Coupled impacts of the diurnal cycle of sea surface temperature on the Madden-Julian Oscillation

Hyodae Seo Physical Oceanography Department Woods Hole Oceanographic Institution

Kyushu University September 26, 2014

Collaborator: Art Miller, Scripps Institution of Oceanography

Typical 5-day winter weather forecast in Boston

Weather prediction time-scale for tropical circulation

Kim et al. 2014

• Planetary-scale ($k=1\sim3$), eastward-propagating ($\sim5ms^{-1}$), equatorially-trapped, baroclinic oscillations

- Active: deep convection, heavy precipitation, westerly wind, cool SST, weak diurnal SST
- Suppressed: weak convection, strong insolation, easterly wind, warm SST, strong diurnal SST
- Many aspects of the MJOs remain poorly simulated and predicted:
 - Initiation and intensity of MJO convection in the equatorial Indian Ocean
 - Role of the upper-ocean variability and air-sea interactions

DYNAMO (Dynamics of MJO): Multi-national field experiment

Three MJOs during DYNAMO

My contribution to the DYNAMO project

Process modeling: the role of "oceanic process" in the initiation and maintenance of MJO convection

Oceanic process, barrier layer, shear driven mixing, diurnal variation in the upper ocean stratification, and mixing-layer entrainment, controls the upper ocean heat content, SST and thus air-sea flux and the MJO convection.

> *Focus of this study: Diurnal cycle of the upper ocean temperature Why diurnal cycle?

Diurnal cycle enhances the daily mean and intraseasonal SST I-D KPP modeling study (Bernie et al. 2005)

Regional coupled modeling study: SCOAR model

- SCOAR I: RSM-ROMS - Seo et al. 2007
- •SCOAR2:WRF-ROMS - Seo et al. 2014
- An input-output based coupler;
 portable, flexible, expandable
- Circum-equatorial tropical disturbances are allowed to interact with highresolution oceanic process
- •40 km O-A resolutions & matching mask
- Deep & shallow convection and PBL schemes for MJO simulation

MJO diagnostics from the 5-yr baseline SCOAR simulation Wavenumber-frequency spectra of symmetric component of OLR and U10m

- SCOAR reproduces reasonably the observed level of power at MJO K-W band.
- Interactive SST acts to straighten the MJO.
- Have some trust in model and its credibility for MJO simulation!

Observed diurnal warm layer during DYNAMO

- Diurnal warm layer thickness of ~1 to 5 m
- >0.1°C temperature difference across the diurnal warm layer

SCOAR model configuration to better capture this observed **thin** diurnal warm layer

Need extremely high vertical resolution

- Total 55 levels;
- 5 levels in the upper I-m (dz=20cm)
- 15 levels in the upper 15 m (dz=1m)

- Experimental configuration:
 - 5 Coupled 1-month-long runs with various coupling frequency (CF):
 - CFI, CF3, CF6, CF24

diurnal SST amplitude (dSST) prior to the MJO2 convection

(a) November 15-19 diurnal SST amplitude (dSST) CF1

Warmer upper ocean temperature before convection

The higher diurnal SST, the stronger moistening of the atmosphere

Diurnal moistening is maximized by the diurnal SST

Hourly composites of $LH = \rho LC_H W_{10}(q_s - q_a)$

• Without diurnal SST peak in the afternoon, LH peaks in the morning following WI0.

 q_s (SST) plays a leading role in maximizing the moistening effect of the troposphere.

What is the consequence on the MJO convection?

Precipitation intensity response to diurnal SST

IOS-ION mean precipitation rates

 • MJO2 rainfall event on Nov. 24 with the eastward propagation
 ^{0.5}at 5 ms⁻¹.

 Models: qualitatively consistent intraseasonal evolution of rainfall.

• Higher dSST and dLH leads to higher rainfall!

Why does it rain more with the stronger diurnal SST?

Column-integrated moist static energy (MSE) budget

$\langle m_t \rangle =$	$-\langle v_h \cdot \nabla m \rangle$	$\left\langle -\left\langle \omega m_{p}\right\rangle \right\rangle$	+(LH+SH)	$+\langle LW + SW \rangle$
tendency	horizontal	vertical	latent+sensible	long+shortwave
	advection	advection	flux	flux

$$m = c_p T + gz + Lq$$

Maloney 2009

Column-integrated moist static energy (MSE) budget

$\langle m_t \rangle =$	$-\langle v_h \cdot \nabla m \rangle$	$\langle \omega m_p \rangle$	+(LH+SH)	$+\langle LW + SW \rangle$
tendency	horizontal	vertical	latent+sensible	long+shortwave
	advection	advection	flux	flux

$$m = c_p T + gz + Lq$$

Maloney 2009

Diurnal moistening of the lower troposphere

- The daily mean advection
 - Exports MSE by the mean convective downdrafts
 - No obvious proportionality to dSST
- Diurnal moistening
 - A source of MSE
 - A clear proportionality to dSST

Summary (I)

- I. SCOAR regional coupled modeling for the MJO
 - EW channel configuration
 - Specific combination of WRF deep & shallow convection and PBL schemes for MJO simulation
 - Modified ZM deep and UW shallow convection & PBL schemes
 - Higher (especially in the ocean) horizontal resolution: 40 km
 - High vertical resolution (~1m in the top 15 m)
 - Hourly model coupling
- 2. SCOAR2 supports significant eastward propagating convectively coupled disturbances in the MJO κ-w band
 - True regardless of coupling
 - Coupling enhances the intraseasonal power and coherence

Summary (2)

- 3. Diurnal SST variability prior to the deep convection
 - raises the time-mean SST and LH: via diurnal rectified effect
 - enhances the diurnal moistening: via coincident diurnal peaks of LH & SST
- 4. Further sensitivity experiments (not really discussed today) suggest
 - the first mechanism dominates and more efficiently expedites the recharge of the MSE.
 - But the diurnal moistening is a non-negligible process
 - cancel out the drying effect by the convective downdrafts.

Summary (3)

5. Precipitation amount scales quasi-linearly with pre-convection diurnal SST

- LH+SH feedback over higher SST instrumental in stronger convection intensity (Arnold et al. 2013)

 Consistent with previous studies: an improved representation of diurnally evolving SST as a potential predictability source of MJO.

Thanks for listening, and 九州大学に私を招待していただきありがとうございます!

Seo, Subramanian, Miller and Cavanaugh, 2014:

Coupled impacts of the diurnal cycle of sea surface temperature on the Madden-Julian Oscillation. J. Climate, doi: http://dx.doi.org/10.1175/JCLI-D-14-00141.1