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Abstract 

The baroclinic instability of a zonal current on the beta plane is studied in the context of 

the two-layer model  on the beta plane when the shear of the basic current is a periodic function 

of time. The basic shear is contained in a zonal channel and is independent of the meridional 

direc-tion. The instability properties are studied in the neighborhood of the classical, steady 

shear, threshold for marginal stability.  

It is shown that the linear problem shares common features with the behavior of the well-

known Mathieu equation. That is, the oscillatory nature of the shear tends to stabilize an other-

wise unstable current while; on the contrary, the oscillation is able to destabilize a current whose 

time-averaged shear is stable. Indeed, this parametric instability can destabilize a flow that at 

every instant possesses a shear that is subcritical with respect to the standard stability threshold. 

This is a new source of growing disturbances. 

The nonlinear problem is studied in the same near neighborhood of the marginal curve. 

When the time averaged flow is unstable the presence of the oscillation in the shear produces 

both periodic finite amplitude motions and  aperiodic behavior. Generally speaking, the 

aperiodic behavior appears when the amplitude of the oscillating shear exceeds a critical value 

depending on frequency and dissipation. When the time averaged flow is stable, i.e.,  sub-

critical, the presence of finite amplitude aperiodic motion occurs when the amplitude of the 

oscillating part of the shear is large enough to lift the flow into the unstable domain for at least 

part of the cycle of oscillation. 

A particularly interesting phenomenon occurs when the time averaged flow is stable and 

the oscillating part is too small to ever render the flow unstable according to the standard criteria. 

Nevertheless, in this regime parametric instability occurs for ranges of frequency that expand as 

the amplitude of the oscillating shear increases. The amplitude of the resulting unstable wave is a 

function of frequency and the magnitude of the oscillating shear. For some ranges of shear 

amplitude and oscillation frequency there exist multiple solutions.  

It is suggested that the nature of the response of the finite amplitude behavior of the 

baroclinic waves in the presence of the oscillating mean flow may be indicative of the role of 

seasonal variability in shaping eddy activity in both the atmosphere and the ocean. 
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1. Introduction 

The theory of the baroclinic instability of zonal flows has, by now, a long history and the 

results of decades of investigation have placed the standard theory on firm ground. Conditions 

for instability, bounds on growth rates, and phase speeds of unstable modes have been specified 

and even finite amplitude theory has been developed. A review of some aspects of the standard 

problem can be found in several texts, e.g., Pedlosky (1987). 

Nevertheless, even apparently minor variations on the basic problem can produce 

substantial alterations in the stability problem and consequently new features in the dynamics of 

the wave and eddy activity that such instabilities produce. In the present paper we study perhaps 

the simplest version of one such alteration, the instability of time dependent baroclinic flow. 

Such time dependence occurs naturally on many time scales, e.g., tidal, seasonal and at scales of 

the internal dynamics of the extended system in which the instability process is a component. 

We consider the standard two-layer model in its simplest form in which the basic shear is 

independent of the meridional coordinate, y, on the beta plane, i.e.,  the Phillips model (1954). 

The additional feature on which we concentrate our attention is the role of time variation in the 

shear of the basic state. The acceleration of the basic flow naturally requires an implicit forcing 

of the basic zonal state. It is not necessary to consider that forcing explicitly, only its resultant 

effect on the stability properties of the current. We will also idealize the time dependence of the 

flow as a periodic oscillation of the current�s vertical shear but as we discuss below that 

idealized periodicity of the current to some extent can be relaxed without altering significantly 

the nature of our results. 

There are three major consequences of the presence of the oscillating mean flows on the 

stability problem. First, the oscillating shear can give rise, within linear theory, to parametric 

instability of a flow that at each instant of time has a shear below the critical value for instability 

according to standard theory. This allows the development of self-excited baroclinic waves for 

shears normally considered stable.  Similarly, the oscillation can stabilize otherwise unstable 

shears. Second, the finite amplitude theory gives rise to aperiodic behavior in cases for which the 

steady shear formulation always yields an eventual steady solution. Third, and most 

interestingly, the parametric instability can give rise to multiple solutions in the parameter range 

below the standard threshold and a consequent hysteresis in the amplitude response as a function 

of frequency. 
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In section 2 we discuss the formulation of the linear problem and describe some of the 

salient features of the linear problem. We do this in the case in which the oscillation of the mean 

flow occurs on a fairly rapid time scale of the same order as the advective time of the flow. Since 

the stability properties can be shown to be more sensitive to the oscillation of the mean shear 

when the frequency is lower, of the order of the growth rate, we then restrict attention to such 

frequency ranges and derive a governing linear equation for the instability which is identical to 

the classical Mathieu equation, (see, for example, Morse and Feshbach, 1953). The well-known 

results of the study of that classical equation are described in section 2. Section 3 describes the 

development of the finite amplitude theory for mean shears that are nearly critical according to 

the classical theory for time independent flows. The nonlinear theory is developed for a form of 

dissipation which guarantees that the steady flow problem will yield disturbances that eventually 

equilibrate to steady wave amplitudes. Therefore, the resulting periodic and aperiodic behavior 

we subsequently find can be attributed unequivocally to the oscillation of the mean shear. 

Section 4 discusses the nonlinear theory when the time-averaged shear is slightly supercritical 

and its oscillating part renders it stable for part of the cycle of the mean shear. A preliminary 

attempt is made to address the question of the parameter space in which various forms of wave 

amplitude behavior are observed but the fact that the problem depends fundamentally on four 

independent parameters (amplitude of mean shear, amplitude of oscillating shear, frequency of 

oscillation, and the size of the dissipation) renders a compete census of parameter space 

practically impossible. 

Section 5 describes the nonlinear case in which the mean shear is stable and the oscillation, 

if strong enough, can produce time intervals of instability. In this case the flow, although stable 

in the mean, becomes episodically unstable and for small enough dissipation becomes aperiodic 

for a range of frequencies of the mean shear�s oscillation. Section 6 describes perhaps the most 

unusual of the cases discussed. In this section we treat shears in which both the mean shear and 

the instantaneous shear are always subcritical with respect to the classical shear threshold for 

instability. The possibility for parametric instability destabilizes these weak shears and the 

resulting amplitude behavior is described both numerically and analytically. It is shown that, as a 

function of frequency, there are ranges in which two solutions are possible. Either a large, finite 

amplitude wave is possible for some initial conditions, or the final state consists of a wave-free 
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state for other initial conditions for the same parameter settings. The hysteresis, which follows 

from this behavior, is described. 

Section 7 summarizes and discusses our results. We are aware of the many idealizations of 

our treatment of the problem but we have, we think naturally, taken to think of the cycle of the 

imposed shear as a type of seasonality within the restricted dynamics of our system and we 

believe that the behavior we describe here is suggestive of the role seasonality may play in 

shaping the degree of eddy activity and behavior in more complex systems like the atmosphere 

and ocean. 

2.  Formulation of the Linear Problem 

We consider the stability of the zonal flow in the standard quasi-geostrophic two-layer 

model on the beta plane (see, for example, Pedlosky, 1987). The governing equations for the 

nonlinear evolution of the disturbances are, in non-dimensional form: 
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Here the subscript n refers to upper (n=1) and lower (n=2) layers . The disturbance 

streamfunction is φn (x,y,t) in each layer. The perturbation potential vorticity in each layer is 

defined as: 
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The variables in the definition for F  are standard, f is the Coriolis parameter, L is the width 

of the channel, g′ is the reduced gravity while H is the thickness of each layer. Note that 

0 ≤ y ≤1. 
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The potential vorticity gradient of the mean flow is: 

),()1( 21 UUF
dy

dQ nn −−−= β   (2.3) 

where β is the planetary vorticity gradient. The zonal velocities in each layer Un are functions of 

time. The nonlinear advection of perturbation potential vorticity is given by the Jacobian of φn 

and qn with respect to x and y. For the linear problem this term is ignored. The dissipation is 

represented as a simple decay law for potential vorticity with coefficient µ. This form is chosen 

purposely for, as has been shown before (Klein and Pedlosky, 1992), such a form for the dissi-

pation for the case of steady shears will force the final, finite amplitude wave state to equilibrate 

to a steady state rather than yielding either self maintained periodic motions or chaotic behavior. 

In this way we can identify periodic or chaotic behavior in the present problem as being due to 

the presence of the oscillating basic shear. 

We first consider the linear problem. Ignoring the Jacobian and considering solutions of the 

form 

φn = Anei k x sin(my),   (2.4) 

where m is any integral multiple of π. We obtain two coupled ordinary differential equations in 

time for the wave amplitudes, 
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K 2 = k2 + (m)2
. 

We have apparently ignored the presence of dissipation. However, in the linear problem it 

is easily restored in the final result by simply subtracting µ from the growth rate  to be obtained 

without dissipation. We recall that the mean flow is a function of time and, to this point, 

arbitrary. 
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It is convenient to recast the problem in terms of the barotropic and baroclinic stream 

function amplitudes, i.e.,  writing 
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we obtain: 
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Consider the situation in which Um  is independent of time and only the shear varies (this is 

a restriction easily relaxed with no loss of generality). Writing 
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The last relation (2.8h) implies that we have scaled time with the advective time scale. We 

obtain the ordinary differential equations for the amplitudes BB and BT, 
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The quantity δ (t)  represents the increment of the shear above a critical value. For 

example, for each wave number a the problem with the steady shear, i.e.,  δ =0  possesses a 

critical value of shear given by  

b = a4 (4 − a4 )[ ]1/2
.
  (2.10) 

We choose b to be equal to this value so that we are examining the role of the oscillating 

shear in the neighborhood of the classical marginal curve for instability.  

For small δ, i.e.,  near the marginal curve,  a perturbation expansion is useful. We let ∆ be a 

small parameter and 

δ = G + H cosωϑ,   (2.11) 

where G = O(∆), H = O(∆1/2). 

 

Thus  G  represents a small,  additional steady increment of the shear above critical and H  

represents a larger  value of the amplitude of the oscillating part of the shear. 

We also introduce a slow time variable T = ∆1/2ϑ  and allow the amplitudes to be functions 

of both ϑ  and T. 

An expansion of the form 

BB,T = BB,T
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(1) + ∆BB ,T
(2) + ...  (2.12) 

easily yields  the following results: 
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and at O(∆1/2)  



 9 

( )

( ) )(32
22/1

)(
)1(

)(2
22/1

)1(

cos2sin

,sincos2

o
B

o
B

T

o
BB

BirriH
T

B
iB

BirrHB

ωϑωϑω
ω∂

∂

ωϑωωϑ
ω

+
∆

+=

+
∆

−=

 (2.14 a,b) 

while removing secular terms at order ∆ yields the evolution equation, 
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Thus, while an increment of the steady shear above critical, G, would give rise to 

exponentially growing disturbances it is evident from (2.15) that an oscillating shear  of either 

sign will stabilize the flow, a balance occurring when G = H 2 /ω2. 

This stabilization of the unstable shear flow by an oscillating component is analogous to 

the well-known stabilization of the unstable equilibrium of an up-ended pendulum by a periodic 

oscillation of the point of support of the pendulum.  

Similarly, the oscillation can destabilize a subcritical shear if the frequency is appropriately 

tuned. One can find that phenomenon with the equation set (2.9 a,b) but as is apparent from 

(2.15) the effect of the oscillating shear will be more powerful at lower frequencies. In the 

treatment given above a relatively large O(∆1/2)  value of H  is needed. However, if the 

frequency is of the order of the growth rate instead of the advective time as in the previous 

treatment the linear problem actually simplifies while enhancing the role of the oscillating shear. 

If one returns to (2.9), (2.10) and (2.11) and rescales the frequency such that 

ω → ∆1/2ω    (2.16) 

a development analogous to (2.12) et. seq. gives rise to the amplitude equation, 
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This is the classical Mathieu equation (see, for example, Morse and Feshbach (1953) or Cole 

(1968). 

 

Figure 1a shows the stabilization process described  above as given by (2.17). Here G =.01, 

H = .52, ω =2, and µ =0.001. Although the time averaged shear is supercritical the time varying 

shear stabilizes the perturbation. 

In the current notation destabilization occurs at a series of critical frequencies for the case 

when the mean shear is stable, i.e., when G < 0. In the limit H! 0 these frequencies are given as 

follows. For slightly sub-critical shears a natural frequency of oscillation of the system is given 

by 

[ ] 2/122 Gr−≡σ   (2.18) 

and the critical frequencies for so-called parametric instability occur when  

,...2,1,2 == n
n

σω   (2.19) 

As H  increases the range of ω  for which instability occurs expands until for substantial 

enough H  the system is unstable for most frequencies. The reader is referred to the references 

already given for a complete discussion of this linear system. The perturbations with the largest 

growth rates correspond to the n = 1 mode corresponding to a frequency which is twice the 

natural frequency σ. Note, that since σ  depends on the closeness of the shear to the marginal 

curve the time scales involved can be very long. 

Figure 1b shows the amplitude behavior for the linear system when we have chosen a  to 

be slightly greater than the wave number of minimum critical shear for the classical problem 

(a = (2.1)1/4) for a value of G = -1 and H = 0.7. Thus, the time averaged shear is stable and, 

indeed, the instantaneous value of the shear is always less that the critical of the steady state 

problem. Nevertheless, due to the parametric instability the disturbance will exponentially grow 

while oscillating at the frequency σ. 

The destabilization of hydrodynamic systems by parametric instability when the 

background state is time dependent is not a new phenomenon. For the case of shear flows Von 

Kerczek (1982) showed both the parametric stabilization and destabilization of plane Poiseuille 
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flow. Rosenblat (1968) examined the parametric instability of the Taylor centrifugal instability 

again showing the Mathieu-like properties of the linear fluid system. 

In fact, the linear problem can be extended in several interesting directions. From the point 

of view of this study perhaps the most interesting result in the mathematical literature on the 

Mathieu equation concerns mean flows whose time dependence is not periodic. It is possible to 

show (Davis and Rosenblat 1980, Zounes and Rand, 1998) that if the function δ(t) is made up of 

a series of periodic components each with frequency ωj the analysis given above follows 

whenever σ is close to each one of the infinite set given by (2.19) for each separate ωj. That is, 

each oscillatory component of the basic shear flow can be treated independently when the natural 

frequency coincides with one of the Mathieu resonance frequencies. Of course, if δ (t) is 

composed of a series of such terms of the form, 

,cos)( ∑+=
j

jj THGt ωδ   (2.20) 

the amplitude of each will be diminished if the overall variance amplitude of the oscillation is 

fixed. Since the growth rate of the most dangerous instability (corresponding to n =1 in (2.19)) 

will scale with Hj  the parametric instability will weaken as more frequencies are added. On the 

other hand, the set ωj need not correspond to frequencies, which are rational multiples of each 

other so that there is no necessity to restrict attention to shear flows that are strictly periodic in 

time. In all our calculations and discussion of the nonlinear problem we will, for simplicity, 

restrict attention to a single periodic component but it is important to realize that this is much 

less restrictive an assumption than it first appears. 

When the frequency is small a WKB solution to (2.17) is possible. Using standard methods 

one obtains the asymptotic solution for small ω but G and H of O(1) in the form, 
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2/12exp(4/1 ∫ ′=
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tdrABo δ
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  (2.21) 

Positive δ contributes to growth but negative δ  instead leads to an oscillation and, 

consistent with (2.15) large enough H  can stabilize the linear problem. However, if the period of 

time for which δ is positive is large enough the amplitude will grow sufficiently to invalidate 
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linear theory. It seems rather artificial to talk about ultimate linear instability or stability if the 

amplitude has already exceeded the limits of linear theory for some interval of time. Therefore, 

rather than extend the linear problem we have found it of greater interest to examine the 

nonlinear extension of the problem. 

3.  The Nonlinear Problem 

The nonlinear theory is developed in the vicinity of the marginal curve of the classical 

steady shear problem. That curve relates the steady shear, β and the wavenumber K and is given 

by (2.10). The perturbation method required to achieve an amplitude equation governing the 

nonlinear evolution of the wave is standard and can be found described in many places, e.g., 

Pedlosky (1987) so that only the briefest outline of the development is given here. 

Returning to (2.1) we again write the shear of the basic state in the form: 

));cos(()),(1( tHGtUU sos εαωδδ +∆=+=  (3.1) 

α is an order one scaling constant that we will choose below and  ∆ is a measure of the super (or 

sub) criticality of the flow, ε =O(∆ 1/2) so that the frequency ω, which is order 1, represents a 

slow oscillation of the basic shear. We have related ∆ and ε by the scaling choice 

)( 2/1∆= Oε   (3.2) 

so as to  balance linear growth and nonlinear stabilization. 

 The dissipation is also chosen so that µ = O(ε). This sets, a priori, the growth rate, the 

oscillation period, and the dissipation time scale to be of the same order although subsequently 

we will allow numerical differences. 

The perturbation stream functions for the barotropic and baroclinic components of the flow 

are each expanded as: 
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We assume that each field is a function of both t, the advective scale, and T  the relatively 

slow growth rate time scale where T =εt . 

With ε <<1, insertion of the series (3.3) into (2.1) along with the scaling relations among ∆, 

µ  and ε, leads to the following results. 

At lowest order the fields are given by, 
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where an asterisk represents complex conjugation of the previous term. At the marginal curve, 

with (2. 8), 

c = cb + ct( ) 2,  (3.5) 

and where without loss of generality we have taken the mean flow of the two layers, Um,  to be 

zero. Furthermore, at the neutral curve, 
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At the next order in ε we obtain, 
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where the function ΦT (y,T ) represents a nonlinear (O(ε2)) correction to the mean shear.  

Continuing to the next order in ε involves some very heavy algebra but a straightforward 

calculation in which secular terms are removed to render the problem uniformly valid to this 

order leads to two coupled equations for the unknowns ΦT (y,T ) and AB. 
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Solutions of (3.8 b) can be found by first solving 
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where for notational simplicity we have defined AB = A  and where � P (T )  is a function of T  that 
must satisfy  
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The equation for the wave amplitude then becomes, 
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where N is a complicated algebraic expression given in appendix A. 

A minor rescaling will put the above equations in a standard form clear of most parameters. 
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leads to the final set of amplitude equations, 
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where α has been chosen to be the ratio between T and τ, i.e.,  σo and µ has been redefined, 

,µ
εσ

µ
→

o

  (3.14) 

In this form, (3.13) will be the system investigated in more detail in the following sections. 

If H = 0, that is, if the shear of the basic state is independent of time, the system (3.13) can be put 

in the form of the Lorenz equations (Klein and Pedlosky, 1992). A detailed comparison of the 

two systems shows, however, that this set is equivalent to the Lorenz equations for a parameter 

setting for the latter in which the Prandtl number for the Lorenz equations is equal to unity. For 

such a setting of the Prandtl number in the Lorenz equations the solutions always reach a steady 

state in finite amplitude. No chaotic or self-maintained periodic behavior can take place. This is 

an important consideration for it implies that if we find periodic or aperiodic solutions with non-

trivial time dependence it is due to the presence of the time varying shear, i.e., H different from 

zero. 

Figure 2 shows such an equilibration occurring for the steady flow case, i.e.,  for H = 0. 

The solution swiftly equilibrates to the equilibrium value predicted by (3.13). In the next 

sections we take up the behavior of the system (3.13) when the shear is time dependent, i.e.,  

when H ≠ 0. 

4.  Finite-Amplitude Solutions G  > 0 

Since the time scale has been chosen to correspond to the linear growth rate for slight 

supercriticality the only significant values for G are either �1 (subcritical states), 0 (precisely 

marginal states) or +1 (supercritical states). In this section we describe the role of time 

dependent shear when the flow is supercritical, i.e., G = 1.The behavior of the solutions is a 
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complex function of the parameters H, µ,  and ω and it is beyond the scope of this paper to give 

more than an indication of that dependence. 

 Figure 3 shows an overall regime diagram  in  the (H, ω)  plane constructed for the case 

µ = 0.01 and G = 1. Three qualitatively different behaviors are noted in the figure. Smooth 

periodic solutions with the period of the shear�s oscillation are denoted with circles, essentially 

periodic but ragged oscillations are denoted by squares and aperiodic solutions with broad 

spectra with no sharp peaks are denoted by asterisks.  

Figure 4 shows the solution for relatively small  H =0.1, small enough so that the flow is at 

all times above the critical shear. The disturbance amplitude has settled into a finite amplitude 

limit cycle at the frequency of the shear�s oscillation.  

Spectral analysis shows that, as is evident by eye, the solution is dominated by a single 

frequency with minor contributions, many orders of magnitude smaller, of higher harmonics of 

this fundamental. 

 For H  >1 the solution background flow experiences periods of subcriticality even though, 

on average, the flow is supercritical. For some values of H>1 the solution, while remaining 

periodic becomes rather intricate containing a rich frequency content. Figure 5 shows such an 

oscillation  (for  H  =1.5) and its rather lovely phase plane portrait, which emphasizes the 

complexity of the solution while remaining periodic. Finally, for an intermediate value of H, 

essentially aperiodic, chaotic behavior is obtained. Figure 6 shows the solution at a smaller value 

of H  = 0.4 and a smaller damping rate (µ =.001) which clearly shows aperiodic behavior. Such 

behavior is also found for larger dissipation (µ =0.01). 

A wide array of behavior is possible especially when  H  is large enough to render the flow 

stable for some period of time and the dissipation is small enough. This is especially true if ω is 

small. Then the solution grows rapidly during periods of positive supercriticality only to decay 

when the supercriticality is negative. For small µ some disturbance is maintained until the next 

season of growth but the slightly different value of the amplitude occurring at the initiation of the 

new period of growth renders the solution aperiodic. Figure 7 shows such a case when G  =1, 

H=1.5  µ =.001, and ω = .01. This, in comparison with the solution of Figure 5, demonstrates a 

typical dependence on dissipation. There is increased aperiodic behavior found for smaller 

dissipation.  
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 The first panel of Figure 7 shows the total time history in which the aperiodic nature of the 

solution is evident. Panel 7b shows the detail of the last 5% of the  time history. In this figure the 

supercriticality is shown with a dashed line superimposed on the solution. It is clear from the 

figure that the amplitude grows rapidly during periods of positive supercriticality and then is 

almost quenched during periods of subcriticality. However, the nonlinear oscillation occurring in 

the period of subcritical shear forms the initial state for the subsequent season of growth. Since 

the nonlinear oscillation, (of the nonlinear inviscid type discussed in Pedlosky (1987)) during the 

interval of subcriticality has a period incommensurate with the period of the background shear 

the initiation of growth always  starts with different values of the amplitude leading to an overall 

aperiodicity in behavior. 

5.   Finite-Amplitude Solutions G < 0, H > 1. 

When G < 0 the time averaged shear is always subcritical. A large enough value of H will 

raise the shear temporarily above the classical threshold. The behavior of the system when H > 1 

is discussed in this section. Values of H < 1 are discussed in the following section. 

Figure 8 is a rough regime diagram for G = -1 in the (H,ω ) plane. For small ω and H < 1 

most solutions, except for a region described in section 6, eventually decay to zero. There is an 

abrupt transition at H = 1. For H ≥1 the shear flow is, for some time intervals, above the 

classical curve denoting instability. For H only slightly greater than 1 this results in complex 

periodic solutions of the kind shown in Figure 9 where H = 1.1. Again the intervals of positive 

and negative instantaneous values of supercriticality are given by the dashed curve. The intervals 

of slight instability (where the dashed curve is above the zero line) correspond to the intervals of 

maximum disturbance amplitude. Again, the result is easily understood as a seasonal interval of 

instability occurring slowly enough to allow the perturbation to respond in a classical way to the 

opportunity for baroclinic instability. What is surprising is the nearly precise periodicity of the 

solution as demonstrated by the phase plane portrait in Figure 9b. On the other hand, larger 

values of H generally lead to aperiodic behavior (although as we see in Figure 8 there is a 

complex frequency dependence on this transition). Figure 10 shows a calculation for the same 

values of ω,µ and G  but with a value of H = 2.2. Again, the strong seasonal transition between 

intervals of instability and stability for H > 1 renders the solution aperiodic and to the eye, 

chaotic. Again, a spectral analysis of the solution, not shown here, demonstrates a broad power 

density spectrum with no sharp peaks although there is a broad concentration of spectral power 
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around the seasonal frequency that determines the extended intervals of instability. Indeed, the 

maximum value of the amplitude always occurs during the period of positive δ. In all these cases 

the interpretation fundamentally follows from simple, quasi-steady ideas about the instability. 

Growth occurs when the shear exceeds the classical critical value and the nonlinearity acts to 

yield periodic or chaotic finite amplitude solutions depending on the degree of supercriticality 

and dissipation. The principal physical point of interest is the fact that this behavior is observed 

in a parameter range in which the time-averaged shear is stable. If one were to employ the time-

averaged shear as the basic state the wave solutions would decay away to zero. It is the seasonal 

excursion into temporary instability that allows the persistent  presence of the unstable waves. 

The situation is even more interesting when both the time-averaged shear and  its instantaneous 

value are always subcritical with respect to the classical criterion a situation described in 

section 6. 

6.   G<0, H< 1 Nonlinear Dynamics and Parametric Instability 

When G = -1 and H < 1 the supercriticality δ is always negative and conventional 

application of the stability conditions would suggest that the flow remains stable to baroclinic 

disturbances. This turns out not to be the case for, as we have noted in section 3, the possibility 

of parametric instability can destabilize the shear flow in this parameter range. Moreover, as H  

increases from zero the range of frequencies for which parametric instability occurs broadens 

rapidly. In this section we take up the question of the nonlinear dynamics of the baroclinic 

system in this parameter range.  

Returning to the fundamental equations (3.13 a,b) it is first useful to consider an analytical, 

asymptotic solution that turns out to be reasonably accurate rather far beyond its formal range of 

validity. We suppose that H  in (3.13a) is small and write 

H = γ h, γ << 1.  (6.1) 

We recall that  H  already represents a small increment in the shear so (6.1) is an further 

asymptotic perturbation. 
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We introduce the amplitude parameter η = γ1/2 and write 
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For the purposes of this expansion we assume µ =O(γ1/2). 

We define, as before, 

σ = −2r2G( )1/2
> 0

    (and real).  (6.3) 

Inserting the expansions (6.2 a,b) into (3.13 a,b) results at lowest order in, 
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whose solutions are: 
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The constant in (6.5 b) can be determined from the integration of (3.13b) over a period of 

the solution, namely, 

P o = 2Bo
2,  (6.6) 

where an overbar represents an integral over a period of the solution 2π /σ . 

This determines the constant as 

const. =
a2 + b2

2
,
  (6.7) 
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so that 

( ) ).2sin(2/)2cos()( 2222 TabTbabaPo σσ +−++=  (6.8) 

At next order we find simply that B1 = 0 while at O(γ) we obtain the following two equa-

tions as solvability conditions, 
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as well as the standard Mathieu condition ω = 2σ . We shall subsequently relax this latter 

condition. 

Writing 

a = Rcosθ, b = R sinθ,   (6.10 a,b) 

leads to the solution, 
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Figure 11 shows a solution for H = 0.8 which is not small according to the scaling appar-

ently required by (6.1). However, the solution is periodic as predicted with an amplitude for B 

that is around 0.32, i.e.,O(1) but very close to the prediction of (6.11a). The agreement between 

the asymptotic result given by (6.11a) and the full numerical results is shown in Figure 11b. The 

agreement is seen to be very good even up to the limiting value H = 1. Similar results with good 

agreement between analytic and numerical results have been obtained at the next lowest critical 

Mathieu frequency ω = O(0.6). In fact as H  increases the frequency range over which parametric 

instability occurs increases with consequent finite amplitude periodic oscillations of the limit 

cycle type found over a larger and larger range of ω.  

Figure 12  shows the domain of periodic solutions. Positions in the plane where finite 

amplitude periodic solutions are found are indicated by an open diamond. Two regions are 
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evident; each broadens out  in ω for increasing H. The dominant solution at ω = 2σ is periodic 

with frequency σ and  the harmonics 3σ. A somewhat weaker response occurs at ω =σ and is 

periodic with frequency σ and the 2σ and 3σ harmonics. For each mode the range of ω in which 

the instability is found eventually widen to include a large band of frequencies of O( σ). 

We have calculated the numerical solutions of (3.13 a, b) over a range of frequency for 

H = 0.2 near the Mathieu frequency ω =1.1303 (for K = (2.1F)1/4 ) and have found the solutions 

to be dependent on initial data. For all the calculations described in this paper our initial 

conditions have been  

[B(0), Ý B (0) + µB(0),P(0)] = [0.1,0.1,0]. 

 In doing so, we obtained the following results for the wave amplitude of the periodic 

solutions as shown in Figure 13. 

The open circles are the amplitudes of the periodic solutions obtained with the standard 

initial conditions. As ω increases above ~1.24 there is an abrupt crash in the amplitude of the 

oscillation. For these initial conditions the solution above that value of ω always tends to zero. If, 

however, one starts the calculation with initial conditions corresponding to the end-state values 

of the variables in the periodic solution at a slightly smaller ω the solution continues as a 

periodic solution with a larger amplitude as shown by the + signs in Figure 13. Above a certain 

value, which is ω ≈ 1.5 the periodic solution is no longer found. There appears therefore to be a 

range of ω (1.24 < ω < 1.55) in which there are two possible end states, either a wave free state 

or a finite amplitude oscillation. In the usual fashion such multi-valued response curves indicate 

a hysteresis in the system�s response as the frequency is altered in this range depending on 

whether the frequency is increasing slowly from below this interval, in which case the upper 

branch of the response curve would be followed or, if the frequency is slowly decreasing from 

above this interval,  the system moves along the lower (zero amplitude) branch of the curve. This 

implies rapid transitions between the two branches at the limits of the multi-valued region. 

We have tried to investigate the behavior analytically by the method leading to (6.11) by 

allowing the frequency  to vary as: 

ω = 2σ + f , f << 2σ .  (6.12) 
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Essentially repeating the analysis which led to (6.11) we now obtain: 

( )[ ] ./4)(
5

2 2/12/12222
2/1 σµσγη fhrR +−=  (6.13) 

This result qualitatively matches the upper branch in Figure 13 but does not yield an upper 

limit in frequency to the upper branch of the response curve. Of course, we do not expect (6.13) 

to be valid for f/σ = O(1) but we have no explanation for the discrepancy between (6.13) and the 

numerical result which seems to yield a definite upper limit to the frequency range for the upper 

branch.   

The most important result in this parameter range is the existence of finite amplitude waves 

in spite of the fact that the shear is, at every moment, subcritical with respect to the classical 

theory of baroclinic instability. It is due entirely to the parametric instability provoked by the 

time dependent shear of the basic state. Since realistic atmospheric and oceanic flows are never 

completely steady this would seem to suggest a larger domain of instability than is usually 

recognized by classical normal mode theory for steady flows. 

7.   Summary and Discussion 

The baroclinic instability of  the two-layer model on the beta plane in the classical model 

of Phillips (1954) has been extended in the present study to include the effects of time varying 

baroclinic shear. The linear problem in the neighborhood of the classical threshold of instability 

has the properties of the well-known Mathieu equation with the accompanying phenomena of the 

stabilization of supercritical shears and the destabilization of subcritical shears. 

The focus of the paper, instead, is on the nature of the finite amplitude behavior of the 

baroclinic waves in the neighborhood of the threshold when the vertical shear of the flow is a 

periodic function of time. By choosing a simple dissipation mechanism, the damping of 

perturbation potential vorticity, we can identify unsteady final states with the presence of the 

oscillating shear. 

For slightly supercritical shears we find that the presence of the oscillating shear can lead 

to irregular oscillatory wave amplitudes and a broad enough spectrum (in  frequency) to allow a 

characterization of the flow as chaotic. Since the parameter space of even this idealized problem 

is so large ( four dimensional) it has not been possible to survey the behavior very finely, but 
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roughly speaking the stronger the periodic component of the shear the more likely aperiodic 

behavior is. 

When the steady part of the shear is subcritical the problem neatly divides in two parts. For 

oscillating shears strong enough to �lift� the shear into the unstable region, even briefly, the 

wave amplitude dynamics can become aperiodic. Each episode of temporary supercriticality 

allows for finite amplitude growth that decays sharply as the shear sinks below the critical 

threshold. Enough of the disturbance remains to be excited by the next �season of instability� but 

the generally incommensurate periods of the seasonal cycle and the more rapid oscillations due 

to nonlinearity during the season of stability  generally ensures that the start of each new epoch 

of instability possesses different initial conditions thus leading to aperiodic behavior. We stress 

that this interesting finite amplitude growth and oscillation occurs, in this case, when the time 

averaged shear is subcritical.  

Even when the oscillating part of the shear is not strong enough to lift the shear into the 

classical supercritical region,  parametric instability  can destabilize the flow. This occurs even 

though at each instant the flow is subcritical. The parametric instability in finite amplitude leads 

to a periodic solution with the period of the Mathieu-like instability and its nonlinear harmonics. 

Our calculations have shown a direct dependence of the amplitude of the disturbance with the 

size of the oscillating component of the shear. We have also found, as shown in section 6, that 

for a range of frequencies, two solutions are possible. Either the wave eventually decays leaving 

a subcritical state impervious to further disturbance, or, a finite amplitude periodic oscillation 

can occur. The multiple states bespeak of the existence of hysteresis effects in the wave 

amplitude as a function of frequency in this subcritical region. 

We emphasize that the behavior of the system depends on the periodicity of the basic state 

and does not require that the periodicity be harmonic although we have used that simplification 

in our calculations. Figure 14c shows the response of the system for G =-1 and for an H(t)  as 

shown in Figure 14a. The Fourier amplitudes of the cosine series representing H(t)  is shown in 

Figure 14b for the series of Figure 14a,:. H =
2

nπ
 
 

 
 sin(nπ /2) − sin(3nπ /2){ }

n=1

50
∑ e−0.1n cos(nωT ) 
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The amplitude of H  is then multiplied by 0.52 to keep H <1 for all t. The response as 

shown in Figure 14c is similar to the purely harmonic case of Figure 11 except that the presence 

of higher harmonics in H(t)  now yields a mildly aperiodic amplitude behavior. 

It is straightforward to show that all the instabilities discussed here satisfy the usual energy 

budget analysis (e.g., Pedlosky, 1987) so that the perturbation energy is derived from the usual 

eddy fluxes of thickness (heat) as in the baroclinic problem. The question remains though, as to 

how this energy can be released while the flow, as in section 6, is always subcritical to baroclinic 

instability. 

It is illuminating in this regard to restate one of the conditions for instability (Pedlosky, 

1987). For the two-layer model in the absence of horizontal shear, 
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In (7.2) E  is the total integrated perturbation energy. Us is the shear,  ∂q i ∂y  is the 

poten-tial vorticity gradient in the i th layer and ηi  is the meridional displacement in layer i . 

Since both the shear and the potential vorticity gradients are functions of time, (7.1) cannot be 

written as a conservation statement, rather, 
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When the shear is independent of time, the right hand side of (7.2) vanishes and the term in 
the square bracket on the left hand side can be rendered positive definite when the flow is 
subcritical by the addition of a steady barotropic zonal flow to which the problem is (Galilean) 
invariant. 

The added term on the right hand side of (72) when the flow is time dependent is the 
�pumping� term, familiar from simple dynamical problems leading to Mathieu � like instability, 
that is responsible for the growth of the pseudo-energy on the left hand side of (7.2) even in 
cases when the flow is subcritical. Since the time dependent shears considered here are weakly 
variations around a steady flow the terms Us

∂q i
∂y

 will be dominated by a term oscillating with a 
term oscillating with ω. The disturbance field ηI oscillating with frequency σ will produce a 
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steady forcing of the energy if ω =2σ, the principal Mathieu resonance condition. This is the 
basic mechanism for the instability. 

Thus, the presence of time varying shear, which we think of as a highly idealized model for 
seasonal variations in the background state of atmospheric and oceanic currents can itself induce 
instabilities for levels of shear hitherto considered stable. 
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Appendix A: The coefficient N in (3.11) 

After solving (3.9) subject to the condition that 
∂ΦT
∂y

 vanish on y =0 and y=1, insertion in 
(3.8b) yields the ordinary differential equation (3.11). After considerable algebra it is straight-
forward to show that  

 

N =
2m2F k2(K 2 − F)

K2(2F + K2)
1
2

−
K 4 − 2F 2( )

(4m2 + 2F)(K2 − F )
1
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+
4m2 tanh F 2( )1/2
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Figure 1.  The amplitude behavior in the linear system (2.17) for the case when a =(2.1)1/4  
(a) The stabilization of a steady unstable shear by an oscillating component , G =.01,   H = .52, 
µ = .001, ω = 2. (b) the parametric destabilization of a steady shears flow, G = -1, H = 0.7, and  
ω = 1.1.303, the first critical Mathieu frequency. Note the exponentially increasing amplitude 
although the time mean shear is subcritical. The line of cross hatches in the figure describes the 
period of the imposed oscillatory shear. 
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Figure 2. The amplitude evolution for the case of slightly supercritical but steady shear, G = 1, 
H = 0, µ = 0.01. The solution equilibrates to a steady finite amplitude equilibrium. 
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Figure 3.  The regime diagram in the (H, ω)  plane constructed for the case µ = 0.01 and G = 1. 
Three qualitatively different behaviors are noted in the figure. Smooth periodic solutions with 
the period of the shear�s oscillation are denoted with circles, essentially periodic but ragged 
oscilla-tions are denoted by squares and aperiodic solutions with broad spectra with no sharp 
peaks are denoted by asterisks. 
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Figure 4.  The finite-amplitude periodic solution for G = 1, H = 0.1, ω = 0.1, µ = .01. The solu-
tion is shown for the last 600 time units of a run of length T = 10,000. The solution has settled 
into a limit cycle with a period equal to the period of the oscillating shear. The cross-hatched line 
in the figure measures that period. 
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Figure 5. As in Figure 4 except that H = 1.5. (a) The time history of the solution. (b) the phase 
plane. 
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Figure 6. As in Figure 4 except that H = 0.4 and µ =.001. The solution is clearly aperiodic. 
(a) Time history for the last 95% of the run. (b) Phase plane for the same time interval. 
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Figure 7. The aperiodic solution for G = 1, H = 1.5, µ = .001,ω = .01. (a) The complete time 
history. (b) A detail of the last 5% of the calculation. The dashed curve indicates the overall 
value of the supercriticality. For small ω the solution grows during periods of positive δ. 
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Figure 8. A regime diagram for G = -1 in the H, ω plane. Values of ω are restricted to values 
< 0.1. Larger ω  are discussed in section 5. Squares denote periodic solutions while open circles 
denote aperiodic solutions. Asterisks denote solutions that tend to zero for large time. 
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Figure 9. The solution for G = -1, H = 1.1, µ = .01, ω = 0.1.  The time averaged shear is stable 
and the flow experiences brief periods of supercriticality  (a) Time history of the solution. Note 
the dashed curve, indicating the size of δ is greater than zero only for small intervals of time. 
(b) Phase plane indicating the periodicity of the solution. 
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Figure 10. As in Figure 9 except that H = 2.2. The solution is now aperiodic. 
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Figure 11. .For the subcritical parametric instability at ω =1.1303, µ =0.01, G =-1. (a) The 
periodic solution for H =0.8. (b) A comparison of the analytical prediction given by (6.11a) 
(dashed curve) and the direct integration of (3.13 a,b) whose results are indicated by the circles 
and joined by the solid line. 
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Figure 12. The regime diagram for G =-1, H  <1 for ω in the range of the frequencies subject to 
parametric instability. The diamonds denote periodic solutions and the small dots solutions with 
zero amplitude. 
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Figure 13. The amplitude of the periodic solution for H  =0.2 as a function of ω for the dominant 
parametric instability. G =-1, µ =0.01. The open circles are numerically generated with the 
standard initial data as described in the text. The plus signs indicate the amplitude of the periodic 
solution found by using as initial conditions the values of the variables from the calculation at 
slightly smaller ω. A region in ω in which the solution is multi-valued is evident. 
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Figure 14. An example of the response for G < 0, H < 1 of parametric instability for a periodic 
H(t) which is not harmonic. (a) The function H(t) is periodic and nearly a series of step 
functions. (b) The amplitude A(n) of the cosine series representing H(t) is shown in the lower 
panel. (c) The response of the perturbation amplitude as a function of time. The response is 
qualitatively similar to the response of Figure 11 but the added harmonic content of H(t) has 
rendered the solution aperiodic. 
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