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Uncertainties in SIC estimates
* Derived from the satellite passive microwave data

* Processed with different algorithms:
» Atmospheric absorption/emission, wind roughness, surface emissivity, etc

* Diversities in spatio-temporal variability SIC dataset used in this study

) NASA/TEAM algorithm, 25km, Swift and Cavalieri (1985): NT
2) Bootstrap algorithm, 25km, Comiso (1986): BT
3) EUMETSAT hybrid algorithm, 12.5 km, Tinboe et al. (201 [): EU

Across-data mean Sep-Nov 2009 Across-data standard deviation




Goal of this study:
|.Assess impact of SIC uncertainties on simulation skill

2. Examine dynamical response in surface wind (Wg and W10)



Polar WRF simulation Across-data mean SIC
09/09-10/19 2009

Model
* Polar WRF: Hines and Bromwich (2008)

* Polar stereographic domain, 25 km
* ERA-Interim IC/BCs
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* Ship-board measurements of ABL and sounding by R/V Mirai (Ionoue and Hori, 201 1)
» Sep 9 - Oct 14,2009 in the Beaufort Sea ice margin

* High skill is “guaranteed” due to high quality ICs.
» Pros: No need for ensemble simulation, easier to identify rapid ABL response.

» Cons: May not capture slower adjustment process in large-scale circulation.
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Low skill due to errors in SIC during September 19-27,2009
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* A large across-model spread in T2/Q?2,
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» Reflects the sea ice evolution.

* Bias in T2/Q2 stems from the delayed peak.

9 2 21 2 58 2 % % 2 »The true peak in SIC was probably on 9/20.
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September 2009 « SLP/W!0: Little sensitivity to SIC
Representation of the daily sea ice near the ice

» The delayed peaks are not apparent.
margins is critical to hindcast skill.



The pan-Arctic response pattern to SIC difference: September 2009

(a) ICE NT Mean (b) ICE NT-BT (a) TCWP NT Mean (b) TCWP NT-BT
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* On the basin scale: Lower SIC in NT =¥ higher T2, PBL,TCWP, WI0
* Stability adjustment to surface temperature (Overland, 1985;Wallace et al., 1 989).
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A quasi-linear relationship in surface winds to SIC

and Wg
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Time-series of linear-slopes

* Arctic-averaged difference (NT-BT).

* The linear slope s is a measure of effect of SIC
(=a coupling coefficient of Chelton et al. 201 1).

* SIC-W10:A negative relationship
* SIC-Wog: Either a positive or no correlation

* Difference largest in summer-autumn.
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(a) SLP NT Mean (b) SLP NT-BT

B°‘ Impact of SIC on SLP-induced wind

0.2

0
02 *A simple marine boundary layer model of

._0_4 Lindzen and Nigam (1987): steady flow, no
IhPal  advection, linear friction, etc.

. pO(V'Zi)=—(V2P)8/(82 +f2)

0
._05 * Div./Conv. of surface wind is linearly
10 pam? proportional to SIC-induced Laplacian of SLP

» e.g., Minobe et al. (2008); Small et al. (2008)
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(e) Wind div/conv NT Mean (f) Wind div/conv NT-BT
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(a) SLP NT Mean (b) SLP NT-BT

B°‘ Impact of SIC on SLP-induced wind

0.2

0
02 *A simple marine boundary layer model of

._0_4 Lindzen and Nigam (1987): steady flow, no
IhPal  advection, linear friction, etc.

o pO(V'Zi)=—(V2P)8/(82 +f2)

0
._05 * Div./Conv. of surface wind is linearly
10 pam? proportional to SIC-induced Laplacian of SLP

180°W 180°W
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(e) Wind div/conv NT Mean (f) Wind div/conv NT-BT
‘ .5 » e.g., Minobe et al. (2008); Small et al. (2008)
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* SIC-induced vertical velocity is
B proportional to \/?P.

(h) Vertical velocity NT-BT

« \/? effectively highlights small-scale
response,

._0_5 * e.g.,along the sea ice margins.
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Conclusion
Enhanced uncertainties in satellite-based SIC
» along the sea ice margins and the inner ice pack
» during the onset of freeze-up.

A reasonable skill of Polar WREF is obtained when SIC uncertainty is small.

Stability of ABL adjusts to broad-scale uncertainties in SICs
» producing an anomalous W10 on the same spatial scales.

» via stability adjustment and vertical mixing of momentum.
» e.g., Overland (1985),Wallace et al. (1989)

SLP adjusts to SIC changes,
» generating anomalies in div/conv and vertical motions
» via the Laplacian of SLP along the sea ice margins

» e.g., Lindzen and Nigam (1985)

Use of the Wg-based surface wind stress may underestimate the effect of
broad-scale SIC change (or uncertainties).
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