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ABSTRACT

An isopycnal, two-layer, idealized model for a convective basin is proposed, consisting of a convecting,
interior region and a surrounding boundary current (buoyancy and wind-driven). Parameterized eddy fluxes
govern the exchange between the two. To balance the interior buoyancy loss, the boundary current becomes
denser as it flows around the basin. Geostrophy imposes that this densification be accompanied by sinking
in the boundary current and hence by an overturning circulation. The poleward heat transport, associated
with convection in the basin, can thus be viewed as a result of both an overturning and a horizontal
circulation. When adapted to the Labrador Sea, the model is able to reproduce the bulk features of the
mean state, the seasonal cycle, and even the shutdown of convection from 1969 to 1972. According to the
model, only 40% of the poleward heat (buoyancy) transport of the Labrador Sea is associated with the
overturning circulation. An exact solution is presented for the linearized equations when changes in the
boundary current are small. Numerical solutions are calculated for variations in the amount of convection
and for changes in the remotely forced circulation around the basin. These results highlight how the
overturning circulation is not simply related to the amount of dense water formed. A speeding up of the
circulation around the basin due to wind forcing, for example, will decrease the intensity of the overturning
circulation while the dense water formation remains unvaried. In general, it is shown that the fraction of
poleward buoyancy (or heat) transport carried by the overturning circulation is not an intrinsic property of
the basin but can vary as a result of a number of factors.

1. Introduction

Open-ocean convective regions, such as the Green-
land Sea, the Labrador Sea, or the northwest Mediter-
ranean, are thought to play a role in the global or local
thermohaline circulations. Perhaps more significant,
the large loss of heat to the atmosphere, occurring in
these regions, contributes to the poleward heat trans-
port by the ocean, and the water mass transformation
(densification) generates meridional density gradients
that are associated with the meridional overturning cir-
culation (MOC). In terms of variability, general cir-
culation models show a strong correlation between

variations in water mass transformation in such regions
and both the poleward heat transport and MOC. For
example, a strengthening of convection in the Labrador
Sea will precede an intensification of the MOC and
poleward heat transport (Eden and Willebrand 2001;
Bentsen et al. 2004). In practice, however, the causality
and details of this connection are still poorly under-
stood, and there is no dynamical theory relating the
amount of dense water formed with the overturning
circulation or the poleward heat flux. We cannot ex-
plain, for example, why a decrease of 8–9 Sv (Sv � 106

m3 s�1) in Labrador seawater (LSW) formation, in one
model, is associated with a smaller decrease (5–6 Sv) in
the MOC (Mauritzen and Hakkinen 1999).

A related confusing aspect of the problem involves
the distinction between dense water formation (a dia-
pycnal mass flux) and sinking (here intended as a ver-
tical mass flux). Historically, convective regions were
identified as regions where water is made dense by
buoyancy loss to the atmosphere, sinks (to the bottom
or to its neutral density level), and spreads away from
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the formation region, thus requiring a surface return
flow. In reality, however, widespread sinking in the
open ocean is strongly inhibited on a rotating planet
both during convection (Send and Marshall 1995; Spall
and Pickart 2001) and during the postconvective adjust-
ment phase (Spall 2004). Sinking of the dense water
can, on the other hand, occur at the topographic bound-
aries of convective basins but it is unclear what param-
eters control the fraction of dense water formed that
will sink (Spall 2004; Pickart and Spall 2006, manu-
script submitted to J Phys. Oceanogr., hereinafter
PS06).

On a more positive note, a large amount of data have
been collected in at least one open-ocean convective
basin, the Labrador Sea, over the last decade (e.g., Lab
Sea Group 1998). Analysis of these data, in conjunction
with a series of orchestrated numerical and laboratory
experiments, has greatly improved our understanding
of how an open-ocean convection site works and how it
is connected to the larger scale circulation. The general
picture that emerges from these studies is the following.
Deep/intermediate convection occurs primarily in the
interior of the basin (Pickart et al. 2002; Rhein et al.
2002), in a region with little or no mean flow (Lavender
et al. 2000). At the edges of the basin, a cyclonic bound-
ary current system provides the conduit for the advec-
tion of buoyant water into the basin (to balance the net
annual buoyancy loss to the atmosphere) and for the
export of dense water out of the basin (Lazier and
Wright 1993; Cuny et al. 2002). Instability of the bound-
ary current is thought to be the dominant process regu-
lating the exchange of properties between the interior
and the boundary current (Eden and Böning 2002; Lilly
et al. 2003; Spall 2004; Katsman et al. 2004). The bound-
ary current and its instability thus play a fundamental
role within this new paradigm, to be contrasted with the
earlier paradigm of isolated convection forced by a lo-
calized buoyancy forcing (Jones and Marshall 1993,
1997; Maxworthy and Narimousa 1994).

This study is aimed at using this new paradigm to
explicitly relate dense water formation in a convective
basin with thermohaline-circulation-related quantities,
which include the meridional overturning circulation
and the poleward heat flux. To do this, I introduce a
simplified model for an open-ocean, semienclosed con-
vective basin. The model is designed to fit the Labrador
Sea case, but its formulation is generic and applicable to
other convecting basins sharing similar large-scale fea-
tures, such as the northwest Mediterranean or the
Greenland Sea (Marshall and Schott 1999). It includes
an interior region, where convection occurs, and a sur-
rounding boundary current that is both buoyancy
driven (by convection in the basin) and remotely driven

(e.g., by wind). The model assumes that the boundary
current is the only means by which buoyant water is
advected into the basin, and dense water is removed
from the basin. As a result, the boundary current must
“give up” buoyant water and collect dense water as it
circles around the basin, resulting in an alteration of its
baroclinic structure. A number of linear and nonlinear
solutions for the boundary’s current transformation are
presented in this study. Support for the model’s formu-
lation is given by its ability to reproduce many of the
observed bulk features of the Labrador Sea. One im-
portant dynamical consequence of the densification of
the boundary current, as it circles the basin, is that some
fluid has to sink for the flow to remain in geostrophic
balance. This sinking, or downwelling, is what drives a
net overturning circulation within the basin and is
hence relevant to studies of thermohaline circulation
variability, As explicitly shown here, the fraction of
poleward heat transport carried by this overturning cir-
culation is not fixed by the basin’s configuration but
varies with a number of parameters, including the mean
circulation. This suggests a coupling between the buoy-
ancy- and wind-driven circulation in shaping the over-
turning associated with convection.

The new paradigm, and observations that support it,
are discussed in section 2. The model is presented in
section 3, and its ability to reproduce the observed
mean state, seasonal cycle, and shutdown of convection
observed in the Labrador Sea is discussed in section 4.
The basic model dynamics are discussed in section 5 by
presenting a linearized solution, and numerical solu-
tions for a range of parameters. A summary of the find-
ings of this study is presented in section 6, and a dis-
cussion of their implications is presented in section 7.

2. Essential elements of a convective basin

a. Building on the Labrador Sea case

The simplified representation of a convective basin
utilized in this study was suggested by piecing together
observations from, and modeling studies adapted to,
the Labrador Sea. These studies are now briefly re-
viewed here to illustrate that the Labrador Sea does
indeed fit the basic paradigm referred to above. At the
same time, there is nothing particular about the Labra-
dor Sea that would imply that this representation is
pertinent to it alone. Instead the well-known similari-
ties between the various open-ocean convection regions
(Marshall and Schott 1999) suggest that it can be ap-
plied to these regions too.

The Labrador Sea is a well-known region of inter-
mediate/deep convection resulting in the formation of
an intermediate dense water, LSW (Lazier 1980) found
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throughout much of the subpolar North Atlantic Ocean
and beyond (Talley and McCartney 1982). The water
mass transformation associated with LSW is thought to
play a significant role in the poleward heat transport
and overturning circulation of the North Atlantic (Tal-
ley 2003).

b. Two regimes: The interior and the boundary
current

The Labrador Sea can be decomposed in two distinct
regions, the interior and the boundary current, charac-
terized by different circulation and properties distribu-
tion. Lagrangian measurements show that the mean cir-
culation is confined to its lateral, topographic bound-
aries with essentially no mean inflow into the interior
(Lavender et al. 2000). Hydrographic surveys show the
interior region to be mostly horizontally homogeneous1

with strong lateral density gradients confined again to
the topographic boundaries (Pickart et al. 2002; Lazier
et al. 2002). These gradients separate cold interior wa-
ters from warm waters (modified North Atlantic Cur-
rent water known as Irminger Water) advected by the
boundary current into the region (Lazier et al. 2002;
Cuny et al. 2002). The boundary current is also instru-
mental in advecting the remnants of the Irminger Wa-
ter out of the basin along with the convectively pro-
duced LSW water (Lazier and Wright 1993; Lazier et al.
2002).

The boundary current circulation in the Labrador
Sea has a strong barotropic character, which can be
attributed to the wind-driven return flow of the subpo-
lar gyre (Lazier and Wright 1993). The net transport is
on the order of 30 Sv (see Pickart et al. 2002, and ref-
erences therein), of which about 14 Sv occur in the
deepest waters from the overflows, leaving approxi-
mately 12 and 4 Sv to be transported within the upper
(light) and LSW layers (PS06).

c. Convection and restratification of the interior

The bulk of LSW is formed during winter in the in-
terior (Clarke and Gascard 1983; Pickart et al. 2002;
Rhein et al. 2002) by a large surface buoyancy loss. It is
important to realize that the formation (or transforma-
tion) is primarily associated with a diapycnal mass flux
(i.e., densification of waters) but not with a vertical
mass flux (downwelling or sinking). During active con-

vection, sinking of dense fluid within the plumes’ core is
balanced by upwelling around them. This is supported
both by observations during active convection (Send
and Marshall 1995) as well as by nonhydrostatic nu-
merical simulations that explicitly resolve plumes (Spall
2003, 2004). Also, it is consistent with theoretical con-
siderations, based on planetary geostrophy, which show
how a widespread downwelling in the ocean’s interior
would have to be balanced by an unrealistically large
horizontal circulation (Send and Marshall 1995; Spall
and Pickart 2001).

Following the large wintertime diapycnal mass flux,
the Labrador Sea’s interior restratifies, that is, becomes
more buoyant, primarily2 through lateral exchange with
the boundary current (Lazier et al. 2002; Straneo 2006).
This exchange is thought to be dominated by mesoscale
eddies, as supported by observations (Lilly et al. 1999;
Prater 2002; Lilly et al. 2003), and by the numerical
simulations (from idealized to more realistic) of Khati-
wala and Visbeck (2000), Spall (2004), Katsman et al.
(2004), and Eden and Böning (2002). In principle, this
eddy exchange could be associated with a net vertical
mass flux (as suggested by Khatiwala and Visbeck
2000). Again, however, both scalings and nonhydro-
static simulations show that this is not the case and that
eddies are very inefficient in driving a vertical mass flux
in the open ocean (Spall 2003, 2004).

d. The boundary current transformation

The boundary current is the primary conduit for the
export of LSW out of the basin (Straneo et al. 2003)
and, as such, it must lose buoyant water and gain LSW3

as it travels around the basin (Cuny et al. 2002). This
exchange, as argued above, is primarily governed by
eddies. Eddy-resolving numerical simulations show that
these eddies result both in a net densification of the
current and in driving a downward mass flux through
their interaction with topography (Spall 2003, 2004).
The latter occurs in a thin boundary layer close to to-
pography where frictional constraints allow vorticity to
be dissipated (Spall and Pickart 2001; Spall 2004). The
bulk characteristics of the transformation process, how-
ever, are found not to be overly sensitive to the details
of the small-scale diffusive and viscous parameteriza-
tions (Spall 2004).

1 The large degree of homogeneity in the interior can in part be
attributed to the rapid and efficient mixing observed at moorings
acting to remove lateral structures within a few months after con-
vection (Lilly et al. 1999), and justified on the basis of the ener-
getic eddy structures left over after convection (Legg and McWil-
liams 2001).

2 The restratification due to solar heating is trapped to a thin
surface layer (Straneo 2006).

3 Densification of the boundary current can also result from
surface buoyancy losses occurring directly over it (especially off of
the Labrador coast: Straneo et al. 2002; Cuny et al. 2002; Brandt
et al. 2004) but the extent to which this occurs is still unclear.
Hence, in this study, it is assumed to be primarily due to lateral
exchange with the interior.
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e. A two-layer system

While the vertical structure of the Labrador Sea
(both in the interior and in the boundary current) com-
prises four distinct layers (a surface cold, fresh layer; a
warm, salty intermediate layer; LSW layer; and a layer
of denser waters from the overflows), I will argue that
the convective cycle can be effectively represented by
two layers alone (the warm, salty intermediate layer
and the LSW layer).

The dense North Atlantic Deep Water (NADW),
from the Nordic seas overflows, circulates around the
basin at depth, in the deep western boundary current
(Lazier and Wright 1993), and fills the bottom of the
sea’s interior. These waters are not reached by convec-
tion except during extreme events [e.g., in 1993, after
the intense winters of the early 1990s (Lazier et al.
2002)] and, hence, do not typically participate in LSW
formation and export.

The layer of cold, fresh, surface waters circulating
around the basin, in the West Greenland and Labrador
Currents, does, on the other hand, play a role in the
basin’s convective cycle. However, it is argued here that
its role is a mostly thermodynamic one, as opposed to a
truly dynamical one; hence it can be accounted for by
modifying the surface forcing conditions. In the bound-
ary current, these buoyant surface waters tend to pre-
vent convection—a feature that is taken into account by
assuming that no water mass transformation occurs
there (or equivalently that the surface buoyancy flux
over the boundary current is zero). In the interior, these
surface waters contribute (together with net precipita-
tion) to the seasonal restratification (Lazier 1980) and
to the properties of LSW via their wintertime destruc-
tion. In terms of dynamics, however, this layer is, at
most, a few tens of meters thick and its contribution to
horizontal density gradient is negligible relative to that
of the Irminger Water/LSW layer gradients. Hence this
layer acts mostly as a thermodynamic filter [and
anomalies in this layer’s properties can contribute to
the shutdown of convection, e.g., during the Great Sa-
linity Anomaly (Lazier 1980)] but not directly as a dy-
namically active layer.

Indeed, the bulk of available potential energy stored
in the basin is due to the LSW being thicker in the
interior than in the boundary current (at the expense
of the Irminger Water layer). This is supported by
the recent analysis of Straneo (2006) who shows that
the interannual variability in the restratification can be
related to the interior/boundary current Irminger
Water/LSW thickness difference. It is also consistent
with the general description of the seasonal restratifi-
cation via the advection, into the interior, of modified

Irminger Water of Khatiwala et al. (2002) and Lilly et
al. (1999).

f. Summary

Following the discussion above, the model that is
proposed here as representative of the dynamics of a
convective basin is the following. The system is de-
scribed in terms of two layers, a light water mass and a
dense water mass (respectively representing Irminger
and Labrador seawater) and of two distinct regions: an
interior region and a boundary current that surrounds it
(Fig. 1). Properties are assumed to be horizontally ho-
mogeneous within the two regions.

Convection is limited to the interior region and is
associated with a conversion of light water into dense
water with no associated vertical mass flux. Thus con-
vection increases the reservoir of dense water in the
interior, creating or, more exactly, maintaining a thick-
ness gradient between the interior and the boundary
current. Flow into and out of the basin occurs in the
boundary current and is both wind and buoyancy
driven. For simplicity, the wind-driven flow is assumed
to be barotropic. The mostly adiabatic exchange be-
tween these two regions is regulated by instabilities at-
tempting to flatten the interior/boundary current gra-
dient. These result in a net flux of buoyancy into the
basin’s interior that balances the net annual buoyancy
loss.

FIG. 1. Schematic of the two-layer model.
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3. Model formulation

a. Model parameters and variables

Let �1 and �2 be the respective densities of the light
layer (Irminger Water) and of the dense (LSW) layer,
and let �� � �2 � �1. The basin’s geometry is assumed
to be cylindrical, with a total depth H, interior area A �
�R2, and a boundary current of thickness L and total
perimeter P. The variables of the system are the inte-
rior’s dense water thickness D(t) and the boundary cur-
rent’s layer thicknesses [h1(l, t) and h2(l, t)] and veloc-
ities [V1(l, t) and V2(l, t)], Fig. 1, where l is the along-
boundary coordinate ranging from 0 to P. Because it is
assumed that sea surface height variations are negli-
gible around the basin, it follows that the layer thick-
nesses are simply related by h1(l, t) � H � h2(l, t). The
sea surface height difference between the interior and
the boundary is assumed negligible compared to varia-
tions in the layer thicknesses. The model equations are
formulated separately for the interior and boundary
current and a closure scheme is used to parameterize
the exchange between the two.

b. Interior

Following the considerations above, it is assumed
that there is no mean flow into the interior. Properties
within the interior can thus be described by a single
conservation equation for buoyancy (or heat):

�

�t �V

� dV � �
P
�

H

u��� dz dl �
�0

g �
A

Qb dS,

�1	

where density is used instead of buoyancy for simplic-
ity, V is the interior volume, � is density, �0 is a refer-
ence density for seawater, g is gravity, Qb is the surface
buoyancy flux (positive implies a buoyancy loss by the
ocean), and u
�
 are the eddy fluxes of density (u
�
 �
0 implies lightening, or warming, of the interior). The
overbars indicate averaging over typical eddy time
scales. This formulation has already been utilized in a
number of modeling studies including Jones and Mar-
shall (1997), Visbeck et al. (1996), Khatiwala et al.
(2002), and Spall (2004). Given the model’s two layers
and the assumption that the interior is homogeneous,
this becomes

��
dD

dt
�

1
A �

P
�

H

u��� dz dl �
�0

g
Qb, �2	

where the surface buoyancy flux Qb is assumed to be
spatially uniform over the interior and D is the dense
layer’s thickness in the interior.

c. Boundary current

The goal of this study is to understand how the
boundary current changes around the basin as a result
of convection in the interior. The two-layer model de-
scribed here is intended to represent the bulk features
of the current. The premise behind this formulation is
that these features are imposed by the large-scale dy-
namics and thermodynamics of the problem and not
governed by the small-scale physics. Explicitly, the as-
sumption is that, while the model does not include a
detailed description of the thin boundary layer where
the downwelling is thought to occur, it can still be used
to diagnose the net downwelling and associated dia-
pycnal mass flux. This formulation is supported by the
aforementioned studies [and, in particular, those of
Spall (2003, 2004)], which suggest that what happens in
the boundary layer is determined by the large-scale dy-
namics and thermodynamics, and not the other way
around.

1) CONTINUITY

Let (u, �, w) be the velocity components in the
across-stream, along-stream, and vertical directions, re-
spectively, associated to the following spatial variables
and respective ranges: r ∈ [0, L], l ∈ [0, P] and z ∈
[0, �H ]. In the across-stream direction, it is assumed
that there is no mean exchange with the interior (u(0, l,
z) � 0) and that there is no flow into the lateral solid
boundary [u(L, l, z) � 0]. The continuity equation can
therefore be integrated across the boundary current
width to yield

Vl � Wz � 0,

where V and W indicate velocities averaged in the
across-stream direction. Vertical integration (between
z � 0 and z � �H) of the above expression yields

�

�l
�V1h1 � V2h2	 � 0, �3	

that is, volume conservation. In the Boussinesq ap-
proximation this is equivalent to mass conservation.
(For a typical boundary current transport of 20 Sv, the
difference in transport by assuming that mass instead of
volume is conserved is of the order of 1 mSv and thus
negligible for all purposes of this study.) The vertical
velocity at any given depth can be derived from conti-
nuity:

W�z	 � ��
�H

z �V

�l
dz,
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where W(H) � 0 and the downwelling across the layer
interface, z � �h1(l), is given by

Wi � ��
�H

�h1 �V

�l
dz � �h2

�V2

�l
. �4	

2) BUOYANCY CONSERVATION

A statement for the conservation of buoyancy in the
boundary current is constructed as follows. It is as-
sumed that the light layer is isolated from the surface
forcing, so any changes in this layer must be due to
lateral exchange with the interior or to an exchange
with the dense layer beneath. Similarly, for the dense
layer, any change in thickness must be due either to
lateral exchange or to exchange with the light layer.
Instead of using separate equations for the two layers,
however, only the vertically integrated buoyancy con-
tent of the current is considered here. As a result the
term describing the diapycnal exchange between the
two layers (i.e., w�/z) does not appear explicitly but is
included in the divergence term. (If one had retained
separate equations for the two layers, the vertical dia-
pycnal mass flux into each layer would have appeared
as a source/sink term on the right.)

The statement for the conservation of buoyancy, in-
tegrated both vertically and across the current width,
becomes

�

�t �L
�

H

� dz dr � �
L
�

H

�

�l
���	 dz dr �

��
H

u��� dz, �5	

where L is the boundary current width and l is the
along-stream variable. In deriving this expression, it has
been assumed that there is no mean flow between the
boundary current and the interior and that the lateral
eddy fluxes are the principal driver for changes in the
boundary current. Using volume conservation, this be-
comes

L��
�h2

�t
� L��

�

�l
�V2h2	 � ��

H

u��� dz, �6	

where properties have been averaged across the current
and overbars indicating temporal averages have been
dropped.

3) GEOSTROPHY

The flow in the boundary layer is represented in
terms of the mean velocities within each layer. It is
assumed that changes in thickness in the interior and in
the boundary current occur over time scales that are

much longer than a day so that the flow is always geo-
strophically adjusted. Let V1 and V2 be the mean flow
components in the along-stream directions. For simplic-
ity, the model is formulated in terms of the average
(across the current’s width) layer thicknesses. In prac-
tice, however, the layer thickness will slope across the
boundary current so that the baroclinic velocity, as-
sumed in geostrophic balance, is

Vbcl � V1 � V2 �
g�

fL
�D � n	,

where n is the dense layer thickness at the edge of the
boundary current (see Fig. 2) and g
 � g��/�0 is the
reduced gravity. If described in terms of h2, the mean
layer thickness across the boundary current, then the
baroclinic velocity becomes

Vbcl � V1 � V2 �
2g�

fL
�D � h2	 � �*

�D � h2	

H
,

where �* �
2g�H

fL

is a measure of the magnitude of the baroclinic flow.
The total barotropic velocity, defined as the vertically
averaged velocity, is given by

Vbtp �
V1h1 � V2h2

H
,

and the individual layer velocities can be obtained using

V1 � Vbtp �
h2

H
Vbcl and V2 � Vbtp �

h1

H
Vbcl.

Since the interface slopes around the basin’s perim-
eter, it follows that there also exists a mean pressure
gradient in the along-flow direction and, hence, a geo-
strophic flow associated with it:

ubc � u1 � u2 �
g�

f

�h2

�l
.

FIG. 2. Schematic illustrating the relation between the thickness
slope [(D � n)/L, dashed line] across the boundary current and
the mean thickness across the current h2.
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Note that this is not inconsistent with the assumption
that there is no mean exchange between the boundary
and the interior. Indeed, if one assumes that there is no
discontinuity at the interior/boundary current “bound-
ary,” then h2(r � 0, l) � D for every l. In essence, the
outer portion of the boundary current smoothly
matches the interior conditions and the along-stream
slope of the interface is flat where the two regions meet.
This also means that at this boundary ubc(r � 0, l) � 0,
which is consistent with the no mean exchange. Moving
away from the interior and toward the solid boundary,
the layer interface starts sloping in the along-stream
direction and there must be a geostrophic flow in the
across-stream direction. At the solid boundary this flow
must go to zero, ubc(r � L, l) � 0. How it goes to zero
will depend on the details of the viscous dissipation in
the thin boundary layer. A detailed description of these
boundary layer processes is beyond the purpose of this
study; the assumption (supported by the numerical
simulations described above) is that they do not affect
the bulk characteristics of the solution. At the same
time, it is important to realize that the present formu-
lation is self-consistent in that it satisfies the specified
boundary conditions.

d. Eddy flux parameterization

Following Spall (2004) and references therein, it is
assumed that the eddy fluxes are proportional to the
isopycnal slope between the interior and the boundary
current:

u����z, l, t	 � c���z	Vbcl � c���z	�*
D � h2

H
, �7	

where c is an efficiency coefficient tied to the topo-
graphic slope (Spall and Chapman 1998; Spall 2004)
and ��(z) is the density difference between the interior
and the boundary current. Vertically integrating the
eddy fluxes, since it is their integral that appears in the
buoyancy conservation statements above, and using
��(z) � �� for �D � z � �h2 and 0 elsewhere, one
obtains

�
H

u����l, z, t	 dz � c���*
�D � h2	2

H
, �8	

where D � D(t) and h2 � h2(l, t).

e. Model summary

These statements are now combined to yield two
coupled equations in two unknowns, D(t) and h2(l, t).
Substituting for the eddy fluxes into (2),

dD

dt
�

Hc

A�* �P

Vbcl
2 dl �

dD

dt
�

�*c

HA �
P

�D � h2	2 dl �
Qb

g�
,

�9	

where the efficiency coefficient (c) is assumed to be
constant around the basin.

Consider now (6), the conservation of buoyancy
statement for the boundary current, in which the eddy
fluxes contribution can be replaced by (8). The diver-
gence term can be expanded as the sum of a term due
to changes in the layer thickness h2 and of a term due to
changes in the layer velocity V2:

�h2

�t
� V2

�h2

�l
� h2

�V2

�l
�

Hc

�*L
Vbcl

2 �
�*c

HL
�D � h2	2.

�10	

Using geostrophy and mass conservation, this can be
written as

�h2

�t
� Vadv

�h2

�l
�

Hc

�*L
Vbcl

2 , �11	

where

Vadv � V2 � sh2 � V2 � �*
h2�D � h2 � h1	

H2

�12	

is an effective, advective velocity for the dense layer
thickness and s � V2/h2, that is, the rate of change of
the dense layer velocity as a function of its thickness.
Effectively s accounts for having imposed that the sys-
tem conserve mass and remains geostrophic. To gain
some physical insight into s, consider the following
steady-state argument (Fig. 3). Let h*2 and V*2 be the
dense layer thickness and velocity at l � l* and suppose
that at l � l* � �l the dense layer thickness has in-

FIG. 3. Schematic of a boundary current water column at l* and
at l* � �l. The dense layer thickness has increased by �h due to the
eddy exchange with the interior. Assuming geostrophy and mass
conservation, it follows that the dense layer velocity must increase
by s�h.
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creased due to eddy fluxes, such that h2(l* � �l) � h*2 �
�h, where �h is small but positive. Because of the thick-
ness variation, it follows that the baroclinic velocity
must have decreased by �*�h/H. Using this fact and
mass conservation and assuming changes are small, the
change in the dense layer velocity is �V2 � V2(l* �
�l) � V2(l*) � s�h.

Last, because of the assumption that changes in the
total water depth (H) are small with respect to changes
in the layers’ thickness, there is no prognostic equa-
tion for H or for Vbtp, and mass conservation can be
written as

�Vbtp

�l
� 0.

Parameters that need to be specified for the solution
are H, h2(l � 0) (i.e., the thickness of the dense water at
inflow), Vbtp, ��, Qb, c, plus the geometric parameters
of the problem. Equations (9) and (11) are then the two
nonlinear, coupled model equations in two unknowns
D(t) and h2(l, t). For time-varying problems, the initial
values of these two fields must also be supplied.

f. Diagnostics: Poleward heat transport,
transformation, and overturning

From the perspective of the large-scale and thermo-
haline circulations, one is interested in the changes in
circulation, buoyancy, or heat content due to convec-
tion in the basin. A number of such quantities are de-
fined in this section, mostly relating to the concept of
water mass transformation.

One relevant quantity is the net amount of heat
(equivalent to buoyancy in the absence of salt) that the
boundary current releases to the basin’s interior, and
eventually to the atmosphere. For simplicity, I refer to
this quantity as the net poleward heat transport (PHT),
or equivalently (except for the units) to the net pole-
ward buoyancy transport (PBT). Strictly speaking,
however, the term poleward implies that one is consid-
ering differences in the meridional transport only and,
hence, depends on the orientation of the basin. For the
purpose of this study, however, the poleward transport
is simply intended as the transport change due to con-
vection occurring in the basin. The poleward transport
of buoyancy, or heat, at any given point around the
basin (l) is defined as the difference between the trans-
port at that point minus the transport at inflow (where
the transport has been integrated vertically and across-
stream):

PBT�l	 � g�PHT�l	 � �Lg��
0

l �

�l
�V2h2	 dl, �13	

where � is the thermal expansion coefficient. As will be
shown later, this is a negative quantity since the current
is losing buoyancy (heat) around the basin. The net
poleward buoyancy transport for the basin is simply
given by

PBT�P	 � �Lg��V2h2	in
out � �g�w*, �14	

where w* is the diapycnal mass flux, that is, a measure
of how much excess dense water is leaving the basin
relative to that flowing into it at any given time. This
will generally not match the rate of dense water forma-
tion in the interior at that given instant; picture, for
example, a basin in which convection has ceased but
excess dense water is still being drained out the basin.
In steady state, however, the diapycnal mass flux must
equal the amount of fluid transformed:

w* �
QbA

g�
. �15	

From (13), the poleward heat transport can be decom-
posed in two terms:

PBT�l	 � �Lg���
0

l

h2

�V2

�l
dl � �

0

l

V2

�h2

�l
dl�,

�16	

one representing the contribution from changes in ve-
locity and a second due to the changes in the vertical
structure of the boundary current. Given (4), it is
straightforward to see that the first term represents the
diapycnal mass flux associated downwelling across the
layer interface in the boundary current. Integrating
from inflow to outflow, the total diapycnal mass flux
can be written as the sum of these two terms:

w* � wO � wH � L��
0

P

h2

�V2

�l
dl � �

0

P

V2

�h2

�l
dl�.

�17	

This decomposition is physically significant since it
shows that the net poleward buoyancy transport is due
to two distinct terms. In part, it results from a diapycnal
mass flux within the boundary current brought about by
the downwelling of fluid across the layer interface. This
term will be referred to as the overturning contribution,
wO. In part, it is achieved through a horizontal trans-
port term, wH, which can be loosely thought of as hori-
zontally advecting property anomalies around the ba-
sin. To visualize why wO is referred to as the overturn-
ing contribution, consider Fig. 4. The sinking in the
boundary current is represented through the speeding
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up of the dense layer (Fig. 4a) so that the current be-
comes more barotropic. The overturning circulation
emerges clearly by averaging the flow across the basin
(zonally for a meridional inflow/outflow, Fig. 4b), as
typically done in ocean circulation numerical models to
diagnose the overturning streamfunction. It is effec-
tively a measure of how much fluid is exiting at a depth
greater than that at which it came in, and hence of the
overturning associated with convection in the basin. It
is important to realize that it is distinct from the eddy-
induced overturning circulation often loosely associ-
ated with convective basins (e.g., Khatiwala and Vis-

beck 2000), which is not a mean circulation but instead
an eddy-driven diapycnal mass flux.

Last, the horizontal term can be further decomposed
in a barotropic plus a baroclinic contribution (as has
been done in PS06). For the purpose of this study, how-
ever, this term is simply referred to as the contribution
from the horizontal circulation, wH.

g. Conditions at inflow

Conditions at inflow that must be specified include
the baroclinic structure of the boundary current, that is,
h0 � hin

2 � h2(l � 0), the total barotropic transport Vbtp,
and one more velocity condition. It is assumed that the
flow around the basin is due both to the convection
occurring within the basin (buoyancy driven) and to
remote forcing (e.g., by wind). For simplicity, the re-
motely driven circulation, VW, is assumed to be baro-
tropic and is imposed as an external parameter at in-
flow. For the buoyancy driven circulation, the isopycnal
slope between the interior and the boundary current
only constrains the baroclinic shear (i.e., Vbcl), leaving
the barotropic transport associated with the buoyancy
driven circulation, VB, unspecified. For clarity, a pa-
rameter � is introduced to define the fraction of the
inflow baroclinic velocity (V0

bcl) found in the light layer
at inflow (l � 0):

V1
0 � VW � �Vbcl

0

V2
0 � VW � �� � 1	Vbcl

0
⇒ Vbtp � VW � VB � VW � Vbcl

0 ��H � h0		H.

Some guidance on the magnitude (and sign) of the
buoyancy-driven transport can be found in the simula-
tions of convection in a circular, semienclosed basin
both with and without topography of Spall (2004, 2003),
respectively. Flat bottom simulations had a zero, verti-
cally integrated transport, to be contrasted with those
in the presence of topography where there exists a non-
zero buoyancy-driven net transport.

Throughout this study, it is assumed that � � 1; that
is, all of the buoyancy-driven flow is initially concen-
trated in the light layer. An exception is made for the
Labrador Sea case presented below where the inflow
velocity for the dense layer is actually taken from data.
For all other cases, however, note that this choice of
� � 1 does not modify the structure of the solution but
only shifts it in terms of absolute transport.

4. Validity of the model for the Labrador Sea

Given the model described above, it is legitimate to
ask to what it extent it can reproduce the gross, ob-

served features of dense water formation in the Labra-
dor Sea. After briefly explaining how model param-
eters were selected to fit observations from the region,
three model runs are discussed and compared to obser-
vations: steady state, seasonal cycle, and shutdown of
convection.

a. Parameters

The Labrador Sea interior is assumed to be a cylinder
of radius R � 230 km, while the boundary current is
characterized by a perimeter P � 2000 km and a width
L � 100 km (see the late spring climatological, aver-
aged from 1990 to 1997, hydrographic section across the
basin in Fig. 5; this is the same data described by PS06).
Following Straneo (2006), �� � 27.72 is chosen as the
isopycnal roughly separating the light layer from the
dense layer. The total depth H of the two layers is set to
1500 m, which corresponds to the base of LSW in the
boundary current (i.e., to �� � 27.78, Fig. 5) and,
hence, to the combined thickness of the light and

FIG. 4. (a) Downwelling across a surface: if the transport occur-
ring beneath a given surface has increased from inflow to outflow
(as shown), it follows that some fluid must have downwelled
(sunk) across the surface; (b) overturning circulation: if down-
welling has occurred around the boundary current, the zonal av-
erage of the circulation across the basin will yield an overturning
circulation.
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dense layers in the boundary current.4 The other model
parameters are derived from the section shown in Fig.
5: h0 � 700 m, and V2(l � 0) � 0.08 cm s�1, �� � 0.05
kg m�3. For the steady-state simulations, the surface
cooling is set to 25W m�2 [i.e., the mean net annual loss
equally distributed throughout one year, see Straneo
(2006), for a discussion of the climatological surface
forcing]. In the seasonal simulations, the same net sur-
face heat loss is concentrated over a four-month period
(January–April). Given this choice of parameters, the
rate of formation of LSW from (15) is approximately 2
Sv. This is within the observed range as described by
Clarke and Gascard (1983) or Smethie and Fine (2001).
It is not inconsistent with larger estimates of LSW for-
mation ranging from 1.2 to 11 Sv (Rhein et al. 2002) if
one takes into account that this only reflects the
amount of LSW formed within the central Labrador

Sea. Khatiwala et al. (2002) estimated similar rates us-
ing several climatological datasets. Last, c is set to
0.03 within the range of the empirically derived values
(see Jones and Marshall 1997; Spall and Chapman
1998).

b. Steady-state solution

In steady state, a constant rate of LSW formation in
the interior must be balanced by its removal by the
boundary current, and the diapycnal mass flux (15) is
exactly equal to the amount of dense water formed.
While one expects the dense layer thickness in the
boundary current to increase around the basin, a priori
one does not know how the increase is distributed along
the entire perimeter. The baroclinic shear must also
decrease around the basin (since the interior/boundary
current isopycnal slope decreases), which will impact
the velocity around the basin and hence potentially af-
fect the solution.

The steady-state equations, using Labrador Sea pa-
rameters, are solved using a finite-difference fourth-
order Runge–Kutta scheme for the boundary current
thickness equation, while iteratively satisfying the con-
straint for the interior dense layer thickness. From

4 Note that the total layer thickness in the interior is larger
because of the presence of the Nordic seas overflow waters (larger
thickness in the boundary current than in the Labrador Sea inte-
rior). Because the overflow is not thought to play an active role in
LSW formation, however, the total interior thickness is also set to
1500 m.

FIG. 5. (a) Potential temperature section across the Labrador Sea (section AR7W) from PS06.
Two isopycnals, 27.72 �� and 27.78 ��, are overlaid as thick black, solid lines. Velocity contours
are shown as thin vertical lines (dashed is out, solid is in, and zero is thick dashed); (b) inflowing
boundary current enlarged; (c) outflowing current enlarged.
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these we obtain the equilibrium value for D, the dense
layer thickness in the interior, and for h2(l), the dense
layer thickness around the boundary current, and can
then use geostrophy and mass conservation to obtain
V1 and V2.

The steady-state solution for the Labrador Sea case is
shown in Fig. 6. As expected, the dense layer thickness
increases (at a mostly uniform rate) around the basin
for a net thickness change of about 130 m from inflow
to outflow (Fig. 6a). The equilibrium LSW thickness in
the interior, from the model solution, is of 1350 m. Also
shown are the changes in the velocities (Fig. 6b). Given
the reduction in thickness gradient between the interior
and the boundary current around the basin, it follows
that the baroclinic flow must also decrease. This, com-
bined with mass conservation, implies that the dense
layer must speed up. One can think of this as a redis-
tribution of momentum associated with the imposed
geostrophy and mass conservation. If the dense layer
speeds up, it follows that some fluid has to sink. To see
this consider Fig. 4b, and let the horizontal surface be
that corresponding to the layers’ interface at inflow.
Fluid beneath this layer consists of only dense fluid
(from inflow to outflow); hence if the dense waters are
moving faster, it follows that the transport out beneath
this layer is greater than the transport in; that is, some
fluid has crossed this interface. Note that the light layer
velocity also changes (decreases) but the change is
small.

The relative contribution to the net poleward buoy-
ancy transport of the horizontal and overturning circu-
lations can be estimated using (17). For the Labrador
Sea case, it is estimated that 1.2 Sv (60%) of the trans-
port is achieved by the horizontal circulation, compared
to 0.8 Sv (40%) by the overturning circulation.

These numbers are compared to observations as fol-
lows. The light layer thickness in the interior deduced
from the model is comparable to that thickness of a

layer bound by the surface and �� � 27.72 (Straneo
2006) although perhaps somewhat on the thin end. The
net thickness change in the boundary current is com-
pared to that shown in Figs. 5b and 5c. The mean thick-
ness of the light layer at inflow (at the eastern bound-
ary) is estimated by averaging the thickness of the layer
bound by the surface and �� � 27.72, across the ap-
proximately 100-km boundary current, and similarly for
outflow (western boundary). This yields a mean thick-
ness of 570 m at inflow, compared to a thickness at
outflow of 450 m (Figs. 5b and 5c), and hence a thick-
ness change of 120 m, which is of the same order of
magnitude as the model prediction. The same result can
be obtained by calculating the change in the dense layer
whether one uses a fixed depth (1500 m) as the lower
boundary or a dense isopycnal such as �� � 27.78. PS06
used climatological late-spring hydrographic data com-
bined with the absolute velocity field measured by Pro-
filing Autonomous Lagrangian Current Explorer
(PALACE) floats, and estimate a sinking of approxi-
mately 1 Sv from intermediate to dense water, which
compares favorably to the 0.8 Sv obtained in this
model. Also comparable with their results is a transport
of approximately 12 Sv in the light layer and of 5–6 Sv
in the LSW. So, overall, it appears that this simple
model is able to reproduce the basic features of the
system. It should be clear, nonetheless, that this com-
parison is only meant in qualitative sense since the sec-
tion represents mean spring conditions and not a true
annual average.

c. Seasonal cycle

The seasonal cycle is simulated by integrating the full
time-dependent equations and forcing the system with
a buoyancy loss that is concentrated over the winter
months (Fig. 7a). The system is initialized with the
steady-state solution. Then the dense layer thickness in

FIG. 6. Steady-state solution for the Labrador Sea case: (a) dense layer thickness change around
the perimeter. Solid is the full numerical solution and dashed is the linear solution discussed
below; (b) velocities around the basin.
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the interior is forward stepped in time, using the pre-
scribed surface forcing and the boundary current struc-
ture at the earlier time step (to calculate the eddy
fluxes). Once the interior thickness value is obtained,
the boundary current solution is time-stepped (again
using a forward difference scheme) according to (11). A
weak Laplacian diffusion is added to (11) for numerical
stability purposes. The time step used is 6 h. It takes the
model approximately 4 years to spin up to a stable sea-
sonal cycle, after this it is run for another 10 years (total
15). The solution presented is for the last year of inte-
gration.

During the winter months light water is converted
into dense water causing the layer interface in the in-
terior to rise. This rise is contrasted by the action,
throughout the entire year, of the eddy fluxes acting to
remove the gradient between the interior and the
boundary current. The seasonal pattern that results, in
the interior, is one with a rapid rise in dense layer thick-
ness during the winter and a slow decay for the rest of
the year (Fig. 7b). This pattern is similar to that de-
scribed in a number of data analysis studies for the
annual cycle of LSW thickness (Khatiwala et al. 2002;
Lilly et al. 2003; Straneo 2006). Here, it is compared
with the mean motion of the �� � 27.72 from the Ocean
Weather Station Bravo data from 1964 to 1974 (exclud-

ing the years when convection was shut down: 1969–
1971) and with that observed by PALACE floats for
the period from 1996 to 2000 [see Straneo (2006), for a
detailed description of the data]. It is not surprising that
the model prediction has a slightly reduced amplitude
since it reflects conditions averaged over the Labrador
Sea interior, while the data are biased toward the re-
gion of deepest convection.

The seasonal cycles of the layer transports are shown
in Fig. 7c. The total (barotropic) transport has a sea-
sonal variation of approximately 2 Sv. This arises from
allowing conditions within the basin to “rule” the in-
flow; specifically an increased LSW thickness during
the winter will increase the net flow of light water into
the basin and hence the total transport. The LSW trans-
port out of the basin, on the other hand, peaks some-
time in the summer with a delay of several months with
respect to the maximum thickness of LSW in the inte-
rior. This delay reflects the slowness in the exchange
between the interior and the boundary current and the
progressive accumulation of LSW in the boundary cur-
rent as it travels around the basin. This same lag at
outflow is seen in the overturning and total diapycnal
mass fluxes (Fig. 7d). There are currently no observa-
tions of the seasonal variation in transport to support,
or dispute, the model’s prediction and, as pointed out

FIG. 7. Seasonal model cycle for the Labrador Sea: (a) net surface forcing; (b) thickness of the
dense layer in the interior from model, float data (1996–2000), and Ocean Weather Station Bravo
data (1964–74); (c) transport at outflow for the two layers; (d) total (w*) and overturning (wO)
diapycnal mass fluxes from (17).
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by one reviewer, a 2-Sv seasonal variation in a 20-Sv
transport (over the light and dense layers) is relatively
small and likely in the noise level.

d. Shutdown of convection

A second, relevant time-dependent problem is the
evolution of the system in the absence of convection
(due, e.g., to weak surface forcing or to a freshwater
anomaly). In this simulation the fields are initialized
with the end-of-the-year conditions from the seasonal
cycle described above and allowed to evolve with no
surface forcing applied. The cessation of LSW renewal
causes, predictably, a decrease in the thickness of LSW
water in the interior (Fig. 8a). (If allowed to evolve
indefinitely, the thickness tends to that specified at in-
flow such that the eddy fluxes tend to zero.) The drop
in LSW is compared with that observed from 1969 to
1971 in the Labrador Sea when convection was limited
to 200 m (i.e., to the surface layer; Lazier 1980). Shown
in Fig. 8b is the drop in the �� � 27.72 isopycnal during
that period. Notwithstanding the variability in the data,
the agreement between the model and data is quite good.

Associated to a shrinking of the LSW layer in the
interior, there occurs a decrease in the total transport
out of the basin (due to decrease in the transport into
the basin) as well as decrease in the transport of LSW
out of the basin (Fig. 8b). Similarly, there occurs a de-
crease in the overturning and total diapycnal mass
fluxes (Fig. 8c). As for the seasonal cycle, there are no
observations for comparison.

5. Theory: The steady-state problem

a. Preliminary considerations

Some insight into the dynamics described by the
model equations can be gained from some basic con-

siderations. As the source region for the dense water,
the interior will generally have a thicker dense layer
than the boundary current. An exchange between these
two regions will therefore cause the dense layer thick-
ness in the boundary current to increase around the
basin; that is, h2/l � 0. As a result, the baroclinic
velocity must decrease around the basin and, because
of this, the velocity of the dense layer must increase:

�V2

�l
�

Vbcl

H

�h2

�l
�

h1

H

�Vbcl

�l

 0.

It follows, then, that the transport of dense water will
increase both as a result of the increase in thickness and
also from a speeding up of this layer. If the dense layer
accelerates around the basin, it follows that some sink-
ing must occur in the boundary current since more fluid
is exiting between the bottom and h2(l � 0) than en-
tered [Fig. 4 and (4)]. While the details of this sinking
are not explicitly resolved by this model, it arises as a
consequence of having imposed that, as the interior/
boundary current thickness gradient decreases around
the boundary, the flow remains geostrophic and con-
serves mass.

Note that, while the transport of light fluid around
the basin must necessarily decrease to balance the in-
crease in dense fluid transport, no a priori statement
can be made about the change in velocity of the light
layer. From the definition of V1, one can readily show
that

�V1

�l
�

�*

H2

�h2

�l
�D � 2h2	,

which is less than zero only if h2 � D/2. While this is
true for the Labrador Sea case discussed above, this
need not be necessarily always the case. As pointed out

FIG. 8. Shutdown of convection simulation: (a) thickness of the dense layer in the interior from the model and from the
OWS Bravo data (1969 to 1972). Also shown is the linear model prediction described in section 5; (b) transport at outflow;
(c) total and overturning diapycnal mass fluxes as in (17).
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by one reviewer, for the extreme case when D � 2h2,
that is, the interior dense layer is very thick relative to
the dense layer thickness in the boundary current,
V1 would actually increase around the basin. This
would imply the existence of an upper upwelling cell
that would partially offset the downwelling occurring
deeper in the water column.

b. Linear solution

There are two nonlinear terms in the model equa-
tions: the eddy flux contribution, appearing both in the
interior and boundary current buoyancy conservation
statements, and the divergence term, found in the latter
only, which make it difficult to find an exact solution to
the problem. A general understanding of the physics of
the system, however, can be gained by assuming that
changes in the layer thicknesses around the basin are
small and by solving for the linearized system. Let h2(l)
� h0 � h
(l) and Vbcl � V0

bcl � �*h
/H. Conditions on h
,
such that both nonlinear terms can be reduced to linear
terms, are: h
 K D � h0 for the eddy flux term and h

K h0 for the advection term. Assuming that both of
these conditions are met, then the equations can be
linearized about the inflow values, denoted by a 0 su-
perscript or subscript. Let D0 � D � h0 be the bound-
ary current/interior gradient at inflow and neglecting
terms of order h
2, the linearized system can be
written as

�h�

�l
�

�

P
�D0 � 2h�	 and

�18	

D0�PD0 � 2�
P

h��l	 dl��
Hw*
c�*

, �19	

where

� �
Vbcl

0

Vadv
0

cP

L
� �

is the product of two terms, both potentially small. The
first, �, is the ratio of the baroclinic velocity at inflow to
the effective advective velocity for the dense layer. If
the wind-driven circulation is zero, this term is roughly
of O(1). The second term, �, on the other hand, repre-
sents a measure of the eddy efficiency. The product of
these two terms, �, is the ratio of the fluid exchanged by
the eddies to the fluid circulating around the basin. As
long as this number is small, the solution is mostly lin-
ear. For comparison, in his scaling analysis Spall (2004)
assumed that the magnitude of the advective velocity
was comparable to the baroclinic velocity (i.e., � � 1)
so that, in that case, � is the small parameter of the
problem.

Using h
(0) � 0, the linearized thickness equation
can be solved and

h��l	 �
D0

2
�1 � e�2�l	P	. �20	

The solution decays exponentially to D0/2 (i.e., to a
situation when the eddy fluxes are zero since there is no
interior/boundary current gradient). Using (20) and in-
tegrating the integral constraint for the interior, one
gets

h��P	 � �h �
D0

2
�1 � e�2�	 �

w*

LVadv
0 . �21	

To first order, then, the net thickness change around
the basin is simply given by the ratio of the amount of
dense water formed to the transport (per unit height)
by the effective advective velocity. It should be noted,
however, that V0

adv contains the initial baroclinic veloc-
ity, which in turn depends on D, the interior dense layer
thickness, which is part of the solution. A full solution,
which includes an explicit analytic solution for D0, can
only be obtained for � K 1.

For this case,

D0
2 �

w*H

�*L
,

which is equivalent to the solution of Spall (2004) for
the interior, and

h� �
D0�

P
l �

w*

LVadv
0

l

P
, and

Vadv
0 � VW �

�*h0

H2 �D0 � H � h0	. �22	

In writing (22), I have assumed (as described in section
3f) that V0

2 � VW; that is, at inflow the flow of the dense
layer is due to the remote forcing alone. This assump-
tion simply reduces the complexity of the solution with-
out modifying its character substantially.

Using the linearized expression for �h, the horizontal
and overturning contributions to the poleward buoy-
ancy transport can be written in terms of conditions at
inflow:

w* � wH � wO � LV2
0�h � Ls0h2

0�h

�
V2

0

Vadv
0 w* �

s0h2
0

Vadv
0 w*.

The ratio of the poleward buoyancy transport achieved
by the overturning circulation to that of the horizontal
circulation is given by
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wO

wH
�

s0h2
0

V2
0 ,

which when combined with (22) yields

wO

wH
�

Vbcl
0 � �*�H � h0		H

VW

�
�w*H

HL�1	2

�
�*�H � h0	

H

VW . �23	

While limited in its applicability, the linear solution
provides us with some physical insight on the param-
eters that govern the solution. The thickness variation
around the basin (21), in the linear case, is given by the
ratio of the amount of water transformed (w*) and the
effective mean transport within the dense layer, V0

adv. If
w* is fixed, then the thickness change is controlled by
changes in V0

adv.
One parameter that strongly affects V0

adv, and hence
�h, is the strength of the remotely forced circulation,
VW: an increase (decrease) in VW will lead to a decrease
(increase) in �h. Physically, this can be understood by
considering that a speeding up of the circulation around
the basin will give eddies less time to act per unit length
of the boundary current: in the extreme of a strong
remotely forced circulation, the thickness change will
tend to zero. Related to this, the nonlinearity param-
eter � is also highly sensitive (through �) to the re-
motely forced circulation. The fraction of poleward
buoyancy transport carried by the horizontal versus
overturning circulations is also sensitive to changes in
VW. Specifically, if the flow around the basin speeds up,
the amount of sinking will decrease leading to a de-
crease in the overturning circulation.

However, V0
adv is also susceptible to changes in the

baroclinic flow and, in particular, to the equilibrium
solution for the interior dense layer thickness. An in-
crease in the eddy efficiency, �, will tend to decrease the
thickness gradient between the interior and the bound-
ary current, leading to a reduction in the buoyancy
driven flow, and hence in V0

adv. In turn, this will lead to
a larger �h, that is, more substantial change in the
boundary current and growing importance of the non-
linear terms (� increases). The fraction of PBT due to
the overturning circulation will, for growing �, decrease.

An increase in the net buoyancy loss over the basin,
w*, will increase the reservoir of dense fluid, thus in-
creasing the thickness gradient, and the fraction of
transport carried by the overturning. This is in agree-
ment with the results of many general circulation mod-

els that show how an increase in the convective activity
will, in general, give rise to an increase in the overturn-
ing. These results, however, highlight that this relation
is by no means simple.

c. How linear is the Labrador Sea case?

From the comparison of the full numerical to the
linear system’s solution shown in Fig. 6a, it is apparent
that the Labrador Sea fits the linear regime. In other
words, it is a basin where the amount of fluid exchanged
by the eddies (to balance the surface buoyancy loss) is
relatively small with respect to the transport around the
basin. Specifically, evaluation of the nondimensional
parameters, for the Labrador Sea parameter choice
yields � � 0.6, � � 0.5, and hence � � 0.3.

A quantity of interest, because it reflects the
“memory” of the basin, is the flushing time scale for
dense water from the interior. The flushing rate, due to
the eddies, varies as a function of the gradient between
the boundary current and interior, and hence as a func-
tion of time. If convection is brought to a halt and if the
basin is in a linear regime, however, an approximate
flushing time scale can be derived as follows.

By approximating (9) for small changes in the bound-
ary current, one has

dD0

dt
� �

�*L

AH
D0�t	

2,

whose solution is

D0�t	 � D0�1 �
t

Tf
��1

,

where Tf �
AH

�*LD0 �
A

LVbcl
0 �24	

and D0 � D0(0) is the initial dense layer thickness in the
interior. The flushing time is thus given by the volume
of interior fluid divided by the rate at which the eddies
are exchanging it. For the Labrador Sea case discussed
above, the flushing time scale Tf is on the order of 2–3
yr. As shown in Fig. 8a, there is good agreement be-
tween the linear and the full numerical solution for the
“shutdown of convection” simulation.

d. Nonlinear numerical solutions

For remotely forced circulations comparable to the
buoyancy driven one and for relatively high eddy effi-
ciency, the nonlinear terms become progressively more
important. These terms enter the solution when the
changes in thickness around the basin have a sizable
impact on the velocity field (by modifying the baro-
clinic shear) so that the coupling of thickness and ve-
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locity changes impacts the solution. No explicit solution
is presented for the nonlinear regime. Instead a series
of numerical solutions for the steady-state problem us-
ing a range of VW and Q are used to explain the impact
of the nonlinear terms (Figs. 9 and 10). As for the linear
case, an increase in the net buoyancy loss will lead to a
larger reservoir of LSW in the basin’s interior (Fig. 9b).
An increased interior/boundary current gradient (at
least at inflow) will, in turn, lead to an increase in the
eddy fluxes and thus to a more significant modification
of the boundary current. Thus, solutions progressively
deviate from the linear solution (Fig. 9a). As the solu-
tion becomes progressively more nonlinear (Fig. 9d),
the boundary current loses more buoyancy upon enter-
ing the basin and less while exiting (to be contrasted
with the linear solution where buoyancy loss occurs at
constant rate). This reflects how the eddy fluxes,
through the alteration of the baroclinic structure, affect
the flow around the basin, which in turn feeds back on
the eddy fluxes. Last, as the solution becomes more
nonlinear and �h larger, the fraction of PBT carried by
the overturning circulation increases by a small amount
from 35% to 40% (Fig. 9c).

In general, as discussed for the linear case, an in-

crease in the barotropic circulation around the basin
will lead to a decrease in the changes in the boundary
current, and hence to a decrease in the relevance of the
nonlinear terms (Fig. 10a). The impact of VW on the
interior thickness is limited and can be explained by
considering that the layers’ interface slope from inflow
to outflow decreases with increasing VW so that the
eddy fluxes effectively increase the buoyancy transport
into the interior (Fig. 10b). The impact on the role of
the overturning circulation in the PBT is, on the other
hand, very large. In weak wind regimes, with basins
dominated by the buoyancy-driven circulation, most of
the PBT is achieved by the overturning circulation. On
the contrary, basins characterized by a large remotely
forced circulation tend to carry most of the PBT via the
horizontal circulation terms, Fig. 10c. Similarly, VW has
a large impact on the degree of linearity of the solution
(Fig. 10d).

6. Summary

An idealized, two-layer, isopycnal model for a
semienclosed convective basin is proposed in this study.
The model consists of an interior, horizontally homo-

FIG. 9. Sensitivity of the steady-state solution to changes in the surface heat flux Q. The
Labrador Sea case is shown as a thicker black line or filled circle in all the plots: (a) dense layer
thickness around the basin for different values of Q; (b) dense layer thickness in the interior; (c)
fraction of the poleward buoyancy transport carried by the overturning circulation; (d) nonlin-
earity parameter �.
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geneous, region and a surrounding boundary current. A
large surface buoyancy loss drives convection in the
interior region, which in the model is represented as a
transformation of light fluid into dense fluid. The
boundary current is the means by which light fluid is
advected into the basin and dense fluid removed. Flow
around the basin is due both to remote forcing (e.g.,
wind) and to the buoyancy forcing that sets up the in-
terior/boundary current gradients, and it is assumed to
be in geostrophic balance. The exchange between the
boundary current and the interior is due to eddies,
which are included in the model in parameterized form.
The model formulation is supported (and suggested) by
a number of recent observational and modeling studies
of the Labrador Sea.

Numerical solutions for a realistic Labrador Sea case
study are obtained for three different forcing regimes:
steady state (uniform buoyancy loss), seasonal (buoy-
ancy loss in the winter only), and shutdown of convec-
tion (zero buoyancy loss). In all three cases the model
results compare favorably to the existing observations.
Furthermore, the model makes a number of predictions
that supplement the existing data. For the Labrador
Sea case, the model predicts that the increase in the
dense water in the boundary current occurs at a mostly
uniform rate. Also, it shows how the net poleward
transport of buoyancy (or equivalently heat) is carried
out to a larger extent by the horizontal circulation

(60%) and to a lesser extent by the overturning or ver-
tical circulation (40%). In the seasonally forced simu-
lation, the model predicts that the maximum transport
in Labrador seawater out of the basin occurs with a
3–4-month delay with respect to the maximum convec-
tion in the interior. This delay is dictated by the rate at
which the eddies are able to remove the excess dense
water from the basin. The flushing time for the basin is
estimated to be on the order of 2–3 yr.

Analysis of the steady state, linearized model equa-
tions provides further insight into the dynamics at play.
The degree of linearity of the problem is determined by
the ratio of the fluid exchanged by the eddies to the
fluid that circulates around the basin. If this ratio is
small, the changes in the boundary current structure are
small. The Labrador Sea is in this regime owing to both
the limited efficiency of the eddy fluxes and to the large
barotropic transport around the basin. In the linear re-
gime, changes in the velocity structure of the boundary
current do not significantly affect the buoyancy ex-
change between the interior and the boundary current;
hence this occurs at a uniform rate. In the nonlinear
regime, the bulk of the transfer of buoyancy occurs
early on (meaning close to inflow) as the impact of the
buoyancy loss is to decelerate the light water, which in
turn allows the eddies more time to extract the buoy-
ancy. The increase in the remotely forced circulation, a
decrease in the eddy efficiency, or in the net buoyancy

FIG. 10. As in Fig. 9 but for changes in VW, the remotely forced circulation.
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removed from the interior, tend to result in a more
linear solution.

One important result of this work regards the con-
cept of overturning circulation. While its details are not
resolved explicitly in this model, how much sinking has
to occur and its timing can be diagnosed from the
boundary current solution. In particular, the dynamics
described by the model’s equations show that sinking in
the boundary current has to occur as a result of changes
in the current’s baroclinic structure. This downwelling,
when horizontally averaged across the basin, gives rise
to an overturning circulation in depth space. Physically,
it is dictated by geostrophy and mass conservation: as
the thickness interface slopes, the dense layer is accel-
erated around the basin and some fluid has to sink to
conserve mass.

Both the linear analysis and the numerical solutions
show that both the magnitude of the downwelling and
its role in the poleward buoyancy transport can vary
even if the amount of dense water formed in the basin
is maintained constant. This result highlights the impor-
tance of distinguishing between water mass transforma-
tion and overturning, that is, between the PBT and the
MOC (often taken to be covarying). For example, it is
shown that, if the remotely forced circulation (e.g., by
wind) increases, the overturning will decrease, even for
the same amount of dense water formed. Also, it is
shown that the ratio of poleward buoyancy transport by
the horizontal versus the overturning circulation is not
an intrinsic property of a basin but that it will change
with changes in the circulation, the eddy efficiency, and
the net buoyancy loss.

7. Discussion

The model presented in this study is primarily in-
tended as a tool with which to investigate the connec-
tion between the thermohaline circulation and those
regions that are presumed to be part of its driving force,
that is, the convective regions. Its usefulness lies mostly
in providing simple, explicit ways with which to relate
quantities such as the transport around the basin, the
transformation of the boundary current, and the hori-
zontal and overturning circulation. Its applicability is
not limited to the Labrador Sea alone since there are no
special features that set this basin apart from other con-
vective basin. Clearly though, features such as sea ice,
sills, or more than one open boundary may add layers
of complexity to the problem.

To keep the model dynamics as simple as possible, I
have made a number of simplifications. Three that may
seem questionable are 1) there is no convection in the
boundary current, 2) the convective basin/external

ocean exchange is limited to what is carried in and out
by the boundary current, and 3) the effects of freshwa-
ter are not included. While all three potentially play a
role in dense water formation in the Labrador Sea, I
believe that they are not the dominant players and that,
to first order, the basic dynamics is well represented by
the system.

A number of other assumptions have been made with
regards to conditions at inflow. First, the boundary cur-
rent structure at inflow is assumed to be set by condi-
tions outside of the basin and is held constant. Presum-
ably though, there will be a feedback between what
happens in the basin and the baroclinic structure at
inflow on long time scales. This feedback is not in-
cluded in the discussion. Second, the net transport as-
sociated with the buoyancy-driven circulation remains
an open question. Third, potential feedbacks between
the amount of heat lost in the convective basin with the
water inflow characteristics or, for example, the large-
scale wind field have not been considered here.

Notwithstanding all the simplifications, I believe that
the model is a useful tool for the understanding of the
connection between convective regions and the ther-
mohaline circulation, and their respective variabilities.
It may also serve as a useful tool for the interpretation
of data or general circulation models. It shows clearly
how quantities such as overturning and water mass
transformation are not trivially related and must not be
taken as synonyms.

Of relevance to the large-scale oceanic circulation,
this model highlights the role of the wind-driven circu-
lation in affecting the net sinking of dense water in a
convective basin: a faster remotely forced circulation
implies less sinking for the same amount of dense water
formed. This raises some issues as to the possibility of
treating convective regions simply as sinking regions
and, in general, of decoupling the wind-driven circula-
tion from the buoyancy-driven one.
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