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Abstract

A linear, steady model of the circulation of a small (f-plane) oceanic basin, driven by

heating or cooling at the surface is considered in order to examine the partition of upwelling

(heating) or downwelling (cooling) between the basin’s interior and its boundary layers on

the side wall in which frictional dissipation and lateral temperature diffusion are dominant.

The basin is rectangular in plan form. On three of its lateral sides the basin is insulated to

heat exchange while on the fourth side the heat added at the surface is shown to be removed

through a thin sublayer which also closes the mass balance. The temperature is linearized

about a basic linear stratification.

The analytical solution shows that in the case of heating (cooling) in the basin interior,

most of the resulting upwelling (downwelling) near the upper surface actually occurs in

narrow boundary layers whose width is of the order of the deformation radius rather than in

the interior directly. This rather non-intuitive result is consistent with numerical calculations

recently performed by Spall (2002) and suggests the distribution of vertical motion between

interior and boundary layers is a robust one not dependent on particular parameterizations

of eddy fluxes of heat.
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1. Introduction

In a recent paper Spall (2002) numerically modeled the circulation in a small (f-plane)

oceanic basin connected to a passive, large, open ocean through a narrow passageway . The

small basin is cooled and develops a strong eddy field which transports buoyancy to the

vicinity of the lateral boundaries of the basin. Sinking motion is found to take place

preferentially in the vicinity of the boundary in spite of the concentration of the cooling in

the interior of the basin. The heat balance of the basin  as a whole is provided for by heat

and mass exchange through a narrow seaway connecting the small, marginal sea to a passive

open ocean. The actual mass exchange is slight compared to the resulting eddy-induced

circulation within the basin but is vital in the model for achieving the heat exchange through

the seaway in order to balance the cooling at the surface.

The principal, non-intuitive result obtained by Spall is that the major vertical mass flux

in response to the surface cooling is manifested in a narrow zone near the basin boundaries

and not in the region directly cooled in the basin interior. Spall argues that this is the result

of the need of the fluid to expunge the relative vorticity produced by the stretching due to

the vertical motion and that this can be done only in regions of enhanced lateral diffusion of

vorticity, i.e. near the boundary. This argument seems so general that it is likely to be more

robust than the particular model. Indeed, Spall rationalizes his results with the aid of simple,

quasi linear models of the boundary layer process.

In this paper I investigate this process further by examining ab initio a highly

idealized, linearized  model in which a stably stratified fluid is heated or cooled at the

surface and is allowed heat exchange through only a segment of its lateral boundary. The

basin is rectangular and three of its lateral boundaries are insulated to heat exchange while

the fourth is held at a fixed temperature. No mass exchange through the basin walls is

considered as a test of the necessity of such mass exchange to produce the results already

described. The analytical theory is focused on the question of the partition between the
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vertical motion produced in interior of the basin and the vertical motion in side wall

boundary layers whose scale is of the order of the deformation radius. Since the basin is

closed to mass exchange the vertical mass balance requires an additional thinner boundary

layer on the single non insulating wall of the basin. The compensating mass flux in that thin

layer also serves to balance the basin’s heat flux with the exterior of the basin in analogy

with the mass exchange in Spall’s model.

An even simpler model, suitable for laboratory experimentation is also briefly

described in which the basin is circular, the motion axisymmetric and the compensating

mass flux occurs symmetrically around the basin. The interior to boundary layer partition of

the vertical mass flux is the same as in the former case.

2. Theory

The model used here is the linear model of Barcilon and Pedlosky (1967) as altered

by Pedlosky (1974) to include distinct mixing coefficients for vertical and horizontal

mixing of mass and momentum. (See also Pedlosky et. al. (1997)  for a comparison of the

theory with experiment in a somewhat different context). Many of the results of those

earlier studies are quoted herein rather than rederived.

The fluid is stably stratified with a constant buoyancy frequency and is contained in a

rectangular basin as shown in Figure 1. The fluid is contained within rigid boundaries.

Scales Lscale and D are used to scale the horizontal and vertical independent variables,

respectively. In terms of those scales the dimensions of the basin are L in the x direction, l

in the y direction and d in the vertical direction. On the basin’s lateral boundaries the fluid

is insulated to heat exchange. On the fourth side of the basin the temperature is fixed at the

temperature established by the basic state temperature whose linear vertical variation

provides the basic stratification. On the upper surface the fluid is heated or cooled by a

small amount such that within the fluid the temperature variation from the imposed stable

vertical stratification is small. Thus the temperature in the fluid is given by:



5

T T z d T T x y z

T T

total v h

h v

= +

<<

∆ ∆

∆ ∆

* ( / ) * ( , , ),

.

(2.1 a,b)

where ∆Th  is the scale of the variable temperature within the fluid which drives the motion.

On the upper surface the fluid is heated by an amount H*h(x,y) where H  is the scale

of the imposed heating. The scale ∆Th  is chosen such that

∆T HDh v= /κ (2.2)

where κv  is the coefficient of vertical diffusivity. In terms of these scales the thermal

boundary conditions are:
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while

∂
∂
T

z
z= =0 0, . (2.3 e)

where h(x,y) is the form of the applied heating on the upper surface.

The horizontal velocity scale is U
g T D

f L
h

scale
=

α∆
 where α is the coefficient of thermal

expansion and f is the constant Coriolis parameter. A linear equation of state relating
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temperature and density is assumed. The vertical velocity scale is UD/Lscale and the pressure

variation its value in the resting  state is scaled hydrostatically. This leads to the following

linearized equations for the model:

u
p

y

E v

z

E
v

v
p

x

E u

z

E
u

p

z
T

D

L

E w

z

E
w

u

x

v

y

w

z

wS
E

v h
h

v h
h

scale

v h
h

v

v

= − + + ∇

= + + ∇

= − + + + ∇












+ + =

=

∂
∂

∂

∂

∂
∂

∂

∂

∂
∂

∂

∂

∂
∂

∂
∂

∂
∂

σ
∂

2 2

2 2

0
2 2

0

2

2

2
2

2

2
2

2

2

2

2
2

,

,

,

,

22

2
2

2
T

z

E
Th

h
h

∂ σ
+ ∇ .

(2.4 a,b,c,d,e)
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The parameters appearing in the above non-dimensional equations are the Ekman

numbers and Prandtl numbers, i.e.:
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where the coefficients of momentum mixing ν νv h,  are taken to be possibly different in the

horizontal and vertical directions, and similarly with the heat diffusion coefficients. For a
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laboratory model one would take them to be equal. The stratification parameter S  is defined

as:

S
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so that the horizontal velocities are geostrophic to lowest order in regions, such as the

interior of the basin, where the length scales chosen are appropriate to the motion. The limit

of S << 1 implies that the scale of the basin, while small enough to neglect the beta effect is

large with respect to the deformation radius.

For small Ekman numbers the velocity boundary conditions on the horizontal surfaces

at z = 0 and d are the Ekman compatibility conditions, i.e.

w

E
x y z

E
x y d z d

v

x

u

y

v

v

=

( ) =

− ( ) =














= −










1 2

1 2

2
0 0

2

/

/

, , , ,

, , , .

ζ

ζ

ζ
∂
∂

∂
∂

(2.8 a,b.c)



8

Since S <<1 the vertical velocity in the interior is O
E

S

E
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h v,
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by O(S) than the vertical derivative of w which is O E Eh v( , ) from the vertical vorticity

equation. This means that to lowest order the vertical velocity in the interior is independent

of z and using geostrophy and the hydrostatic balance, both valid in the interior, it is easy to

show  (Pedlosky et. al. 1997) that for the interior,
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so that the temperature equation for the interior reduces to:
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Note that in terms of θ, the boundary conditions are the same as for Τ.  Once θ  is

found, T is determined from:
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while the pressure field, and hence the geostrophic velocities are determined from the

hydrostatic relation, the thermal wind and the boundary condition (2.9) so it follows that
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On the side walls there is a double boundary layer structure as discussed in Barcilon

and Pedlosky (1967). There is an outer layer, the hydrostatic layer,  whose non-dimensional

width is

δ σH H S= ( )1 2/ (2.13)

The velocity tangent to the boundary remains geostrophic in this layer and the vertical

velocity is balanced by the horizontal diffusion of temperature while the vortex stretching in

the layer is balanced by horizontal diffusion of vorticity. The motion remains in hydrostatic

balance and thus the thermal wind relation holds for the shear of the tangent component of

the velocity. We consider the total solution in this region to be a sum of the interior solution

plus a boundary layer correction for each variable where the correction is denoted by an

overbar. It follows from the above balances that the total vertical mass flux in the hydrostatic

layer is, for example at x=0,:
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where ξ  is the stretched boundary layer variable, ξ δ= x H/ . The temperature correction

itself is scaled so that the temperature correction in the layer is δH oT . On the other hand,

since the tangential velocity parallel to the boundary satisfies the thermal wind relation,
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δ
σ

B
H

H scale

E

S

D

L
=

( )











1 2

1 4

1 2/

/

/

. (2.16)



10

in which, again, the vertical velocity is balanced in the heat equation by lateral diffusion of

temperature. Hence its vertical transport of mass is related to its contribution to the

temperature in a manner similar to (2.14). If a circumflex denotes an additional contribution

to each field by the buoyancy layer, it follows that the  total vertical mass flux in the

buoyancy layer on each wall, for example at x =0,  is,
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(2.17 a,b)

The motion is no longer hydrostatic in this layer and the thermal wind equation no

longer applies. The reader is referred to Barcilon and Pedlosky (1967) and Pedlosky et. al.

(1997) for  details.

We need not discuss the dynamics of the hydrostatic layer or buoyancy layer in detail

only the following facts, easily demonstrated from the above references suffice.

The tangential velocity contribution by the buoyancy layer is smaller than either the

interior tangential velocity or the hydrostatic layer’s contribution at, say, x =0. Thus at that

wall,

v v xI + = =0 0, . (2.18)

The vertical derivative of (2.18) plus the thermal wind relation implies that at x =0

∂
∂ξ

∂
∂

T T

x
xI+ = =0 0, . (2.19)

This implies that the interior plus hydrostatic layer variables automatically satisfy both

the no slip condition on the tangential velocity  and  the insulating condition on the

temperature without the need for the buoyancy layer on this wall. This is clearly also true on

all three insulating walls. Note too, that once the interior temperature field has been

determined from the solution of (2.10 a) both the interior mass flux and the hydrostatic
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layer’s mass flux is determined. The solution for θ , of course, will require that we specify a

boundary condition for that problem which discussion we momentarily defer.

On the fourth side, at x =L, the situation is more complex although again we will avoid

a detailed description of the boundary layer dynamics since only certain gross

characteristics of the boundary layer dynamics are important for the argument. The size of

the vertical velocity in the buoyancy layer is determined by the fact that the layer can not

have a net transport of order greater than the sum of the interior and hydrostatic layers. This

sets an upper limit on the size of the boundary layer correction of the buoyancy layer to the

temperature field. It is easy to show this correction, compared to the interior temperature is

O B( )δ  (note that here η δ= −( ) /L x B )  and hence negligible. The temperature correction of

the hydrostatic layer is similarly of O H( )δ  (which is why its temperature gradient balances

the interior’s temperature gradient on the other boundaries). Thus on this wall the interior

temperature must satisfy the condition T =0 or equivalently, θ =0 on x =L. Once again the

hydrostatic layer is used to satisfy the no slip boundary condition on the velocity tangent to

the wall. The thermal wind equation implies again, that the normal derivative of the sum of

the interior temperature and the hydrostatic layer’s temperature vanish at the wall.  Thus on

all four boundaries we have:

∇ ⋅ + ∇ ⋅ =T n T nI ˆ ˆ 0 (2.20)

where n̂  is the outward normal unit vector at the boundary. Note that this arises as a

consequence of the geostrophy of the tangent component of velocity and the hydrostatic

relation and not the thermal condition. It follows that on three of the four sides of the basin

the thermal condition is automatically satisfied by the interior and hydrostatic layers but not

on the fourth side where the fluid is free to exchange heat with its surroundings and

satisfies the condition T =0, a condition we have seen must be satisfied by the interior

temperature field. Hence it follows from (2.10b) that θ  must vanish at x =L i.e.
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θ = =0, x L (2.21)

On the other hand the geostrophic velocity normal to the wall must vanish and the

dominant contribution to the normal velocity comes only from the interior fields (the

boundary layer portions contribute corrections to the normal velocity only of order of the

boundary layer thickness). The vertical derivative of that condition plus the thermal wind

balance implies that T and hence θ  must be independent of distance along the boundary

since the interior velocity is geostrophic. It follows from (2.21) that θ  =0 on all the lateral

boundaries which completes the specification of the interior problem.

Before examining a particular example note that the total interior vertical transport

using  (2.4e) and the divergence theorem, satisfies:
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where C is the bounding contour of the basin. On the other hand, using (2.14) the total

mass flux in the hydrostatic layer on all four lateral boundaries is:
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This total mass flux must be balanced by the vertical mass flux in the buoyancy layer

as given by (2.17). Integrating over the single edge of the basin at x =L where the buoyancy

layer is active then yields:
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This condition turns out to be sufficient to determine the average value  in y of all

variables in the buoyancy layer although we do not need the solution for the purposes of

this study. If (2.25) is integrated in the vertical from z=0 to z=d and the boundary condition

on the interior temperature at the upper surface, (2.3d)  is used we obtain the heat balance

for the basin as a whole, namely,

h dx dy
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ˆ
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which states that the heat put into the basin at the upper surface is removed by conduction

through the non insulated side wall by the temperature flux of the buoyancy layer. Note that

on this boundary η and x derivatives have opposite signs since η δ= −( ) /L x B  and so a

positive h (heat flux into the basin) corresponds to a negative x-derivative of the buoyancy

layer temperature (on average) on the fourth wall indicating heat flow out of the basin. If h

were negative (cooling) all signs would simply be reversed for this linear problem.

Thus, the condition that the mass flux be balanced in the basin automatically satisfies

the total heat balance. One might also imagine replacing the diffusive heat exchange through

the fourth wall by an advective exchange were it truly an open boundary. In that case since

(2.25) prescribes the heat exchange at each level z, and the temperature of the fluid is set to
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match the temperature of the larger ocean to which it is connected, the mass flux could be

determined.

The principal concern goal of this study is the ratio T TrH rI/  i.e. the ratio of the

boundary layer vertical transport to the transport in the interior. For that purpose a simple

example is illuminating.

3. An example

Consider the example in which the applied heating has the form:

h h n x L m y lnm= sin( / )sin( / )π π (3.1)

Obviously, a general heating distribution can be synthesized from a Fourier sum of

such heating terms.

The solution of (2.10a) subject to the conditions that θ  vanish on the lateral

boundaries, that the vertical derivative satisfy (2.3 d, e) is:
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in terms of which the interior temperature, vertical velocity and pressure are, from (2.11) and

(212):
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and,
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Note that for large values of γR ,

γ
ν
κ δ

R
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h E
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2

2
, (3.5)

 the vertical average of the interior temperature goes to zero as γR  becomes large. The

parameter γ R effectively measures the ratio of the vertical velocity pumped out of the

Ekman layer to that which is consistent with the interior stratification. When γ R  is large

the interior is unable to absorb the vertical velocity from the Ekman layer and alters the

interior flow so that the horizontal velocity satisfies the no-slip condition on its own with

only a minor adjustment by the Ekman layers.

(3.4)  implies that the pressure and hence the geostrophic velocity satisfies the

relation:

p x y p x y dI I( , , ) ( , , )0 = − (3.6)

For large values of the parameter γR  the interior pressure field and geostrophic

velocity will go to zero on the upper and lower boundaries of the fluid expunging the

Ekman layers there to lowest order. At the same time the horizontal geostrophic velocity will

flow along the isolines of the heating function h(x,y) so that right below the surface the flow

will be anti- cyclonic under heating and cyclonic under cooling. The vertical structure,
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however is a strong function of the parameters. Figure 2 shows the profile of the pressure

field, and hence the geostrophic horizontal velocity, for values of γR  = 50 and γR  =0.5 for

the case where m=1, n=1, i.e. a heating which is maximum in the middle of the basin and

that vanishes on its boundaries. Note that for large γR  the geostrophic velocity is almost

everywhere cyclonic under heating except at the surface. This is in agreement with the

experimental results of Pedlosky et. al. (1997).

The interior vertical velocity may be calculated either from (2.4e) or (2.9). We obtain,
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(3.7 a,b)

so that there is a simple, direct relation between interior heating (or cooling) and the vertical

velocity in the interior.  It is interesting to note that the result (3.7b) is general and follows

directly from (2.4e) and the vertical integral of (2.9) in any geometry and lateral boundary

condition. To calculate the total vertical mass flux in the interior it is useful to use (3.7a) for

later comparison to the transport in the hydrostatic layer. We obtain for the total interior

transport:
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On the other hand using (2.20) and (2.23) we can easily obtain the total transport in

the hydrostatic layers around the basin, i.e.
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their ratio is:

T
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Figure 3 shows the value of the ratio near the upper boundary i.e. near z =d. We see

that for all values of γ most of the transport under the surface takes place in the side wall

boundary layers, increasingly so for smaller values of R or equivalently of the product γ R.

We see from (3.5) that this enhancement is favored by strong horizontal temperature

diffusion, which we may think of as an analogue of strong lateral eddy mixing of heat. For a

laboratory system for which R is unity a ratio greater than one is favored by large values of

K dnm , i.e. a basin rather narrow in at least one direction. Figure 4 shows the profile of w

integrated in y across the basin right below the surface of the fluid. The heating is of the

form sin( / )sin( / )π πx L y l  and is positive. The interior vertical velocity is upward as

expected but the upward vertical velocity across the basin is dominated by the motion in the

hydrostatic layers at x =0 and x =L. At the latter boundary the compensating mass flux in

the very thin buoyancy layer is evident.

At deeper levels the vertical mass flux in the hydrostatic layer changes sign and,

together with the buoyancy layer produces a compensating downwelling to balance the

interior. That is, there is a reversal at depth of the boundary vertical velocity. Figure 5 shows

the profile in z of the transport in the hydrostatic layer near x=0 for γ =50 and R= 0.5.

There is a reversal of the direction of the transport at z approximately equal to 0.7 below

which the transport in the hydrostatic layer helps balance the interior. This is not found in

the nonlinear model of Spall (2002) and is a consequence of the weaker vertical  penetration

of the thermal signal in the linear model. Nevertheless, directly below the heating the

boundary layer transport is, as figure 4 has shown, in the same direction and larger than the



18

interior vertical transport so that most of the directly forced vertical motion at shallow depths

takes place near the boundary.

If we were to consider a laboratory situation in which the basin were circular and the

heating axially symmetric  with uniform boundary conditions corresponding to T =0  on the

outer wall, we would have axial symmetry in all the fields in the interior and boundary

layers. In that case the vertical mass flux in the interior and the hydrostatic layers would be

balanced by the mass flux in the narrower buoyancy layer distributed symmetrically around

the cylindrical basin. For example, if the heating function h(r) where ro  is the basin  radius,

were of the form:

h h J r rn o n o= ( / )α (3.11)

where Jo is the zero order Bessel function and αn is the nth zero of the Bessel function of

order zero, it is easy to show that the ratio shown in (3.10) becomes:

T

T

Rd

R

r z r

d r
rH

rI

n o n o

n o
=

+







 −

1
1

γ
γ

α α
α

( / )cosh( / )
sinh /

(3.12)

clearly the same parametric dependence. For the laboratory one would take R=1 but Figure

3 still applies for the ratio.

3. Discussion

In the simple model we have described here the mild heating (cooling) of the surface of

a rotating stratified fluid leads to upwelling (downwelling) beneath the thermal forcing in the

interior of the fluid. However the vertical velocities are small there since the rate at which

fluid can rise or sink is limited by its ability to expunge the temperature anomaly obtained

by moving in the background field of stratification. At the same time the fluid must diffuse



19

away the vorticity produced by vortex tube stretching. Both yield a small value of vertical

velocity. In the boundary layer on the basin’s  lateral boundary motion on the scale of the

deformation radius is able to more easily overcome these constraints through enhanced

vorticity diffusion through the boundary or thermal diffusion into the interior. As a result in

the simple example described in the preceding section the ratio of boundary layer to interior

vertical transport in the upper region of the fluid directly under the thermal forcing is many

times greater than unity. This apparently non-intuitive result is in qualitative agreement with

the calculations of Spall (2002). It is interesting to note that Spall used both a compete

primitive equation model (the MIT model, Marshall et. al. 1997) and  a simple

parameterization of eddy mixing which however, is substantially different than the linear

model described here. The agreement of the analytical theory described here and the model

results of Spall suggest that this partition of the vertical transport in favor of the side wall

boundary layer is a general result and, as Spall, suggests, is connected to the need for the

fluid to deal with both the buoyancy and vorticity anomalies which arise from strong vertical

motion rather than a feature specific to any particular eddy dynamics. It would be of great

interest to examine the question in a laboratory setting in which the heating can be

controlled to examine the dependence of this ratio as the degree of nonlinearity in the

motion field increases. Clearly, the neglect of nonlinearity is one of the weaknesses of the

present study and it will be of interest to extend the present results into the nonlinear

domain.

Acknowledgement : This research was supported in part by the National Science

Foundation OCE- 9901654.



20

References

Barcilon, V. and J. Pedlosky, 1967. Unified linear theory of homogeneous and  stratified

rotating fluids. J. Fluid Mechanics. 29, 609-621

Marshall, J.C., C. Hill, L. Perelamn, and A. Adcroft. 1997. Hydrostatic, quasi-hydrostatic

and non-hydrostatic ocean modeling. J. Geophjys. Res.  102, 5733-5752.

Pedlosky, J. 1977. On coastal jets and upwelling in bounded basins. J. Phys. Ocean. , 4, 3-

18.

Pedlosky, J., J.A. Whitehead, and G. Veitch, 1997. Thermally driven motions in a rotating

stratified fluid, theory and experiment. J. Fluid Mechanics. 339, 391-411

Spall, M. A., 2002  On the thermocline circulation in semi-enclosed marginal seas. J.

Marine Res. (submitted).



21

Figure Captions

Figure 1: The rectangular basin containing the fluid. The dimensions shown are non

dimensional. See the text for the scales used.

Figure 2.  The vertical profile of pressure ( and thus the interior geostrophic velocity) for the

example described in the text for R=0.1, L=1, l =1, d=1, and a) γ =500 and b) γ =5.

Figure 3. The ratio of the boundary layer vertical transport to the interior vertical transport

near the upper surface of the fluid as a function of γ for three values of R. (0.5, 1 , 2).

Figure 4  The profile of the vertical velocity, integrated in y across the basin as a function of

x when h h x L y l= 11 sin( / )sin( / )π π . Note that the vertical velocity in the interior is

very small compared to the boundary layer contribution. In the case shown the h is

positive and the non-dimensional velocity is scaled with ( / ) /E S hv vσ 11. The profile

is given at z=.99d, L=1,l=1, and γ =50 while R =0.5. Note that the area under region

of positive w does not balance the downwelling since the upward transport in the

boundary layers on y =0 and y= l are not included.

Figure 5 a) The vertical transport in the hydrostatic layer near x =0 as a function of z for γ =

50, R =0.5. Note the reversal of the direction of the transport at z =0.7. b) w as a

function of x, as in figure 4 but at z=0.4 d.
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