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Abstract. A method for diagnosing the physical properties
of a time-varying ellipse is presented. This essentially in-
volves extending the notion of instantaneous frequency to
the bivariate case. New complications, and possibilities, arise
from the fact that there are several meaningful forms in which
a time-varying ellipse may be represented. A perturbation
analysis valid for the near-circular case clarifies these issues.
Diagnosis of the ellipse properties may then be performed us-
ing wavelet ridge analysis, and slowly-varying changes in the
ellipse structure may be decoupled from the fast orbital mo-
tion through the use of elliptic integrals, without the need for
additional explicit filtering. The theory is presented in paral-
lel with an application to a position time series of a drifting
subsurface float trapped in an oceanic eddy.

1 Introduction

Many interesting time series are intrinsically bivariate. If
the two variables represent the same physical quantity, such
as a position or a velocity, or may be normalized in some
meaningful way, then it is natural to think of the time series
as tracing out an ellipse. Some examples of signals of this
type include: planetary orbits, two-dimensional oscillators,
measurements of currents or wind, electromagnetic polar-
ization, and the three orthogonal planes of seismic motion.
In the fields of oceanography and atmospheric science, el-
lipses are so common that the so-called rotary Fourier anal-
ysis (Gonella, 1972) is among the most widely used analy-
sis tools. As with all Fourier analysis, however, the latter
method is designed for stationary time series, and is therefore
most appropriate for treating constant-amplitude, constant-
frequency ellipses having random properties.
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Developments over the past decade or so have led to a wide
range of new possibilities for treating non-stationary univari-
ate or multivariate time series. In particular, diagnosis of
the time-varying amplitude and frequency of a modulated os-
cillatory signal may be accomplished through wavelet ridge
analysis (Delprat et al., 1992; Mallat, 1999), even if the sig-
nal is embedded in noise or other variability. This analysis
is based on the notion of an asymptotic or weakly-modulated
signal, for which the signal phase varies much more rapidly
than the amplitude. In the absence of noise or other signal
components, one may assign to such a signal a unique time-
varying amplitude and phase pair directly through construc-
tion of the so-called analytic signal (Boashash, 1992). The
wavelet ridge analysis essentially combines this construction
with a series of bandpass operations, permitting it to suc-
ceed under a much broader range of conditions than the di-
rect method.

The generalization of asymptotic signals, and their detec-
tion via the wavelet transform, to the case of a time-varying
ellipse involves two important new issues. The first involves
the fact that a time-varying ellipse may be decomposed in
several different ways, with associated different conditions
that the component time series be weakly modulated. This
means that the information of greatest interest may be im-
possible to diagnose directly, but may still be inferred from
another perspective. The second is that, after determining the
ellipse parameters, important time-varying properties may be
automatically averaged over one orbit of the ellipse through
the use of elliptic integrals. This reflects the fact that an
asymptotic signal, in which the phase must vary rapidly, cap-
tures the spirit of viewing a bivariate signal as an ellipse
which is orbited rapidly relative to variations in its geome-
try.

As a sample application, we present data from a free-
drifting subsurface oceanographic float trapped inside a co-
herent eddy structure. On the scale of tens of kilome-
ters, the ocean abounds with energetic, organized vortices
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(McWilliams, 1985). These eddies may be deformed into
ellipses by a number of phenomenon, most fundamentally,
by the presence of an exterior strain field (Ruddick, 1987).
This data presents an ideal application for this method. A
time-varying elliptical signal is the dominant feature, with
little other organized variability, yet the substantial frequency
modulations preclude a Fourier-based analysis. Many hun-
dreds of such data records exist, forming one of the most sig-
nificant datasets for understanding the structure of the ocean
on these scales. The creation of objective and informative
analysis methods is therefore a subject of active research in
the oceanographic community (e.g.Veneziani et al., 2005;
Lankhorst and Zenk, 2006). Finally, the ellipse properties
have exact and physically meaningful fluid dynamical inter-
pretations.

Because of the broad potential applicability of this model,
our approach will be general, aimed at clarifying the nature
of the information which resides in a time-varying elliptical
signal and best means for extracting it. Theoretical devel-
opments will be illustrated throughout with reference to the
eddy-trapped float, rather than deferring the application sec-
tion until the end. A perturbation analysis in powers of a
variable related to the eccentricity is used to create simpli-
fied and highly accurate approximations which shed light on
the interpretation of various quantities. The most significant
exclusion is that we do not treat the role of noise or random-
ness in distorting results, but leave this important issue to a
later work. Further, as the focus of present work is the fun-
damental method and not the practical problem of analyzing
float trajectories, a comparison of this approach to studying
Lagrangian data with the many other existing perspectives is
also postponed.

Publication of this paper coincides with a public release
of a complete software package, written in Matlab, for im-
plementing all important equations, performing all analyses,
and generating all figures. This software includes a number
of innovative features designed for producing high-quality
results from large datasets, and is released for use, modifi-
cation, and redistribution by the community. Notes on the
important aspects of this software package are included in
AppendixC.

The structure of the paper is as follows. Section2 intro-
duces the data to be analyzed together with a preview of the
analysis results. A brief review of the mathematical meth-
ods is presented in Sect.3. Section4 examines the represen-
tation and detection of time-varying elliptical signals using
asymptotic signal components as a foundation. This raises
some questions about the interrelationships between differ-
ent representations, which are addressed in Sect.5 through
the use of a perturbation expansion valid for the near-circular
regime. Section6 concerns the construction of important in-
stantaneous and average physical properties, including using
the elliptic integrals to average over a period with fixed ge-
ometry. The paper concludes with a discussion.

2 A motivational example

In this section a data example is shown, which provides both
a motivation for the development to follow, as well as a con-
crete reference point.

The data to be analyzed are shown in Fig.1a. This time
series is a horizontal position record from a Lagrangian, or
freely drifting, oceanographic subsurface float of the type de-
scribed byRossby et al.(1986). This particular float tracked
water motions in the eastern subtropical Atlantic during six
months of 2001 as it drifted at 200–400 m depth. Its position
was determined every four hours by triangulating reception
times of signals from multiple fixed sound sources in the re-
gion.

Clearly visible in this record is a roughly circular signal –
traversed in a clockwise manner – superimposed on a lower-
frequency meander together with high-frequency instrument
noise. Thus one would like a decomposition of the form

z(t) ≡ x(t)+ iy(t) = ze(t)+ zr(t) (1)

[i≡
√

−1] whereze(t) is a time-varying elliptical signal and
zr(t) is a residual. The elliptical signal is believed to be as-
sociated with a so-called coherent eddy, an intense and long-
lived vortex thought to be an important element of the ocean
circulation at scales on the order of ten kilometers. The de-
gree of eccentricity has a number of possible interpretations,
and in particular could reflect the magnitude of a background
strain field (e.g.Ruddick, 1987); see our AppendixB.

The problem is to decouple the eddy signal from the other
variability, and in this way to obtain estimates of the phys-
ical properties of the eddy itself. The ellipses obtained by
our eventual decomposition, shown in Fig.1b, reveal vari-
ations in ellipse amplitude, eccentricity, and orientation in
far more detail than is possible to see from the original data
plot. These variations could either mean changes in the eddy
structure itself, or displacements of the float to different ra-
dial positions within the eddy.

Thex andy position time series are shown in Fig.2, to-
gether with our decomposition into an elliptical potion plus
a residual. One sees large modulations of both the amplitude
and the frequency of oscillatory original signal, as well as
large fluctuations in the apparent local mean of this signal.
This means that methods based around the assumption of a
fixed frequency (e.g. Fourier analysis) or a nearly fixed fre-
quency (e.g. complex demodulation) will fail to accurately
separate the flucuations in the elliptical signal from those of
its time-varying mean. By contrast, the wavelet ridge method
we develop here yields a residual which appears to be al-
most completely devoid of the main oscillatory signal, even
though the residual itself presents substantial variability.

The decomposition of Fig.2 reflects the remarkable power
of the wavelet ridge method. The challenge for a two-
component time series is to understand how the information
encoded in the ridges relates to the physical structure of a

Nonlin. Processes Geophys., 13, 467–483, 2006 www.nonlin-processes-geophys.net/13/467/2006/



J. M. Lilly and J.-C. Gascard: Time-varying elliptical signals 469

−75 −50 −25 0 25 50 75

−75

−50

−25

0

25

50

Eddy−trapped float

D
is

pl
ac

em
en

t N
or

th
 (

km
)

Displacement East (km)

(a)

−75 −50 −25 0 25 50 75

Ellipse extraction

Displacement East (km)

(b)

Fig. 1. A trajectory of a float trapped in an eddy(a), together with the decomposition of this signal into a time-varying elliptical signal plus a
residual(b). In (a), the beginning of the time series is marked with an asterisk. In (b), the dotted line in the residual, and an ellipse is plotted
every four days centered on the residual curve.

time-varying ellipse, and to identify the best way that infor-
mation may be accessed. That is the purpose of this paper. At
this point we set the data aside and turn to the development
of the method.

3 Background

This section briefly reviews some important aspects of
weakly-modulated signals and their detection using the con-
tinuous wavelet transform.

3.1 The analytic signal

A frequency- and amplitude-modulated real-valued signal
may be written as

x(t) = A(t) cos(φ(t)) (2)

where the signal amplitudeA(t) is defined to be nonneg-
ative. Because this is a powerful model, encompassing a
broad range of interesting signals, one would like to unam-
biguously determine an amplitude and phase function from a
signalx(t). While the decomposition (Eq.2) is not unique, a
particular amplitude and phase may be uniquely assigned to
x(t) via an associated complex-valued signal

x+(t) = Ax(t)e
iφx (t) (3)

called the analytic signal (Boashash, 1992).

The analytic signal may be uniquely constructed for a
givenx(t) as described in AppendixA, with the original sig-
nal being recovered by

x(t) = <{x+(t)} = Ax(t) cos(φx(t)) (4)

where the amplitudeAx(t) and phaseφx(t) of the analytic
signal are called the canonical amplitude and phase. The rate
of change of the canonical phase defines a unique frequency
ωx(t)≡dφx/dt which is called the instantaneous frequency
of the signal (Boashash, 1992). The remainder of this section
deals with a practical method for estimating the canonical
amplitude and phase and the instantaneous frequency of an
unknown signal.

An important limiting case occurs when amplitude and fre-
quency modulation of the signal are relatively weak, in which
case the signal is said to be asymptotic. In order for the signal
to be asymptotic, the instantaneous frequency must be large
compared with the fractional rate of change of the amplitude,
i.e.

|εx(t)| ≡

∣∣∣∣ 1

ωx

d lnAx
dt

∣∣∣∣ � 1, (5)

together with similar constraints on higher-order derivatives
of the amplitude and frequency (Mallat, 1999). When Eq. (5)
is satisfied, we will say that the signal has slow amplitude
modulation.

Given a real-valued signalx(t), one wishes to deter-
mine the associated amplitudeAx(t), phaseφx(t), and
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Fig. 2. The eastward(a) and northward(b) locations of the float are shown as the upper thin solid lines. The lower thin solid lines are the
diagnosed time-varying elliptical signals, offset by−100 km, and the thick lines are the residuals. The approximate width of the edge-effect
regions are shown with vertical dotted lines.

instantaneous frequencyωx(t). But generally the signal of
interest is embedded in noise or other variability, for exam-
ple, other amplitude-frequency modulated signals at higher
or lower frequencies. For such multi-component or noisy
time series, direct construction of the analytic signal, the
method described in AppendixA, tends to give meaning-
less results because it attempts to assign an amplitude and
phase to the superposition of all signal components. For this
reason, in practical applications the method of wavelet ridge
analysis (Delprat et al., 1992; Mallat, 1999) is preferred. This
essentially combines a bandpass operation with construction
of an analytic signal within each band, forming a redun-
dant decomposition from which the properties of individual
amplitude-frequency modulated signals may be determined.

3.2 The wavelet transform

The wavelet transform of a signalx(t) with respect to an an-
alytic waveletψ(t) is a series of convolutions

Wx(t, s) ≡

∫
ψs(t − u) x(u) du ≡ ψs ? x(t) (6)

with rescaled versions of the wavelet

ψs(t) ≡
1

s
ψ

(
t

s

)
. (7)

The choice ofs in the denominator of (7) is one of two com-
mon ways of normalizing wavelets across scale, the other

being with a
√
s. The “mother” waveletψ(t) is zero-mean

and has finite energy, and has a Fourier transform

9(ω) ≡

∫
ψ(t) e−iωt dt (8)

which is here chosen to have a maximum magnitude at
ω=2π with the value of this maximum set to|9(2π)|=2.
We will use only analytic wavelets, which means9(ω)=0
for ω<0, implying that the time-domain wavelets are
complex-valued. It will also be assumed that9(ω) is
real-valued, as is true of the most commonly-used analytic
wavelets.

With these choices of normalization, the wavelet transform
of a sinusoidx(t)=|Ao| cos(ωot) is then

Wx(t, s) =
|Ao|

2π

∫
9(sω) eiωt ×

1

2
[2πδ(ω − ωo)+ 2πδ(ω + ωo)] dt (9)

=
1

2
|Ao| e

iωot9(sωo) (10)

from the convolution theorem and because9(ω) vanishes
for negative frequencies. For our choice of normalization
one hasWx(t, 2π/ωo)=|Ao|e

iωot . Thus the scales has been
defined to have the interpretation of a local period, and the
wavelet transform magnitude to have interpretation of the lo-
cal amplitude of oscillations for a real-valued signal.
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The wavelet transform of an amplitude- and frequency-
modulated signalx(t) of the form (2) with an analytic
wavelet has the approximate form

Wx(t, s) ≈
1

2
Ax(t)e

iφx (t)9 (sωx(t)) (11)

a result due toDelprat et al.(1992) and extended byMallat
(1999). The wavelet transform can therefore be used to esti-
mate the canonical amplitude and phase. Specifically, along
the scale curves(t)=2π/ωx(t) one has

Wx (t, 2π/ωx(t)) ≈ Ax(t)e
iφx (t) (12)

which states that the wavelet transform evaluated along the
instantaneous frequency curve is approximately equal to the
analytic signal. This shows that in order to estimate the
canonical amplitude and phase, we need to first find the in-
stantaneous frequency curve, as is done in the next section.

The approximate equalities in Eqs. (11–12) hold provided
that the signal is asymptotic. This means that having slow
amplitude variation, condition (5), is necessary but not suf-
ficient to guarantee that the wavelet ridge method will yield
accurate estimates of the signal properties.

3.3 Wavelet ridges

The method for diagnosing an instantaneous frequency curve
from the wavelet transform is called wavelet ridge analysis
(Delprat et al., 1992; Mallat, 1999). Writing the wavelet
transform asWx(t, s)=|Wx(t, s)|e

i2x (t,s), one takes the
time derivative of the transform phase

�x(t, s) ≡
d

dt
2x (t, s) =

d

dt
= lnWx (t, s) (13)

which will be called the transform frequency; here “=” de-
notes the imaginary part and the “= ln” combination has been
used to implement the so-called four-quadrant inverse tan-
gent function. For the case of the analyzed signal being an
asymptotic signalx(t), the transform frequency is

�x(t, s) ≈ =
d

dt
ln

[
Ax(t) e

iφx (t)
]
+=

9 ′(sωx(t))

9(sωx(t))
sω′

x(t)(14)

≈ ωx(t) (15)

where the second term in Eq. (14) vanishes since9(ω) has
been assumed to be real-valued.

Thus, along the instantaneous frequency curve, the trans-
form frequency is approximately the same as the instanta-
neous frequency, i.e.

�x(t, 2π/ωx(t)) ≈ ωx(t). (16)

This suggests the following method for estimating the un-
known instantaneous frequencyωx(t). Define a curvêωx(t),
called a ridge or ridge curve, satisfying

�x(t, 2π/ω̂x(t)) = ω̂x(t) (17)

with the individual points along the curve being called ridge
points. Such a curve may be diagnosed using a numerical
algorithm, as described in AppendixC. It is not guaranteed
that a ridge curve exist for all time. Further, in applications,
it is usual to consider only ridge points exceeding a certain
amplitude, within a specified frequency bound, or contained
within a continuous ridge of a least a certain length. There-
fore, one often finds ridge curves which break into discrete
segments.

Note that if the signal is asymptotic, it follows that
ω̂x(t)≈ωx(t), i.e. the instantaneous frequency curve of the
signal is approximately the same as a ridge curve of the
wavelet transform. Neglecting the difference between these
two curves, we can say that the wavelet ridge algorithm is
essentially a diagnosis of the instantaneous frequency curve.
More exactly, the wavelet ridge algorithm is a method for es-
timating the instantaneous frequency curves, and these two
sets of curves need not be identical. In the present paper
the distinction between ridges and instantaneous frequency
curves will not generally be important. After the wavelet
ridges have been determined, the canonical amplitude and
phase maybe approximately recovered by substitutingω̂x(t)

for ωx(t) in Eq. (12).

4 Time-dependent ellipses

A complex-valued signal may be represented in several
ways: i) in terms of the real-valued component signals; ii)
in terms of positively and negatively rotating components;
and iii) directly in terms of the physical parameters of the el-
lipse. In this section we examine the relationships between
these different representations, and the means of diagnosing
their parameters.

4.1 Ellipse form

A natural way to represent an amplitude- and frequency-
modulated complex-valued, or bivariate real-valued, time se-
ries is in terms of a time-varying ellipse. A fixed ellipse is
characterized by an orientation angleθ , a semi-major axisa,
and a semi-minor axisb, as sketched in Fig.3.

The equation for a time-varying ellipse expressed as a
complex-valued time series is

z(t) ≡ eiθ(t) [a(t) cosφ(t)+ ib(t) sinφ(t)] (18)

with a>|b|>0. The phaseφ(t) is assumed to be a nonde-
creasing function of time which expresses the position of
a hypothetical “particle” with respect to the major axis of
the ellipse. The ellipse is traversed in the counterclockwise
(mathematically positive) direction forb>0 and in the clock-
wise direction forb<0. The instantaneous radian frequency
of the ellipse with respect to phase isωφ(t)≡dφ/dt>0,
which will be called “orbital frequency”, whileωθ (t)≡dθ/dt
is the rate of precession. Note thatωφ is not the same as the
angular velocity, discussed later.
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Fig. 3. A sketch of an ellipse with semi-major axisa=3 and semi-
minor axisb=2. The orientation of the semi-major with respect
to the x-axis isθ , and the instantaneous position of a hypothetical
“particle” (marked by an asterisk) with respect to the semi-major
axis isφ.

Of all possible rates at which a particle may orbit an el-
lipse, the parametric form used here (Eq.18) is special be-
cause it describes the particular type of elliptical motion
which conserves angular momentum when the orbital fre-
quencyωφ and the ellipse geometry are constant. The an-
gular momentum of the (assumed unit mass) particle is

M(t) ≡ <{izz
′
∗
} (19)

[where z′(t)≡dz/dt and the asterisk denotes the complex
conjugate], which, for a constant ellipse geometrya=ao,
b=bo, θ=θo is

M(t) = ωφ(t)×

< {[ao cos(φ)+ ibo sin(φ)] [−iao sin(φ)+ bo cos(φ)]

= aobo ωφ(t). (20)

It is shown in AppendixB that a fundamental fluid dynamical
ellipse, relevant to the data presented earlier, is also orbited in
such a way that the “particle” appears to conserve its angular
momentum. Thus this signal model is a good match to the
physical situation.

4.2 Cartesian and rotary components

A complex-valued time series may be written directly as the
sum of two real-valued time series

z(t) = x(t)+ iy(t)

= Ax(t) cos(φx(t))+ iAy(t) cos
(
φy(t)

)
(21)

where the amplitudes and phases are those of the analytic
signals associated withx(t) andy(t), respectively. The real-
valued time seriesx(t) andy(t) will be called the Cartesian
components ofz(t).

Alternatively z(t) may be expressed as the sum of two
counter-rotating circular signals,

z(t) = z+(t)+ z−(t) (22)

= A+(t)e
iφ+(t) + A−(t)e

−iφ−(t) (23)

which are called the analytic and anti-analytic components
of z(t), constructed as described in AppendixA. The ana-
lytic signalz+(t) has a Fourier transform which is supported
only on positive frequencies, and hence is an integral over
complex exponentials rotating in the mathematically positive
(counterclockwise) direction on the complex plane. Simi-
larly the anti-analytic signalz−(t) is an integral over complex
exponentials rotating in the mathematically negative (clock-
wise) direction. Because of this we prefer to callz+(t) and
z−(t) the “rotary components” ofz(t), by analogy with the
use of the term “rotary spectra” in the Fourier analysis of a
complex-valued time series (Gonella, 1972).

A subtle point is thatz+(t) and z−(t) are not guaran-
teed to rotate exclusively in the positive and negative direc-
tions with time, respectively, although they tend to do so for
signals whose spectral energy is concentrated about a cen-
tral maximum. For such localized signals, our definition of
φ−(t) as the negative of the phase of the anti-analytic signal
will then lead to both rotary frequenciesω+(t)≡dφ+/dt and
ω−(t)≡dφ−/dt being positive.

4.3 Relations between parameters

The phases of the rotary components are related to the ellipse
phase and orientation via

φ+(t) = φ(t)+ θ(t) (24)

φ−(t) = φ(t)− θ(t) (25)

with the amplitudes of the positively- and negatively-rotating
circles related to the semi-major and semi-minor axes
through

A+(t) = [a(t)+ b(t)] /2 (26)

A−(t) = [a(t)− b(t)] /2 (27)

so thatA+>A−>0 for positiveb andA−>A+>0 for nega-
tive b. Conversely, the above expressions may be rearranged
to give the four ellipse parameters in terms of the four rotary
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parametersA+, A−, φ+, andφ−. Note thatω+(t)>0 and
ω−(t)>0 impliesωφ(t)>|ωθ (t)| and vice-versa.

One may also find relations between the four Cartesian
parameters and the four rotary parameters, by applying the
analytic and anti-analytic filters defined in AppendixA to
Eqs. (21) and (23). The parameters of the Cartesian compo-
nents are determined in terms ofA+, A−, θ , andφ as

φx(t) = φ + = ln
[
A+e

iθ
+ A−e

−iθ
]

(28)

φy(t) = φ + = ln
[
A+e

iθ
− A−e

−iθ
]

− π/2 (29)

Ax(t) =

√
A2

+ + A2
− + 2A+A− cos 2θ (30)

Ay(t) =

√
A2

+ + A2
− − 2A+A− cos 2θ (31)

while conversely the rotary parameters are determined from
the Cartesian parameters as

φ+(t) = φa + = ln
[
Axe

iφd + Aye
−iφd

]
(32)

φ−(t) = φa + = ln
[
Axe

iφd − Aye
−iφd

]
(33)

2A+(t) =

√
A2
x + A2

y + 2AxAy cos 2φd (34)

2A−(t) =

√
A2
x + A2

y − 2AxAy cos 2φd (35)

where we have defined an average phase and a difference
phase asφa≡

[
φx+φy+π/2

]
/2 andφd≡

[
φx−φy−π/2

]
/2.

Comparing these two sets of equations reveals a symmetry
between the rotary and the Cartesian formulations.

There therefore exist three sensible ways of describing
a time-varying elliptical signal. Each of these three forms
is associated with two time-varying amplitudes and two
time-varying phases, and therefore also with two frequency
curves. Given any one of the three forms, the parame-
ters of the other two may be determined. Note that the
six frequencies are all different in general. However, when
the ellipse geometry is constant, one has the special case
ωφ=ωx=ωy=ω+=ω−.

4.4 Diagnosis with wavelet ridges

The amplitudes and phases of the Cartesian components may
be approximately recovered by applying the wavelet ridge
analysis described in Sect.3.3 to the two Cartesian wavelet
transformsWx(t, s) andWy(t, s), assuming that the respec-
tive signalsx(t) andy(t) are asymptotic.

To recover amplitude and phases of the rotary signal com-
ponents, we define a pair of rotary transforms
√

2W+(t, s) ≡ ψs ? z(t) =
√

2
[
Wx(t, s)+ iWy(t, s)

]
(36)

√
2W−(t, s) ≡ ψ∗

s ? z(t) =
√

2
[
W∗
x (t, s)+ iW∗

y (t, s)
]

(37)

which have been defined such that
|Wx |

2
+|Wy |

2
=|W+|

2
+|W−|

2. These simplify to
√

2W+(t, s) = ψs ? z+(t)+ ψs ? z−(t) = ψs ? z+(t) (38)
√

2W−(t, s) = ψ∗
s ? z+(t)+ ψ∗

s ? z−(t) = ψ∗
s ? z−(t) (39)

owing to the analycity of the wavelet. Along the respective
instantaneous frequency curves, these become, using the re-
sults of Sect.3.3,

W+ (t,2π/ω+(t)) ≈
√

2A+(t) e
iφ+(t) (40)

W− (t,2π/ω−(t)) ≈
√

2A−(t) e
−iφ−(t) (41)

again assuming the respective signals are asymptotic.
Wavelet ridge analysis may thus be used to determine

the properties of the Cartesian signal components from the
Cartesian transforms, or the properties of the rotary signal
components from the rotary transforms. All other parame-
ters may be determined from either set of ridges by using the
transformation equations of the previous subsection. It is not
equivalent to diagnose the ellipse properties using the ridges
of the Cartesian transforms versus those using those of the
rotary transforms; one or the other set may be more closely
asymptotic and therefore better suited to the wavelet ridge
analysis. The transformation equations may thus be used to
assign a unique pair of rotary components, not themselves
asymptotic, by inferring their properties from an asymptotic
pair of Cartesian components, and vice-versa. This is illus-
trated by the example of the next section.

4.5 Application to the eddy-trapped float

As an example, we apply the wavelet ridge algorithm to the
float data presented in Sect.2; details of numerical routines
used may be found in AppendixC. For wavelets, we prefer
the lowest-order generalized Morse wavelets ofOlhede and
Walden(2002) rather than the more commonly used Mor-
let wavelets. The generalized Morse wavelets are exactly
analytic, which leads to superior performance of the ridge-
detection algorithm, particularly for highly time-localized
parameter settings. The parameter settingsβ=4 andγ=2, as
defined inOlhede and Walden(2002), lead to time-localized
wavelets appropriate for this rapidly fluctuating signal. Fifty
logarithmically-spaced scale levels are chosen, correspond-
ing to periods of ten to one hundred data points.

Using these wavelets, the Cartesian wavelet transforms
Wx(t, s) andWy(t, s) are formed as in Eq. (6), which are
then combined via Eqs. (36) and (37) to yield the rotary
wavelet transformsW+(t, s) andW−(t, s). Our ridge de-
tection algorithm (see AppendixC) then uses the ridge def-
inition (17) to find, within each transform, all ridge points
having greater than unit amplitude and included in a con-
tinuous ridge with length at least 1.5 times the corresponding
period. Precise frequencies and amplitudes are then found by
linearly interpolating the transform between discrete scales,
as described in AppendixC.

This process results in a set of four ridge curvesω̂x(t),
ω̂y(t), ω̂+(t), andω̂−(t). These are estimates of the underly-
ing instantaneous frequency curves, but are not expected to
be identical with them because of contamination by noise and
by distortion associated with extraction algorithm. The diag-
nosed Cartesian and rotary ridge curves are shown in Figs.4a
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Fig. 4. The frequencies along the Cartesian(a) and rotary(b) ridges, determined as specified in the text. Thex-component ridges in (a)
and positive rotary ridges in (b) are shown as bold lines, while they-component ridges in (a) and negative rotary ridges in (b) are shown as
thin dashed lines. A dot-dashed line is shown is also shown inb, which is virtually identical to the dotted line; this is the positive rotary
frequency curve inferred by the properties along the Cartesian curves. Panel(c) shows the diagnosed (solid line) and inferred (thin dashed
line) positive rotary frequency, offset slightly for clarity. Panel(d) shows the orbital frequencyωφ(t) and precession rateωθ (t) inferred from
the properties along the Cartesian ridges as bold and thin lines, respectively. The approximate width of the edge-effect regions are shown
with vertical dotted lines.

and b, respectively. For the Cartesian and negative rotary sig-
nals, the ridge criteria specified above lead to a set of three
virtually identical curves which correspond to the instanta-
neous frequency curves of the dominant signal, and to none
others. The positive rotary transform, however, yields sev-
eral short ridges which form a broken and incomplete curve.
Since the signal rotates in a clockwise sense, the positive
rotary transform has much smaller amplitude than the oth-
ers, and is therefore the most susceptible to noise. Changing
parameter settings does not substantially change this perfor-
mance.

The transformation equations of Sect.4 may be used to
infer the rotary instantaneous frequency curves from the esti-
mated Cartesian instantaneous frequency curves. To do this,
estimates of the Cartesian amplitudes and phases – denoted
Âx(t), Âx(t), φ̂x(t), and φ̂y(t) – are formed by evaluating
each Cartesian wavelet transform along its estimated instan-

taneous frequency curve, as in Eq. (12). Inserting these am-
plitude and phase estimates into Eqs. (32–33) and differen-
tiating leads to a second set of estimated rotary frequency
curves, which we will say are “inferred” to distinguish them
from those “diagnosed” directly by the ridge algorithm.

In fact, Fig.4b already shows the inferred negative rotary
curve, which is virtually identical to the diagnosed curve.
The diagnosed and inferred positive rotary curves are shown
in Fig. 4c. When the diagnosed curve exists, it is virtu-
ally identical to the inferred curve, apart from a time in the
vicinity of day 150. At other times the inferred positive ro-
tary curve exhibits large and rapid fluctuations in frequency.
This is the reason why it cannot be directly diagnosed: the
wavelet ridge algorithm requires a slowly-varying instanta-
neous frequency curve, and that condition is clearly violated.
Closer inspection (not shown) suggests that the period of dis-
agreement in the vicinity of day 150 is a consequence of the
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simultaneous existence of two separate structures in the neg-
ative rotary transform.

The inferred orbital frequencyωφ(t) and precession rate
ωθ (t) are shown in Fig.4d. Like the negative rotary fre-
quency, the orbital frequency exhibits rapid fluctuations dur-
ing parts of the record. The precession rate is generally very
small, apart from a few isolated bursts, but shows a dis-
cernible tendency to be negative. On average, the ellipse ori-
entation is drifting slowly in the prograde sense, i.e. in same
direction in which the ellipse is being traversed.

After estimating the Cartesian signal properties from
the Cartesian ridges, all rotary properties are found from
Eqs. (32–35), and then the ellipse propertiesa(t), b(t), φ(t),
andθ(t) are found using Eqs. (24–27). A time-varying el-
liptical signalze(t) having these properties is constructed via
Eq. (18), leading also to a residualzr(t)≡z(t)−ze(t). These
three signalsz(t), ze(t), andzr(t) were presented earlier in
Fig. 2. The time-varying elliptical propertiesa(t), b(t), and
θ(t) are then sampled at a particular timeto, and one creates
an ellipse by advancing the phaseφ(t) by 2π with the ellipse
geometry held constant; the ellipse center is considered to be
the pointzr(to). Sampling the time-varying ellipse proper-
ties every four days in this way leads to the ellipses shown in
Fig. 1.

For this data, an accurate diagnosis of the time-varying el-
liptical signal was possible from the Cartesian transforms but
not the rotary transforms. Yet, the negative rotary instanta-
neous frequency curveω−(t) appears to control the Cartesian
instantaneous frequencies. The reasons for these behaviors
will become apparent after the perturbation analysis of the
next section.

In order for the wavelet ridge analysis to approximately re-
cover the amplitude and phase of thex-component signal, it
is necessary that the magnitude ofεx(t) defined in Eq. (5) be
small, which we say means thatx has slowly-varying ampli-
tude. Similar parametersε−(t), ε+(t), ε−(t) must likewise
be small in order for the wavelet ridge analysis to approxi-
mately recover the respective signal properties. These four
conditions are not identical. It is natural to ask what condi-
tions on the ellipse parameters are required in order that each
component signal have slowly-varying amplitude.

5 The near-circular limit

The relationships between the elliptic, rotary, and Cartesian
forms for a time-varying ellipse may be better seen through
creating simplified transformation equations using a small
parameter expansion. It will then be apparent that the proper-
ties of a time-varying ellipse are often best diagnosed using
the Cartesian wavelet transforms.

5.1 A stronger measure of eccentricity

The departure of an ellipse from a pure circle is characterized
by the eccentricity

ε(t) ≡ sgn(b)

√
1 −

b2

a2
(42)

which vanishes for purely circular motion and has unit mag-
nitude for purely linear motion. Our definition differs from
convention in that negative eccentricities are taken to indicate
a negatively-rotating ellipse.

A stronger measure of the departure of an ellipse from a
circle will be needed. Such a measure is the “ellipse param-
eter” (Ruddick, 1987)

λ(t) ≡ sgn(b)
a2

− b2

a2 + b2
= sgn(ε)

ε2

2 − ε2
=

2A+A−

A2
+ + A2

−

(43)

which has the same limits as the eccentricity, but has
|λ|<<|ε| for small |ε|. For example, the orbit of
Pluto, the most eccentric of planetary orbits, hasε=0.249
with λ=0.032, while eccentricity ofε=0.5 corresponds to
λ=0.143. To examine the near-circular case, we will per-
form series expansions in powers ofλ, resulting in simplified
approximate expressions valid for small or even moderate ec-
centricities. Also, we define a measure of the amplitude of
the ellipse as

κ(t) ≡

√
a2 + b2

2
=

√
A2
x + A2

y

2
=

√
A2

+ + A2
− (44)

so thatκ and λ contain equivalent information toa and
b. Expressions for the all amplitude and phase parameters
as power series expansions in terms ofλ are given in Ap-
pendixD.

5.2 Cartesian signals in the near-circular limit

At this point it is useful to introduce a new notation for the
rotary components. For small to moderate eccentricities, the
magnitude of one of the two rotary components will be much
larger than that of the other. We call the rotary component
having the larger amplitude, with properties denoted by the
subscript “>”, the “primary” rotary component, and the other
the “secondary” rotary component with properties denoted
by the subscript “<”. Thus the primary and secondary phases
are

φ>(t) ≡

{
φ+(t) A+(t) > A−(t)

φ−(t) A−(t) > A+(t)
(45)

φ<(t) ≡

{
φ−(t) A+(t) > A−(t)

φ+(t) A−(t) > A+(t)
(46)

with corresponding frequencies

ω>(t) ≡
d

dt
φ> = ωφ + sgn(λ) ωθ (47)

ω<(t) ≡
d

dt
φ< = ωφ − sgn(λ) ωθ (48)
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and similarly for the amplitudes.
Via the perturbation expansion carried out in AppendixD,

the Cartesian frequencies are found to be

ωx(t) = ω> −
1

2

dλ

dt
sin(2θ)− λ cos(2θ) ωθ +

d

dt
O(λ2) (49)

ωy(t) = ω> +
1

2

dλ

dt
sin(2θ)+ λ cos(2θ) ωθ +

d

dt
O(λ2) (50)

which shows that the leading term of bothωx(t) andωy(t) is
ω>(t), the frequency of the primary circle. Thus for

ω>(t) �

∣∣∣∣dλdt
∣∣∣∣ , ω>(t) � |λωθ | (51)

the x- and y-frequencies are both approximately the same
as the frequency of the primary circle. This verifies that the
tendency for the Cartesian instantaneous frequency curves to
resemble the primary rotary curve, noted in the discussion of
Fig. 4, is in fact a general result.

Similarly one finds the fractional rate of change of the
Cartesian amplitudes to be

d lnAx
dt

=
d ln κ

dt
+ cos(2θ)

1

2

d|λ|

dt

−|λ| sin(2θ) ωθ +
d

dt
O(λ2) (52)

d lnAy
dt

=
d ln κ

dt
− cos(2θ)

1

2

d|λ|

dt

+|λ| sin(2θ) ωθ +
d

dt
O(λ2) (53)

so that a condition on the rate of change ofκ

ω>(t) �

∣∣∣∣d ln κ

dt

∣∣∣∣ (54)

is sufficient, together with the two assumptions (51), to imply
small |εx(t)| and|εy(t)|. It is therefore the frequency of the
primary rotary component which controls the extent to which
the Cartesian signals have slowly varying amplitude.

An important corrolary is that there is a distinct differ-
ence between prograde precession,ωθ (t)sgn(λ)>0, and ret-
rograde precession. The above conditions become stronger
with retrograde rotation, sinceω>(t) decreases for fixed or-
bital frequencyωφ(t), and weaker with prograde rotation.
When the precession rateωθ (t) is of large magnitude relative
to the orbital frequency (but still|ωθ (t)|<ωφ by assumption),
retrograde rotation requires much stronger constraints on the
variability of the ellipse geometry in order that the Cartesian
signals be asymptotic. This situation is discussed further in
the next subsection.

5.3 Rotary signals in the near-circular limit

One finds the relative rates of change of the amplitudes of the
primary and secondary rotary components are, respectively

d

dt
lnA>(t) =

d ln κ

dt
−
λ

4

dλ

dt
+
d

dt
O(λ4) (55)

d

dt
lnA<(t) =

d ln κ

dt
+
d ln |λ|

dt
+
d

dt
O(λ3) (56)

therefore the condition

ω>(t) �

∣∣∣∣λdλdt
∣∣∣∣ (57)

along with Eq. (54) is sufficient to guarantee a slowly varying
amplitude of the primary rotary signal, i.e. small|ε>(t)|. On
the other hand,

ω<(t) �

∣∣∣∣d ln |λ|

dt

∣∣∣∣ (58)

is sufficient, together with Eq. (54), to guarantee that the sec-
ondary rotary signal has slowly varying amplitude.

When the precession rateωθ is small, (58) is a much
stronger constraint on variations ofλ than is Eq. (57), while
the constraint Eq. (51) for the Cartesian signals falls in be-
tween. Thus, the conditions that the primary rotary signal,
Cartesian signals, and secondary rotary signal be respec-
tively asymptotic imply three increasingly strong constraints
on variations of the eccentricity. Variations of the eccentric-
ity with time will cause the ridge algorithm to fail to diagnose
the instantaneous frequency curves, and this will happen first
for the secondary rotary frequency curve. Thus in order to di-
agnose the properties of a time-varying, roughly circular and
slowly precessing ellipse, one should one should identifyxy-
ridges and then infer the ellipse properties from these, rather
than identifying the rotary ridges directly.

When the precession rate is not small, the asymme-
try between prograde and retrograde precession appears in
the rotary components as well. Other conditions equal, a
stronger retrograde rotation tends to bring the primary ro-
tary signal and the Cartesian signals away from the state
of being asymptotic, but brings the secondary rotary com-
ponent towards this state. The primary rotary frequency
ω>(t)=ωφ+sgn(λ) ωθ can become very small if, as a par-
ticle moves around the ellipse, the ellipse also rotates in the
opposite direction. In this case, the orbital motion (with re-
spect to the ellipse) in one direction, and the rotation of the
ellipse in the other direction, nearly counteract, and the par-
ticle is essentially “running in place”. While such conditions
perhaps lie outside the boundaries for which this model is
physically meaningful, it is important to point out that there
may be situations in which the rotary components provide the
more favorable approach to diagnosing the frequency curves.

6 Instantaneous and average properties

Here measures of the ellipse radius and velocity are intro-
duced. In addition to instantaneous measures, which include
the rapid variability as the particle orbits the ellipse, one may
also form slowly-varying measures which vary only as the
ellipse geometry varies.
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6.1 Radius

The instantaneous radial distance from the particle to the el-
lipse center, or “instantaneous radius”, is

R(t) ≡ |z(t)| = κ
√

1 + |λ| cos(2φ) (59)

in terms ofκ(t), λ(t), andφ(t). However, the instantaneous
radius varies rapidly due to circulation of the particle around
the ellipse, even if the ellipse geometry is fixed. It is desirable
to define an average measure which can decouple this rapid
oscillation from longer-term changes which reflect variations
of the ellipse geometry itself.

One may regard a quantity such as the radiusR(t) as a
joint function of the ellipse phaseφ(t) and of time with fixed
phase, i.e.R=R(t, φ(t)). Then a period-averaged version of
R(t)

R(t) ≡
1

2π

∫ φ(t)+π

φ(t)−π

R(t, φ′)dφ′ (60)

is formed at every timet by freezing the ellipse properties
a, b, andθ and averaging over one period ofφ, that is, over
one cycle through a fixed ellipse. The period-averaged radius
may be determined through the use of an elliptic integral to
be

R(t) =
2a

π
E(|ε|) =

2κ

π

√
1 + |λ|E(|ε|)

= κ
[
1 − λ2/16+O(λ4)

]
(61)

whereE(r) is the complete elliptic integral of the second
kind as a function of the modulusr, with the eccentricity
magnitude playing the role of the modulus.

A second measure of the slowly-varying radius is the geo-
metric mean radius

RM(t) ≡
√
a|b| = κ

√√
1 − λ2 = κ

[
1 − λ2/4 +O(λ4)

]
(62)

which determines the area of the ellipse asπR2
M . While these

two measures of the slowly-varying radius are close together
in value for small to moderate eccentricities, we prefer the
geometric mean radius because of its relationship to area
and also its connection with angular momentum discussed
shortly.

6.2 Velocity

Two rapidly-varying measures of the ellipse velocity are the
instantaneous speedV (t) and the instantaneous azimuthal
velocityV8(t). The instantaneous speed

V (t) ≡

∣∣∣∣dzdt
∣∣∣∣ (63)

becomes for constant ellipse geometry (i.e. only the phase
φ(t) varying)

V (t) = ωφ(t)κo
√

1 − |λo| cos(2φ(t)) (64)

with a period-averaged valueV (t)=ωφ(t)R. The instanta-
neous azimuthal velocityV8(t) is found by writing the orig-
inal time-varying ellipse as

z(t) = R(t) ei8(t) (65)

which determines the angular velocityω8(t)≡d8/dt and
hence the azimuth velocityV8(t)≡ω8R. Note that angular
velocity ω8(t), the rate of change of azimuthal angle8(t)
of the particle, is not the same as the orbital frequencyωφ(t),
the rate of change of the phaseφ(t) specifying the location of
the particle along the ellipse. With constant ellipse geometry,
the instantaneous angular velocity is

ω8(t) ≡
d8

dt
= sgn(λo)

R2
M

R2(t)
ωφ(t) (66)

so that the period-averaged azimuthal velocity becomes

V8(t) =
2bo
π
ωφ(t)K(|εo|)

= sgn(λo) κo ωφ(t)
[
1 − 5λ2

o/16+O(λ4
o)

]
(67)

whereK(r) is the complete elliptic integral of the first kind
with modulusr.

However these simple expressions for the speed and az-
imuthal velocity are only sensible when the ellipse geometry
is constant, that is, when variations in ellipse geometry and
orientation do not contribute to the velocity. Therefore we
will construct slowly-varying measures which are true gener-
ally, but which reduce to simple expressions when the ellipse
geometry is constant.

To do so we treat the velocity time seriesz′(t) as time-
varying elliptical signal in its own right, and determine
its time-varying parameters. In fact the parameters of the
velocity ellipse, i.e. the ellipse associated withz′(t), are
determined immediately from those of the “position” el-
lipse of z(t), as shown in AppendixD. Then forming a
period-averaged radius and geometric mean radius as in the
preceding subsection, but using the ellipse parameter val-
ues of the velocity ellipse, defines a period-averaged speed
V (t) and geometric mean velocityVM(t). For a constant
ellipse geometry the ellipse speed so constructed reduces
to Eq. (64), while the geometric mean velocity becomes
VM(t)=sgn(λ)ωφ(t)RM .

We prefer the instantaneous radiusR(t) and instantaneous
azimuthal velocityV8(t) as rapidly-varying measures of the
ellipse properties, and geometric mean radiusRM(t) and
geometric mean velocityVM(t) as corresponding slowly-
varying measures. Both pairs determine the angular momen-
tum when the ellipse geometry is constant

M(t) = aoboωφ(t) = V8(t)R(t) = RM(t)VM(t) (68)

but the former pair varies rapidly throughout an orbit while
the latter pair does not.
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Fig. 5. Panel(a) shows the instantaneous radiusR(t) as a thin solid line and the period-averaged radiusR(t) as a heavy solid line. The
dash-dotted line is an estimated radius using a fixed-frequency bandpass filter as described in the text. In panel(b), the in situ temperature
is shown as a thin solid line, and heavy solid line is the temperature smoothed with a 12-point Hanning filter. The approximate width of the
edge-effect regions are shown with vertical dotted lines.

6.3 Application to the eddy-trapped float

The instantaneous and mean radius of the time-varying el-
liptical signal diagnosed earlier using the Cartesian ridges
of the float time series are shown in Fig.5a. The mean ra-
dius is indeed slowly-varying, as desired, while the instan-
taneous curve exhibits high-frequency fluctuations about the
mean curve. It is important to emphasize that no additional
explicit filtering has been performed; there is no need, since
the ellipse properties extracted from the ridge are have essen-
tially already been smoothed in proportion to the local period
by the wavelet analysis.

For comparison, Fig.5b shows the temperature recorded
by the float. After day 120, the period-averaged radius and
temperature variations are remarkably similar; but note that
the high-frequency fluctuations present in the instantaneous
radius are not apparent in the temperature. Variations in ra-
dius could mean either that the float is observing a change in
the eddy structure, or that the float crosses material surfaces
to move to a new position inside a fixed eddy. In the lat-

ter case one should expect to see changes in the temperature,
but not in the former case. The correspondence seen in Fig.5
is therefore compelling evidence that the float is “profiling”
through a fixed eddy – crossing material surfaces – at long
time scales but not at the short orbital time scale.

A simpler estimate of radius may also be formed by a
fixed-frequency bandpass filter. In fact, the negative rotary
transform evaluated at a fixed scale is an example of such a
bandpass. The negative rotary transform magnitude (divided
by

√
2) evaluated at the scale for which the transform has the

largest time-mean magnitude is also shown in Fig.5a. Be-
fore day 180, the agreement withR(t) is often good but also
shows periods of substantial underestimation. After day 180,
however, the agreement is poor, and no longer matches the
temperature fluctuations; the float appears to be profiling the
eddy for only half the time suggested by the period-mean ra-
dius.

The instantaneous radius versus azimuthal velocity, to-
gether with the geometric mean radius and geometric mean
velocity, are presented in Fig.6; the “edge-effect” regions
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Fig. 6. The instantaneous radiusR(t) versus|V8(t)|, the magnitude of the instantaneous azimuthal velocity(a) and the geometric mean
radiusRM (t) and|VM (t)|, the magnitude of the geometric mean velocity(b). In (b), the instantaneous values are plotted as a light gray line
and the average values as a heavy black line. Dotted curves are proportional to 1/R.

near either end of the time series have been omitted. It is
usual to make such radius-velocity scatter plots when exam-
ining oceanic eddies (e.g.Prater and Sanford, 1994), because
a circular eddy in solid-body rotation will have speed pro-
portional to radial distance within its central core. Here the
instantaneous properties show large scatter, but much of this
scatter is oriented along lines such thatV8R is constant, that
is, lines along which angular momentum is conserved. The
corresponding average values collapse onto an almost per-
fectly straight line. This is precisely the behavior predicted
for a circular vortex deformed by strain (AppendixB), and
suggests that the scatter of the instantaneous properties is not
“noise”, as it might appear at first glance, but rather is infor-
mation regarding the degree of eccentricity of the eddy.

It should be pointed out that the assumed signal form es-
sentially imposes that the high-frequency variations should
conserve angular momentum. If the high-frequency fluctua-
tions exhibited some other behavior, it might not be captured
by this method. Nevertheless, judging from the smoothly
varying residual curve in Fig.2 even at short time scales, the
assumed form appears to be a good match for the variabil-
ity present in the data, in addition to matching the physical
model of a circular eddy deformed by strain.

7 Discussion

A method for diagnosing the properties of a time-varying el-
liptical signal has been presented and applied to a position
record from a subsurface oceanographic float. This method
has all the advantages of the wavelet ridge analysis on which
is based – it is highly flexible, involves very few parameter
choices, is reproducible, affords a rigorous statistical treat-
ment, and also generates results which agree with one’s intu-
itive notion of correctness. What is new in this treatment is
the ability to interpret the information encoded in the wavelet
ridge analysis in terms of geometric quantities, to identify the
different pathways by which equivalent information may be
found, and to construct average quantities which decouple
the fast orbital motion from slower structural changes.

It was seen that there exist three representations of a time-
varying elliptical signal which incorporate equivalent infor-
mation: in terms of the Cartesian components, in terms of
the rotary or analytic and anti-analytic components, and di-
rectly in terms of time-varying ellipse parameters. Yet, it was
shown that under many circumstances, it may be easier to
diagnose the signal properties from the ridges of the Carte-
sian wavelet transforms, and then to infer other properties
using the transformation equations derived in Sect.4.3. But
since there are a number of special situations – for example,
the difference between prograde and retrograde precession –
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we have provided the tools necessary to assess the parameter
space for a given application and then to identify the appro-
priate procedure. It should also be pointed out that the par-
ticular parameters which appeared as the most physically in-
teresting in this application may not be so in other instances.
For example, here the negative rotary frequency appears as
the essential quantity, but in an analysis of planetary orbits
one might expect the orbital frequency and precession rate to
be the most relevant.

In the application, it was found that this method could ex-
tract the time-varying elliptical signal, leaving behind a resid-
ual containing only very minor fluctuations at the ellipse pe-
riod, despite the fact that the residual itself presents substan-
tial and often rapid variability. A display of the looping time
series can then be replaced with a more detailed plot show-
ing the estimated instantaneous geometry of the time-varying
elliptical signal. Examination of mean quantities over an or-
bit support the hypothesis that slow variations in the ellipse
structure are due to the float migrating across material sur-
faces. This is seen in two ways: first, the geometric mean
radius – but not the simple bandpass estimate of radius –
closely follows changes in temperature; second, the geomet-
ric mean radius versus geometric mean velocity collapse to
a line, suggesting an underlying eddy in near solid-body ro-
tation. While the reason for the elliptical trajectories has not
been demonstrated here, a likely candidate is the distortion of
a circular eddy into an ellipse by a background strain field.

We believe that this method will be applicable in a broad
range of circumstances. However, it is important to address
the role of randomness, and in particular of instrument noise.
Instrument noise can easily generate nonzero eccentricities,
particularly if the noise is anisotropic, which may indeed be
the case in the data presented here. Noise may also lead to
spurious fluctuations in the instantaneous frequency curves,
and is expected to be particularly troublesome when infer-
ring a weaker signal component from two stronger diagnosed
components. It is possible to create rigorous statistical es-
timators, together with confidence intervals, for all the im-
portant physical properties, a task which is currently being
undertaken.

The present work has focused on establishing the proper-
ties of the method. For the specific problem of the eddy-
trapped float, one may now turn to addressing interesting
physical questions. For example, one would like to distin-
guish between different types of transitions: 1) float profil-
ing within a fixed eddy; 2) conservative adjustment, i.e. eddy
evolution conserving mass and circulation; and 3) noncon-
servative transitions, e.g. eddy mergers or mass expulsions.
Building on the work presented here, one may form quanti-
ties expected to be conserved under different types of transi-
tions, so that identifying and classifying such transitions may
be approached as a statistical problem.

This method represents a new tool for the study of La-
grangian turbulence. It is different from other methods cur-
rently used for treating Lagrangian data in that it is grounded

in time/frequency theory. This permits the fundamental
time dependence of the observed quantities to be explic-
itly resolved. However, the relationship between this “La-
grangian time/frequency” perspective and the underlying Eu-
lerian structures of basic fluid turbulence (e.g.McWilliams,
1984; Lapeyre et al., 2001) needs to be established. By ap-
plying this method to idealized numerical models, one could
gain valuable insight into the performance of the method and
its interpretation. These lessons could then be applied when
studying the real ocean, where it is hoped this method could
substantially increase our understanding of the behavior of
oceanic coherent eddy structures.

Appendix A

Construction of the analytic signal

The analytic signal (Boashash, 1992) is constructed through
a time-domain convolution,

x+(t) ≡ 2A ? x(t) ≡ Ax(t)e
iφx (t), (A1)

of the original signal with the “analytic filter”

A(t) ≡
1

2

[
δ(t)+

i

tπ

]
. (A2)

The Fourier transform of the analytic filter is the unit
step function. This filtering operation therefore corre-
sponds in the frequency domain to setting the ampli-
tudes of all negatively-rotating Fourier components to
zero, and doubling the amplitudes of all positively-rotating
Fourier components. The original signal is recovered by
x(t)=<{x+(t)}=

[
x+(t)+x

∗
+(t)

]
/2.

One may also form an analytic and an anti-analytic sig-
nal associated with a complex-valued time seriesz(t). We
define the analytic and anti-analytic signals of a complex-
valued time series as

z+(t) ≡ A ? z(t) ≡ A+(t)e
iφ+(t) (A3)

z−(t) ≡ A∗ ? z(t) ≡ A−(t)e
−iφ−(t) (A4)

in terms of which the original time series is recovered by
z(t)=z+(t)+z−(t). Note the difference in definition of the
analytic signal between the real-valued and complex-valued,
and also in the reconstruction formula. This is done in order
that amplitude have an intuitive interpretation in each case.

Appendix B

A fluid dynamical ellipse

In this section it is shown that the ellipse traced out by a fluid
parcel orbiting an elliptical streamfunction conserves the an-
gular momentum of the parcel. A streamfunctionϒ(x, y) de-
fines the horizontal velocity vector throughu=k̂×∇ϒ where
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k̂ is the vertical unit vector, “×” denotes the vector cross
product, and∇ is the horizontal gradient operator. There is
therefore no flow across streamlines, i.e. contours of constant
stream function, becauseu·∇ϒ=0. The elliptical stream-
function

ϒ(x, y) =
x2

a2
+
y2

b2
(B1)

is constant along ellipses with semi-major axesca and semi-
minor axescb, for any constantc.

Let the azimuthal and radial coordinates be8 andR; here,
these are independent variables, as opposed to parametric
functions of time as in the rest of the paper. In polar coor-
dinates, the streamfunction is

ϒ(R,8) = R2

[
cos28

a2
+

sin28

b2

]
(B2)

with azimuthal velocity

V8(R,8) =
∂ϒ

∂R
=

2

R
ϒ(R,8). (B3)

Thus, the angular momentum of a unit-mass parcelM=V8R

is constant along a streamline. Alternatively, we may sim-
ply note that between two elliptical streamlines,V81R must
be constant by continuity, but1R is proportional toR and
henceV8R must also be constant.

The ellipse traced out by a fluid particle orbiting an ellipti-
cal streamfunction is therefore a constant-frequency ellipse,
shown in Sect.4.1 to conserve angular momentum. Such
a streamfunction is created by a constant vorticity superim-
posed on a constant strain,

ϒ(x, y) =
Q

4

[
x2

+ y2
]

+
S

4

[
x2

− y2
]

(B4)

whereQ is the vertical component of the vorticity andS
is the rate of strain, directed at forty-five degrees to the x-
axis. ForQ>0 and|S|<Q this is an elliptical streamfunc-
tion with ellipse parameterλ=−S/Q and with major axis
oriented along the x-axis.

This very simple discussion applies to a purely two-
dimensional eddy. However,Ruddick(1987) showed that a
more realistic model of an oceanic coherent eddy subjected
to strain behaves similarly, with an initially circular eddy
again distorting to become an ellipse.

Appendix C

Notes on computations

All functions necessary to perform the wavelet ridge analysis
presented in this paper are included in the Jsignal module of
Jlab, a freeware Matlab toolbox available at the first author’s
web site,http://www.jmlilly.net. All functions were written
or co-written from scratch by the first author, and require no

additional toolboxes other than those included with standard
Matlab. In the interest of presenting high quality-software,
heavy use is made of automated testing. At this writing, a
new version of Jlab, with new functions, improvements, and
bug fixes, is being posted every few months.

Most of the functions pertaining to diagnosing the prop-
erties of an elliptical time series are straightforward appli-
cations of equations presented here and are fully explained
by the documentation. Routineecconv converts between
different eccentricity measures, such asλ andε. The trans-
formation equations of Sect.4.3 are implemented byell-
conv . The properties of the velocity ellipse are determined
by elldiff using the equations presented in AppendixD.
Measures of the instantaneous and mean radius and velocity,
presented in Sect.6, are implemented byellrad andel-
lvel , respectively. The routineellipseplot is a plot-
ting tool.

The wavelet transform and ridge analysis itself, how-
ever, are involved computations, and therefore some addi-
tional comments seem appropriate. The generalized Morse
wavelets are computed bymorsewave , taking into account
the fact that these wavelets are defined in the frequency do-
main. The wavelet transform, Eq. (6), is implemented by
wavetrans . This routine uses a fast frequency-domain al-
gorithm, permits different choices of boundary conditions at
the time series endpoints, and may be applied to a multi-
complement dataset stored as a matrix.

The ridges – curves satisfying Eq. (17) – are found by
ridgewalk using a fast and nearly loopless algorithm to
identify the ridge points, which are then chained together
into ridge curves. Ridge curves do not wrap around from
the end to the beginning of the time series. Occasional am-
biguities in chaining ridge points together are resolved by at-
tempting to make the amplitude along the ridge continuous.
The user may specify both the minimum amplitude of a ridge
point, and the minimum length of a ridge curve. This routine
also supports transforms of multi-component datasets. The
output ridge parameters may be converted from head-to-tail
column vectors to arrays and back using themat2col and
col2mat from the Jdata module.

The transform values are interpolated to the exact ridge
location, which generally lies between discrete levels of the
wavelet transform, usingridgeinterp . This leads to a
substantial improvement in the behaviors of frequencies de-
rived from the ridge phases.

Appendix D

Expansions for small eccentricity

In terms ofκ andλ, the semi-major and semi-minor axes are

a(t) = κ
√

1 + |λ| (D1)

|b(t)| = κ
√

1 − |λ| (D2)
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while the Cartesian amplitudesAx andAy [ (30) and (31)]
are

Ax(t) = κ
√

1 + |λ| cos(2θ) (D3)

Ay(t) = κ
√

1 − |λ| cos(2θ) (D4)

and finally the primary and secondary rotary amplitudes are

A>(t) =
κ

√
2

√
1 +

√
1 − λ2 (D5)

A<(t) =
κ

√
2

√
1 −

√
1 − λ2. (D6)

The phase of thex-component, momentarily expressed in
terms of the amplitudes of the primary and secondary rotary
components, is

φx(t) = φ + = ln
[
A>e

isgn(λ)θ
+ A<e

−isgn(λ)θ
]

(D7)

= φ + sgn(λ)θ

+= ln
[
1 + (A</A>) e

−i2sgn(λ)θ
]

(D8)

while the phase of they-component is

φy(t) = φ + = ln
[
sgn(λ)A>e

isgn(λ)θ

−sgn(λ)A<e
−isgn(λ)θ

]
− π/2 (D9)

= φ + sgn(λ) [θ − π/2]

+= ln
[
1 − (A</A>) e

−i2sgn(λ)θ
]
. (D10)

The amplitudes become

a(t) = κ
[
1 + |λ|/2 − λ2/8 + |λ|3/16+O(λ4)

]
(D11)

|b(t)| = κ
[
1 − |λ|/2 − λ2/8 − |λ|3/16+O(λ4)

]
(D12)

Ax(t) = κ [1 + |λ| cos(2θ)/2

−λ2 cos2(2θ)/8 +O(|λ|3)
]

(D13)

Ay(t) = κ [1 − |λ| cos(2θ)/2

−λ2 cos2(2θ)/8 +O(|λ|3)
]

(D14)

A>(t) = κ
[
1 − λ2/8 +O(λ4)

]
(D15)

2A<(t) = κ
[
|λ| + |λ|3/8 +O(|λ|5)

]
(D16)

when expressed as series expansions with respect toλ. To
expand the Cartesian phases, note

A</A> = |λ|/2 + |λ|3/8 +O(|λ|5) (D17)

together with

ln(1 + r) = r − r2/2 +O
(
r3

)
(D18)

valid for |r|2 < 1 (Dwight, 1961, # 601). One then finds the
phases of thex- andy-components are

φx(t) = φ + sgn(λ) θ − λ sin(2θ) /2

+λ|λ| sin(4θ) /8 +O(λ3) (D19)

φy(t) = φ + sgn(λ) [θ − π/2] + λ sin(2θ) /2

+λ|λ| sin(4θ) /8 +O(λ3) (D20)

from which Eqs. (49) and (50) follow.

Appendix E

The velocity ellipse

The parameters of the velocity ellipse are immediately deter-
mined from those of the position ellipse. Writing

z′(t) = Ã+(t) e
iφ̃+(t) + Ã−(t) e

−iφ̃−(t) (D21)

and noting thatz′+(t) and z′−(t) remain analytic and anti-
analytic, respectively, one finds

φ̃+(t) = φ+(t)+ = ln

(
d lnA+

dt
+ i

dφ+

dt

)
(D22)

φ̃−(t) = φ−(t)+ = ln

(
d lnA−

dt
+ i

dφ−

dt

)
(D23)

Ã+(t) = A+(t)×

√(
dφ+

dt

)2

+

(
d lnA+

dt

)2

(D24)

Ã−(t) = A−(t)×

√(
dφ−

dt

)2

+

(
d lnA−

dt

)2

. (D25)

However, determination of the parameters of instantaneous
frequency curves ofz(t) from those of its derivativez′(t)
is not so simple, because it would involve solving two sets
of two coupled nonlinear differential equations. The period-
average speed, root-mean-square speed, and geometric mean
velocity can now be found by using the comparable measures
defined for the radius, substituting the ellipse parameters of
the velocity ellipse for those of the position ellipse. In the
above equations one notices the occurrence of the “ε” pa-
rameters which are the ratios of a fractional rate of change of
amplitude to a frequency.

Acknowledgements.The first author was supported by a
Chateaubriand Fellowship from the French government, by a
fellowship from the Conseil Scientifique of the Université Pierre
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