<u>Eddy-wind interaction</u> in the California Current System — effects on eddy kinetic energy and Ekman pumping

Hyodae Seo Woods Hole Oceanographic Institution

KIOST December 19, 2014

Eddy-wind interaction via SST $\tau = \rho C_D (U_a - U_o) |U_a - U_o|$

Feedback to ocean would be different!

Relative effects of T_{SST} and T_{cur} on the ocean?

foci of this study: EKE and Ekman pumping

SST-T coupling effect weakens the eddies: an idealized ocean model by Jin et al. (2009)

- SST-T coupling reduces the alongshore wind stress, baroclinic instability and offshore Ekman transport.

- I0% reduction in EKE in the mid-latitudes and ~50% in the tropics
- Primarily due to increased eddy drag ($\tau' \cdot u'$, direct effect)
- Change in baroclinic and barotropic instability (indirect effect) of secondary importance

Result from previous studies and goal of this study

- Previous studies considered either SST or U_o in τ formulation in ocean-only models and saw weakened eddy variability.
- This study examines the relative magnitudes of SST and u_{sfc} effects in a fully coupled regional model.

Regional coupled model

Experiments

$\tau = \rho C_D (U_a - U_o) |U_a - U_o|$

 $T_{tot} = T_b + T_e$ $U_{tot} = U_b + U_e \quad 5^{\circ} \text{ loess filtering } (\approx 3^{\circ} \text{ boxcar smoothing})$

Experiments		τ formulation includes			
	CTL	Т _ь	T _e	Ub	Ue
	noT _e	Т _ь	Te	Ub	Ue
	noUe	Т _ь	T _e	Ub	Ue
	noT _e U _e	Т _ь	Te	Ub	Ue
	noU _{tot}	T _b	T _e	Ub	Ue

Eddy kinetic energy

Eddy kinetic energy

JAS 2005-2010

• T_e no impact • <u>25% weaker</u> EKE with U_e • <u>30% weaker</u> EKE with U_b+U_e

Eddy kinetic energy

JAS 2005-2010

• T_e no impact • <u>25% weaker</u> EKE with U_e • <u>30% weaker</u> EKE with U_b+U_e

Monthly EKE time-series

Upper 100 m average $H\sim fL/N$, where f=10⁻⁴, L=10⁴m, N=10⁻² \rightarrow H=10²m

Summertime EKE budget in CTL

150 m average

Summertime EKE budget in CTL along-shore mean

150 m average

Cross-shore distribution of EKE and key EKE budget terms

Eddies increase the eddy drag and reduce the momentum input.

Ekman pumping velocity

Ekman pumping velocity

SST induced Ekman pumping

Wind stress curl and cross-wind SST gradient

 $\nabla_{c}T'$ [°C per I00km]

JAS 2005-2009; QuikSCAT wind stress and TRMM SST

JAS 2005-2009

m/day

Ekman pumping velocity JAS climatology

JAS 2005-2009

m/day

SST-induced and current-induced Ekman pumping velocity

Summary

- Surface EKE is weakened almost entirely due to mesoscale current effect on wind stress.
 - SST has no impact (at odds with some previous studies)
- EKE budget: eddies enhance the eddy drag and weaken the wind work.
 - Thus eddies have both direct and indirect impact.
- Eddies modify Ekman pumping velocity.
 - SST via a linear relationship between $\nabla \times \tau'$ and $\nabla_{c}T'$.
 - Current via gradient of surface vorticity.
 - Ekman pumping velocities due to SST and current are comparable in magnitude but different in spatial pattern.
 - Implying different feedback processes
 - Subject of ongoing study.

Thanks!