wind direction, defined by 6

� ⇥449

6

� smoothing of the vector wind components, in a 4

� box centered on the eddy SSH extremum.450

Composites of W
cur

were computed by (9) from geostrophic surface currents (derived from451

SSH) and the large-scale, background wind. Composites of W
SST

were computed by (5) and452

(4) based on a globally constant coupling coefficient ↵c

crlstr

= 0.013 N m�2 per �C (Table 1).453

Composites of W
tot

were computed from (3) based on QuikSCAT measurements of surface stress454

and geostrophic relative vorticity ⇣ derived from SSH .455

Composite averages of the different components of eddy-induced Ekman pumping for north-456

ern and southern hemispheres midlatitude eddies constructed in the rotated coordinate system (left457

2 columns of Figs. 7 and 8, respectively) are very similar to the Ekman pumping signatures of ide-458
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intervals as the SSH observations using temporal low-pass filtering with a half-power filter cutoff146

of 30 days.147

Scatterometers are not able to estimate the relative wind in the presence of rain. As rain is148

more likely in regions of convergent winds associated with cyclonic surface stress curl, a small149

but systematic anticyclonic bias is introduced in the surface stress curl measurement (Milliff and150

Morzel 2001; Milliff et al. 2004). Because mesoscale eddies propagate and evolve more slowly151

than raining atmospheric disturbances, this bias is not a major concern; QuikSCAT adequately152

samples the surface stress curl associated with eddy surface currents since measurements of the153

relative wind are on average rain-free more than 85% of the time in the regions invested in sections154

5 and 6.155

Wind influences the potential vorticity of the ocean’s interior through Ekman pumping. Fol-156

lowing Stern (1965), the total Ekman pumping can be decomposed as157
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where ⇢
o

= 1020 kg m�3 is the (assumed constant) surface density of seawater, f = 2⌦ cos ✓ is158

the Coriolis parameter for latitude ✓ and Earth rotation rate ⌦, and � = @f/@y. The surface stress159

⌧⌧⌧ has zonal and meridional components ⌧x and ⌧ y, respectively, and ⇣ is the relative vorticity160

of the surface velocity field estimated from centered finite differences of the SSH fields. The161

resulting Ekman pumping fields computed from (3) were spatially high-pass filtered to remove162

Stern 1965 
Gaube et al. 2015
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JAS 2005-2009: OBS based on AVISO SSH & QuikSCAT wind stress
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increase in EKE. Looking at the zonal and meridional components of the eddy-wind interaction 488 

term provides further evidence (Figure 9). Recall that the zonal component, u’τx’, is negative in 489 

the upwelling zone, damping the EKE. This damping effect in CTL is weakened in noUe by 490 

about 45%. The noTe case yields some (~11%) increase in the damping effect compared to CTL. 491 

The meridional component, v’τy’, shows that the positive wind energy input is increased when Te 492 

is suppressed (by ~7%) and when Ue is suppressed (10%), helping to increase further the EKE. 493 

The increase in wind energy transfer appears to be of secondary importance. 494 
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5. Impact on Ekman pumping velocity 496 
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The change in wind stress via SST and surface current leads to anomalous Ekman pumping. This 498 

section examines the relative contribution from the SST and surface current on the Ekman 499 

pumping velocities in the CCS and how they are related to the eddy energetics in the CCS. When 500 

the Rossby number (Ro = ζ/f, the ratio of relative (ζ) to planetary (f) vorticity) is not small, the 501 
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The first term represents the curl of wind stress, which includes the effect of surface currents, 506 

and is termed the linear Ekman pumping. The second term arises from the wind stress acting on 507 

the vorticity gradient of the eddy, which is termed the nonlinear Ekman pumping. The third term, 508 

negligible, is associated with the interaction between β and the zonal wind stress. Since the SST 509 

effect on wind stress curl is included in the first term, Gaube et al. (2015) separated it from the 510 
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Summary and Research Plan

• AS is eddy-rich. Understanding dynamics and impact of eddy-driven 
air-sea interaction (both thermal and momentum) is of my primary 
interest. 

• From the NASCar measurements, I am interested in knowing the 
observed spatial-temporal structure of meso- and submeso-scale 
eddies and surface Ekman currents. 

• From regional model simulations, I will examine 
• Local impact on the energetics and stability of the current system 
• Influence on the Findlater Jet and the downstream monsoon rainfall 



Thanks
hseo@whoi.edu


