Predictability and Coupled Dynamics of MJO during DYNAMO: Role of diurnal SST in the initiation and intensity of the "MJO2"

Hyodae Seo Woods Hole Oceanographic Institution

Art Miller, Aneesh Subramanian, Nick Cavanaugh Scripps Institution of Oceanography

ONR LASP & HIRES DRI Peer Review September 25, 2013

Project's Overall Goal

- To investigate the coupled boundary layer process and predictability of MJO
 - Global coupled modeling component (Miller, SIO)
 - NCAR CCSM4 featuring realistic MJOs (Dr. Aneesh Subramanian)
 - MJO diagnostics in the present and warming climate (Dr.Aneesh Subramanian)
 - Linear inverse modeling (Mr. Nick Cavanaugh)
 - Regional coupled modeling component (Seo, WHOI)
 - Construct a skillful regional O-A model for DYNAMO
 - Process-model to test the effect of coupled boundary layer process
 - <u>Diurnal cycle in SST</u> and barrier layer \leftrightarrow MJO convection

Scripps Coupled Ocean-Atmosphere Regional (SCOAR) Model VERSION II

SST after 10 day initialization: 11/24/2013

MJO diagnostics from multi-year SCOAR2 simulation

6-month integration (October to March) for 5 winters 2005-2006 to 2009-2010

Daily coupled (CF=24) ROMS: HYCOM daily ocean analysis WRF: ERA-Interim 6-hourly reanalysis

Wavenumber-frequency spectra of symmetric component of OLR and U10m, 10S-10N

Effect of diurnal SST coupling in SCOAR for intensity of convection of MJO2 during DYNAMO

Experiments for MJO2 during DYNAMO: <u>Test the effect of diurnal SST on the MJO2 convection</u>

Ensemble simulation: 5-member in each case

Evolution of MJO2 precipitation with different coupling frequencies

IOS-ION mean precipitation rates

• Observations:

MJO2 rainfall event ¹ on Nov. 24 with the eastward propagation 0.5at 5 ms⁻¹.

• **Models**: qualitatively consistent intraseasonal evolution of rainfall.

• With more frequent coupling, the higher amount of rainfall is achieved during the active phase of convection.

Along-track evolution of the upper ocean temperature at the Revelle

- The upper ocean warms during the suppressed phase of MJO (recharge phase)
 - Pronounced diurnal variation in SST reaching >0.7C.
 - The peak warming is greater with stronger diurnal cycle.
 - Diurnal warm layer up to 3 meters.
- Large diurnal variations help achieve higher SST values on diurnal time-scales during the suppressed phase.

Spatial patterns in diurnal amplitude in SST

 Larger diurnal amplitude in SST during the preconvection period.

• Higher coupling frequency allows greater amplitude of diurnal SST amplitude.

• Reduced diurnal cycle during the mid-convection period

Spatial patterns in diurnal amplitude in SST

Why increased rainfall during the active phase of MJO with higher coupling frequency?

Column integrated Moist Static Energy (MSE) budget analysis

MSE Budget over the Northern DYNAMO region

$\langle m_t \rangle =$	$-\langle v_h \cdot \nabla m \rangle$	$\langle \omega m_p \rangle$	+(LH+SH)	$+\langle LW + SW \rangle$
tendency	horizontal	vertical	latent+sensible	long+shortwave
	advection	advection	flux	flux

$$m = c_p T + gz + Lq$$

Maloney 2009

• MJO suppressed phase

• Recharge of MSE by LH.

• A buildup of MSE is "faster" with higher coupling frequency, associated with stronger import by LH and export by LW. (Maloney et al. 2010; Sobel et al. 2008)

MSE Budget over the Northern DYNAMO region

$\langle m_t \rangle =$	$-\langle v_h \cdot \nabla m \rangle$	$\left\langle -\left\langle \omega m_{p}\right\rangle \right\rangle$	+(LH+SH)	$+\langle LW + SW \rangle$
tendency	horizontal	vertical	latent+sensible	long+shortwave
	advection	advection	flux	flux

-ω'm_p

-v·∇m

LH+SH

LW+SW +R

-400

m,

$$m = c_p T + gz + Lq$$

Maloney 2009

• MJO suppressed phase

• Recharge of MSE by LH.

• A buildup of MSE is "faster" with higher coupling frequency, associated with stronger import by LH and weaker LW export by LW.

(Maloney et al. 2010; Sobel et al. 2008)

• MJO active phase

• LH+SH and LW+SW continue to be the major source terms of MSE.

• Vertical advection by deep convection is a dominant export process.

• Stronger vertical advection with more frequent coupling!

Overall linear lead-lag relationship between SST and rainfall

Summary

• SCOAR2 supports significant eastward propagating convectively coupled disturbances in the MJO wavenumber-frequency band.

- Improved representation of diurnal cycle leads to higher SST during the suppressed phase of convection.
- LH plays an critical role in a rapid recharge of MSE.
- A buildup of MSE pre-conditions the deep convection, followed by intense precipitation during the active phase of MJO.
- Consistent with the recharge-discharge paradigm of Blade and Hartmann (1993).
- We found a quasi-linear relation in this recharge-discharge process to the frequency of coupling in a regional coupled model.

Thanks <u>hseo@whoi.edu</u>