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Multi-model ensemble change 
(A1B-20C) in ω(500hPa)

 Vecchi and Soden 2007

twenty-first century, normalizing this difference by the
model’s change in global-mean temperature; the results
represent the change in vertical velocity per degree glo-
bal warming. For reference, the ensemble-mean clima-
tology of !500 for the first 10 yr of the twenty-first cen-
tury is also depicted in Fig. 7a.

The !500 changes are almost everywhere in opposite
sense to the background !500, with the notable excep-
tion of the central equatorial Pacific where the east-

ward shift in convection acts to reinforce the preexist-
ing ascending motions already found there. A poleward
shift of the subtropical subsidence regions is also evi-
dent (e.g., Lu et al. 2007). The most pronounced
changes in !500 occur primarily over the tropical Pacific
where the ascending air over Indonesia weakens by "2
hPa day#1 K#1 global warming. Likewise, the descend-
ing air over the subtropical high pressure regions in the
eastern Pacific weakens at a similar rate. These changes

FIG. 7. The multimodel (a) ensemble-mean !500 and (b) ensemble-mean change in !500 per degree global
warming; positive values are downward. The change is computed by differencing the decadal-mean !500 from the
first and last 10 yr of the twenty-first century, normalizing this difference by the change in global-mean tem-
perature for each model, and then averaging the result across all models. Units: (top) hPa day#1 and (bottom)
hPa day#1 K#1.
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Introduction:
Weakening of Walker circulation and ocean heat transport
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GFDL CM2.1 10-member ensemble 
(2046-2050) - (1996-2000)
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• Tropical Instability Waves (TIWs) are the undulations of equatorial SST 
front in the Pacific and Atlantic.
• Generated by oceanic intrinsic instability.
• Primarily sub-seasonal, but important for low-frequency tropical climate.
• Not well-resolved in the IPCC-AR4 models.  So we need to downscale.



Model and Experiments

• CTL:  RSM (NCEP2 6hrly) + ROMS (SODA monthly)

• 25 km ROMS + 50 km RSM

• Daily coupling 

• 28-yr. integration: 1980-2007
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ROMS

➜SST ➜

➜➜

CTL

Scripps Coupled Ocean-Atmosphere Regional Model*

Atmosphere: Regional Spectral Model (Scripps RSM)
Ocean: Regional Ocean Modeling System (ROMS)

*Seo, Miller and Roads, 2007: The Scripps 
Coupled Ocean-Atmosphere Regional (SCOAR) 

model, with applications in the eastern Pacific 
sector.  Journal of Climate
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Quasi-steady state



Simulation of present-day climate and global warming response:  
Annual mean SST, surface winds, and precip.



Simulation of present-day climate

• Zonal SST gradient and equatorial cold 
tongue in SCOAR



Simulation of present-day climate

• Zonal SST gradient and equatorial cold 
tongue in SCOAR

GW response

• Reduced warming in the equator
• Intensified cross-equatorial meridional winds



Change in equatorial zonal currents and equatorial instability 

• EUC is more realistic 
(stronger) in SCOAR.

• Stronger cross-
equatorial wind

➡ Stronger EUC 
(Philander and Delecluse,
1983) 

➡  Enhanced Barotropic 
and baroclinic instability 

➡ Stronger TIWs

SCOAR CTL Mean U

GFDL 20C Mean U

SCOAR δU

GFDL δU

EUC

SEC



Strengthening of TIWs (20-40 day band-pass filtered EKE and SST variance)

(a) CTL EKE
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variance all become 
stronger during the 
cold season.



Annual mean mixed layer ocean heat budget (30W-10W)

• Equatorial upwelling (cooling) increases

• Increased w’ acting on climatological dT/dz >>
Climatological <w> acting on dT’/dz due to radiative forcing.

• Net eddy heat flux (warming) increases, damping the effect of upwelling. 

δUpwelling

 δEddy-NET



Conclusion and Discussion

• Downscaling is also important for study of oceanic role in weather and climate.

• Advantages: Better capture equatorial currents and mesoscale variabilities 

• Exploratory research: Coupled downscaling of the IPCC climate change scenarios 

• Upwelling increases. TIWs increase. Impact the mean state.

• Need to monitor TIW heat flux(zonal) for detection of warming signal.

• Need to resolve high-freq. processes in the model for global warming research.



Thanks!


