Dense Water Formation and Overturning:
What is the Connection?
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Variability in convection => variability in sinking => variability in MOC
=> climate variability



How Convection Regions are Connected to the Global Circulation

Pickart et al., 2002
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Sinking and Convection

No net sinking (net vertical mass flux) in open-ocean convection regions

During convection (1-2 weeks)
downward mass flux within plumes is balanced by upwelling between them.

theory - Spall and Pickart, 2001; Send and Marshall, 1995
observations - e.g. Schott and Leaman, 1991
non-hydrostatic simuations - Harcourt et al. 2002
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After Convection (during Restratification)
the amount of sinking due to the eddy fluxes is small

theory - Spall and Pickart (2001)
non-hydrostatic simulations — Spall (2004)
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A Two Layer Model for the Labrador Sea

- no mean flow, no sinking
- buoyancy loss converts light fluid into dense fluid
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A Two Layer Model for the Labrador Sea

- no mean flow, no sinking
- buoyancy loss converts light fluid into dense fluid
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Eddy fluxes

- proportional to the isopycnal
gradient between interior and
boundary current
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- wind and buoyancy driven
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Steady State
Interior

convection increases dense water reservoir
eddy fluxes remove dense water

02

dense water is picked up' around the
basin at the expense of light water




Steady State - Poleward Buoyancy Transport

Poleward Buoyancy (Heat) Transport

PBT:g'L[V h ]outflowzngF

2 72 linflow

w, =LV Al w,=LE"™ AV,
horizontal sinking (depth)
transport overturning

outtlow inflow



Steady State Solution -—- Labrador Sea Case
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Model Predictions:

1. Mean LSW thickness 1250
ii. BC thickness change = 100
iii. dense water formed Wg Q Sv )

iv. Overturning = Wp, ={0.8 Sy}

Overturning circulation carries only 40% of the poleward heat transport.




Steady State Solution --- Model/Data Comparison
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Data:

i. Mean LSW thickness = 1200m
ii. BC thickness change 80m.

iii. 1.2 Sv to 7 Sv (Rhein et al. 2002)

iv. 0.9 Sv from data
(Pickart & Spall, 2004)

Overturning circulation carries only 40% of the poleward heat transport.



Sinking versus Dense Water Formation

Eddy fluxes decrease the interior/boundary current gradient

=> Vpq = V; -V, decreases (geostrophy)
=> V, increases (mass conservation)

0
If the dense fluid speeds up => overturning ¥ (z)= f dx fz Vix,z")dz'
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Sinking, in the boundary current, occurs as a consequence of the
exchange with the interior, geostrophy and mass conservation.



Model Analysis

How much overturning (sinking) occurs in relation to DWF?

Key Parameter:

_ Huid exchanged Dby eddies
Y fluid advected around

For small y, ratio of Overturning to Horizontal Transport

w, V., => increases with:
~ V - decreasing wind-driven circulation
W W - increasing eddy exchange

The amount of sinking can change EVEN if the amount of
dense water formed is unchanged.



Steady State Solution --- Different Wind-Driven Transports
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Fraction of PBT due to overturning decreases if the
remotely driven circulation increases.



Summary: Overturning and Convection

1. Dense water formation # sinking
not co-located => not necessarily co-varying

2. Net poleward buoyancy (heat) transport due to convection is
due to both a horizontal and an overturning circulation.

3. Overturning is tied to the change in the baroclinic structure of
the flow around the basin:

the greater the change => the larger the overturning.

(only 40% in the Labrador Sea)

4. Overturning can change due to changes in circulation even if
amount of dense water formed remains the same:
variability in MOC and DWF are not equal.



What is Missing?

MANY THINGS..............

1. A surface layer in the model - e.g. to reproduce freshwater
anomalies, that can prevent the convection at times

2. Watermass transformation within the boundary current

3. The feedback from the subpolar gyre and beyond for long
timescales

4. A more sophisticated eddy parameterization, for example
dependent on wind or velocity.



