Effect of <u>Eddy-Wind Interaction</u> on Ekman pumping and <u>Eddy</u> <u>Kinetic Energy</u> in the California Current System: A Regional Coupled Modeling Study

> Hyodae Seo Woods Hole Oceanographic Institution Currently visiting Kyushu University

Art Miller & Joel Norris Scripps Institution of Oceanography

OFES International Workshop Aizu University, Oct. 2-3, 2014

Effects of T_{SST} and T_{CUR} on the ocean?

SST-T coupling effect: Jin et al. (2009) an idealized ocean model with empirical coupling of SST and τ

- Reduces alongshore wind stress, baroclinic instability and Ekman transport

- I0% reduction in EKE in the mid-latitude and ~50% in the tropics
- Primarily due to increased eddy drag ($\tau' \cdot u'$, direct effect)
- Change in baroclinic and barotropic instability (indirect effect) of secondary importance

Result from previous studies and goal of this study

- Previous studies considered either SST or u_{sfc} in τ formulation in ocean-only models and saw weakened eddy variability.
- This study examines the relative importance of SST and u_{sfc} (u_{ob} vs u_{oe}) in a fully coupled model, where wind speed adjusts to SST.

Regional coupled model

$\tau = \rho C_D (U_a - U_o) |U_a - U_o|$

 $T_{tot} = T_b + T_e$ $U_{tot} = U_b + U_e$ 5° loess filtering (\approx 3° boxcar smoothing)

Experiments	τ formulation includes			
CTL	T _b	Te	Ub	Ue
noT _e	T _b	Te	Ub	Ue
noU _e	T _b	Te	Ub	Ue
noT_eU_e	T _b	Te	Ub	Ue
noU _{tot}	T _b	T _e	Ub	Ue

$\tau = \rho C_D (U_a - U_o) |U_a - U_o|$

 $T_{tot} = T_b + T_e$ $U_{tot} = U_b + U_e$ 5° loess filtering (\approx 3° boxcar smoothing)

Experiments	τ formulation includes			
CTL	Τ _b	T _e	Ub	Ue
noT _e	Τ _b	T _e	Ub	Ue
noU _e	T _b	T _e	Ub	Ue
noT_eU_e	T _b	Te	Ub	Ue
noU _{tot}	T _b	T _e	Ub	Ue

effect of mesoscale surface temperature (T_e)

$\tau = \rho C_D (U_a - U_o) |U_a - U_o|$

 $T_{tot} = T_b + T_e$ $U_{tot} = U_b + U_e$ 5° loess filtering (\approx 3° boxcar smoothing)

Experiments	τ formulation includes			
CTL	Τ _b	T _e	U _b	Ue
noT _e	T _b	Te	Ub	Ue
noU _e	Τ _b	T _e	U _b	Ue
noT_eU_e	T _b	Te	Ub	Ue
noU _{tot}	T _b	T _e	Ub	Ue

effect of mesoscale surface current (U_e)

$\tau = \rho C_D (U_a - U_o) |U_a - U_o|$

 $T_{tot} = T_b + T_e$ $U_{tot} = U_b + U_e$ 5° loess filtering (\approx 3° boxcar smoothing)

Experiments	τ formulation includes			
CTL	Τ _b	T _e	Ub	U _e
noT _e	T _b	Te	Ub	Ue
noU _e	T _b	T _e	Ub	Ue
noT _e U _e	Τ _b	T _e	Ub	Ue
noU _{tot}	T _b	T _e	Ub	Ue

effect of mesoscale surface temperature (T_e) and current (U_e)

$\tau = \rho C_D (U_a - U_o) |U_a - U_o|$

 $T_{tot} = T_b + T_e$ $U_{tot} = U_b + U_e$ 5° loess filtering (\approx 3° boxcar smoothing)

Experiments	τ formulation includes			
CTL	Т _ь	T _e	Ub	U _e
noT _e	T _b	Te	Ub	Ue
noU _e	T _b	T _e	Ub	Ue
noT_eU_e	Т _ь	Te	Ub	Ue
noU _{tot}	T _b	T _e	U _b	Ue

effect of total surface current $(U_{tot}=U_e+U_e)$

Summer surface eddy kinetic energy

Eddy kinetic energy budget

$$Ke_{t} + \vec{U} \cdot \vec{\nabla} \vec{K}e + \vec{u}' \cdot \vec{\nabla} \vec{K}e + \vec{\nabla} \cdot (\vec{u}'p') = -g\rho'w' + \rho_{o}(-\vec{u}' \cdot (\vec{u}' \cdot \vec{\nabla} \vec{U})) + \vec{u}' \cdot \vec{\tau}' + \varepsilon$$

baroclinic barotropic conversion (BC) (BT) wind work (P) (BC) (BT) (or eddy drag) Significant difference in only P

Upper 100 m average $H\sim fL/N$, where f=10⁻⁴, L=10⁴m, N=10⁻² \rightarrow H=10²m

Comparison of wind work ($P = \tau' \cdot u'$)

Cross-shore distribution of EKE and P

Zonal and meridional components of wind work

P and EKE.

Change in offshore (onshore) temperature advection by mean current mainly responsible for the cold (warm) SST

Summary

- Examined the *relative* importance of τ_{SST} vs $\tau_{current}$ in the EKE in the CCS using a fully coupled SCOAR model.
- Surface EKE is weakened by ~25% due to mesoscale current.
 - ~5% further weakening by background current.
 - SST has no impact.
- EKE budget analysis: wind work (P= $\tau' \cdot u'$) is weakened with the mesoscale current (17%) and background current (23%)
 - SST has no impact.
 - Comparable contribution from zonal (eddy drag) and meridional (wind work) direction.
- Change in SST pattern is related to change in mean and eddy horizontal temperature advection.

Thanks!