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\Y% esoscale coupled ocean-atmosphere interactions;
Correlation of SST-and Wind — —
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Xie et al. 2004
¢ SST (TMI) and wind speed (QuikSCAT) on short/small scales
* Positive correlation where SST gradient 1s large

° Negative correlation near the coasts and 1slands



utline of

oo o

13°Ni, -

my dissertation research
“war g m

P
120°wW W

- W®Seoetal. JCLI 2007)

VScripps Coupled Ocean-Atmosphere Regional (SCOAR) Model

(a) Correlation Coefficient; Vsfc and Tau_y
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et al. JCLI (in press): * Seo et al. GRL (2006): Effect * Seo et al. JCLI (in press):
Atmospheric feedback to of ocean mesoscale on the African Easterly Waves and
TIWs tropical Atlantic climate ITCZ precipitation
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Ocean analysis/climatology

Purpose: Examine air-sea coupled feedback arising in the
presence of oceanic and atmospheric mesoscale features

Scripps Coupled Ocean-Atmosphere Regional (SCOAR) Model
o —

— -

1) Higher model resolution

.2) Dynamical consistency
with the NCEP
Reanalysis forcing

3) More complete and
flexible coupling
strategy

4) Parallel architecture
5) State-of-the-art physics
6) Greater portability
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\Y esoscale ocean-atmosphere 1nteract10n
Tropical Instability Waves
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A mospherlc Response (Feedback) to TIWs

in the Pacific (Atlantic)

@ Correlation of u . and 7’
@ V Xt’and TIWs

® Effect of u’;, on 7’

@ LH’ flux on SST of TIWs.
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Wentz et al. 2000; 45 km ROMS + 50 km RSM, daily coupled

* Instability of equatorial currents and equatorial front

* Strong mesoscale ocean-atmosphere interactions




odulation of SST and wind stress by TIWs

(b) Model wind stress
g = SRR

(a) Model SST and surface current
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* 3-day averaged SST and wind stress centered on Sep. 3, 1999

* Stronger wind stress over the regions of warm water
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Eecdback from wind response?

< . e SST = Wind
Combined EOF 1 of SST and Wind vectors 1) Direct influence from SST

(Wallace et al. 1989;
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£q 2 R ‘%’ o | 2) Modification of wind stress curl
. ' (Chelton et al. 2001)

* An idealized study (Pezzi et al.

— 2004): wind-SST coupling (that
Al b o o DR AcA CBM includes both effects) slightly
o1 71— 1 41— YRR - reduces variability of TIWs.
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* But.. why?
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Coupling of /", and 7’

I ——

temp - 1 Jan of modcel yeir 1

* Daily coupled 6-year
wsimulations
(1999-2004)

e Hifect of correlation
of u’ . and 7°on the
EKE of the waves

EKE Equation

U-VK, +i'-VK, ==V (ii'p") - go'w' + p, (-

Masina et al. 1999; =1 2=
 +p AuVu'+pu(Au
Jochum et al. 2004; Lot P, (




@orrelation of TIW-current and wind response

' Correlation of v/, and 7, ( Correlation of u’,, and 7/,
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°* Wind and current are negatively correlated.
* Wind-current coupling =» Energy sink
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L EKE from the'correlation'of u° ;. and 7°

verages:30W-10W, 1999-2004, 0-150 m depth -

barotropic = | iﬁnltisfcgfnergy g °© Wind contribution to
| conversion ratQ | E RG] TIWSsis ~10% of

: , : d: ; : : .
;Ofsﬁona.l flows I\~ barotropic
I= f (- pu'v’U dz |\ [

convergent rate.

* Small but important
sink of energy

* (Consistent with the
previous study.




What about the Pacific TTWSs (SCOAR and IROAM)?

(a) Corr (stc T

EKE Terms Barotrop {bk). baraclin {gn), wind {yl)
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* JROAM results on the Pacific
TIWSs are consistent with the
Atlantic TIWs case from SCOAR.
* Wind inputs are 10 times stronger
in the Pacific (depending on how
strong TIWs are and how deep you
integrate in the analysis).

IROAM results (from J. Small)







Coupling Om"l“-gradient and wind stress derivatives
TRMM & QuikSCAT from D. Chelton

27 Jul 1999

TMI Sea Surfoce Temperature

* WSD is linearly related to
Downwind SST gradient =»

VT 1 =VT|cos6

* WSC is linearly related to
Crosswind SST gradient =»

A A

VT x 1%k =|VT|sin0




Coupling of SST oradient and wind stress derivatives

—

OBS: Chelton et al. 2005

QuikSCAT

Wind Stress Divergence
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Couplingength (Cocefficient)
——

Observed: 0.75

WSD and DT

Observed: 1.35
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Sosdoes this perturbation wind stress curl feed back on
[OMIMS"

I

Induced ocean circulation

* Spall (2007): Impact of the observed coupling on the baroclinc
instability of the ocean

* Perturbation Ekman pumping reduces the growth rate of the most
unstable wave.

* Condition: Southerly wind from cold to warm.
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seHere we compare
perturbation Ekman oo
pumpingsvelocity: (o 4w
Withiperturbation vertical
Velocity (1) of -gcpw .

w’at MLD and w,” along 2°N
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- Caveat: Difficult to

estimate Ekman pumping
near the equator, where AT O - ¥ NT
wind stress curl is large e — ecg— m—

Unit: 10-°m/s, Zonally highpass filtered, and averaged over 30W-10W
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Wihatiabout in the mid-latitudes, as in the CCS region?

I

Summertime Ekman pumpung velocity over 128W-120W, 32N-42N
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(Chelton et al. 2007) SCOAR Model

* SST-induced summertime Ekman upwelling velocity is as large as

1ts mean. Feedback 1s important to ocean circulation and the SST.
We do need a fully-coupled high-resolution model.



® Impact of ocean current
on the surface stress estimate
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-élly etal. (2001): wind difference measured from QuikSCAT
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= and TAO array resembles mean equatorial surface currents.
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@IEffectiofiocean current on the surface stress estimate s
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® Ocean currents (mean + TIWs) reduce surface stresses by
15-20% (Pacanowski 1987; Luo et al. 2005; Dawe and
Thompson 2006).




ect of ertur ation current on the surface stress
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Correlation with TIW currents :

® TIW currents can modulate the

surface stress estimate by
+15-25%

® Consistency problem 1n a
forced model with the QuikSCAT

winds?



'Response and feedback of latent heat flux




OBSEVELIons of radiative and turbulent fluxSsSS

olar heat flux and SgTT; atent heat flux and SST
Liu et al. 2000
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e Zhang and McPhaden (1995): ~50
W/m? per 1K of latent heat flux.
* Thum et al. (2002) found a similar

value and a simple heat balance results
in -0.5°C / month (MLD=50m).

* Deser et al. (1993): changes in solar
radiation of ~10 W/m? due to 1K
changes in SST

= -0.75°C / month (MLD=20m).

* Instantancous damping of /ocal SST by perturbation heat flux



Coupling of SST"and latent heat flux in SCOAR

Eastern Tropical Pacific 34 W m? [1° K SST]"

T Troplcal Atlantic
X s=—25

125W 115W _ 105W

Latent Heat Flux

° Model results also suggest a
damping by turbulent heat flux on
the local SSTs.




(@ I arge-scale rectification?

— Mean: UAqg

Latent Heat Flux Parameterizations
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* Rectification by high-frequency

| 0.9
~1 0.6
| 0.3
0

-0.3

—0.6

-0.91

-1.24

-1.51

-1.81

W

o o (TIW-induced) latent heat flux

| perturbation is small compared to
mean latent heat flux.

TIWs still operate over the large-
scale SST gradient to modulate the
temperature advection (Jochum and

Murtugudde 2006, 2007).
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6-year time series at 2°N averaged over 30°W-10°W



ummary ot rart I1: TIW-atmosphere coupling

@ Wind response damps TIW-current: Small but significant damping
@ Negligible contribution at 2N (difficult to estimate near the equator)
® TIW-currents alter surface stress by +£15-25% depending on phase
@ Damping of local SST (but small rectification to large-scale SST)
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(Conclusion - - -

e USing this SCOAR model, we have studied
PInesoscale air-sea coupled teedbacks in the eastern Pacitic
Sector, and
=2 'ﬁnection with the large-scale climate variability in the
=f{ropical Atlantic sector.
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* We continue to examine various aspects of coupled
variability on many spatial and temporal scales occurring
throughout the global ocean.
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Indian Ocean: Regional coupled
processes in the western Arabian Sea,
Bay of Bengal, and Southern IO. Their
connection with the monsoonal and
basin-scale variability.
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North Pacific: Effect of eddies and the
| ocean atmosphere coupling on the KE
variability and the downstream effect

Model SST and Wind Stress : November 25, 2001 0.1N/m?2
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