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Abstract 

 

The time dependent  response of an ocean basin to the imposition of cooling (or 

heating ) is examined in the context of a quasi-geostrophic, two-layer  model on the beta 

plane.  The focus is on the structure and magnitude of the vertical motion and its response 

to both  a switch –on forcing and a periodic forcing. 

The model employed is a time dependent version of an earlier model used to 

discuss the intensification of sinking in the region of the western boundary current.  The 

height of the interface of the two-layer model serves as an analogue of temperature and 

the vertical velocity at the interface consists of a cross-isopycnal velocity modeled in 

terms of a relaxation to a prescribed interface height,  an adiabatic representation of eddy 

thickness fluxes parameterized as lateral diffusion of thickness, and the local vertical 

motion of  the interface itself.  

The presence of time dependence adds additional dynamical features to the 

problem, in particular the emergence of low frequency, weakly damped Rossby basin 

modes.  If the buoyancy forcing is zonally uniform the basin responds to a switch on of 

the forcing by coming into steady state equilibrium after the passage of a single Rossby 

baroclinic Rossby wave. If  the forcing is non uniform in the zonal direction a sequence 

of Rossby basin modes is excited and their decay is required before the basin achieves  a 

steady state.  
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For reasonable parameter values the boundary layers in which both the horizontal 

and vertical circulations are closed are quasi –steady and respond to the instantaneous 

state of the interior. As in the steady problem the flow is sensitive to small non quasi-

geostrophic mass fluxes across the perimeter of the basin. These fluxes  generally excite 

basin modes as well.  

The basin modes will also be weakly excited if  the beta plane approximation is 

relaxed.  

The response to periodic forcing is also examined and the sensitivity of the response 

to the structure of the forcing is similar to the switch –on problem.  
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1. Introduction 

In a recent paper (Pedlosky and Spall, 2005, hereafter PS) the buoyancy driven 

circulation in a beta-plane ocean was examined in the context of a simple quasi-

geostrophic two-layer model. The central result of that study was the demonstration of 

the western intensification of the sinking produced by basin-wide cooling and the 

concentration of the sinking in very narrow boundary layer regions. In such narrow 

zones, strongly affected by frictional dissipation, the vorticity produced by the planetary 

vortex stretching consequent to the strong vertical motion can be dissipated by interaction 

with the lateral boundary. Of particular interest was the balance of the vertical transport 

in the interior with the western boundary current that closes the horizontal circulation 

leaving the net sinking along each latitude circle to occur in an extremely narrow sub- 

layer on the western boundary. That study and the one reported here are motivated by the 

important role of buoyancy driven circulations in the high latitude polar oceans, marginal 

seas and their connection to the thermohaline circulation.  

Given the balance of the vertical  transports between the interior and boundary layer 

regions in the steady model, it is natural to inquire about the nature of the balances in 

situations in which the circulation has not achieved a steady state. In particular, what is 

the connection between the interior vertical mass flux and that of the boundary regions 

when the flow responds to changes in the buoyancy forcing, either an abrupt change or a 

periodic alteration of the forcing? In particular, the role of low frequency, slightly 

damped baroclinic Rossby basin modes are essential ingredients in the response.  These 

modes and their role in the low frequency dynamics of oceanic basin circulations have 
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been discussed by several authors, e.g., LaCasce (2000),  Cessi and Primeau (2001), 

LaCasce and Pedlosky (2002), and of especial interest for the present study, Cessi and 

Louazel, (2001). The more general problem of the time dependent response to buoyancy 

forcing has been considered in a numerical study  by Lucas et. al. (2005). 

To examine this question the simple two-layer model of PS is used. The vertical 

velocity at the interface is modeled as due to a contribution from several distinct 

mechanisms. First, there is a cross-isopycnal flux across the interface parameterized in 

terms of the deviation of the interface from a specified, spatially varying height field that 

represents the  external buoyancy forcing. In addition, a lateral diffusion of thickness is 

explicitly included to parameterize, in the fashion of Gent and McWilliams (1990), the 

effect of adiabatic eddy fluxes of thickness by the unresolved eddy field in the interior of 

the basin and as a model of sub mesoscale horizontal mixing in narrow boundary layers. 

For the time dependent development, the vertical motion of the interface also contributes 

to the vertical velocity. 

In section 2 the quasi-geostrophic model is described and the time dependent 

problem for the interior is formulated for the switch-on case. Section 3  describes the 

interior solution and, in particular, the question of whether Rossby basin modes are 

excited. It is demonstrated that the external buoyancy forcing must contain a zonal 

variation to excite the modes and in the present study we examine the effect of 

concentrating the forcing in the eastern part of the basin. This has important implications 

for the time required to achieve a steady state.  The important role of flow across the 

basin boundary in exciting the Rossby modes is also discussed. Section 4 discusses the 

boundary layers required to close the circulation and it is shown that the balances in the 
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boundary layers are quasi-steady; i.e. that time can be treated as a parameter as the 

boundary layers respond to the instantaneous state of the interior. Section 5 discusses the 

response of the basin to periodic forcing and the role of resonance in determining the 

magnitude of the response. Section 6 summarizes the results of the paper and emphasizes 

the long adjustment times implied by the dynamics, the non-local relation of the vertical 

motion and the forcing and, again, the narrow regions containing the strongest vertical 

velocities. 

2. The model 

The model used in this study is a two – layer, beta-plane, quasi-geostrophic system 

shown in Figure 1. The motion is purely baroclinic, driven by only a buoyancy forcing 

and the fluid consists of two layers of slightly different densities  separated by an 

interface whose departure from the horizontal is η(x,y,t) where x and y are coordinates to 

the east and north respectively and t is time. The dynamics is assumed to be linear.  The 

rest thicknesses of each layer, H1  and H2 are equal (H) . The nondimensional equations 

of motion are:  

 

b! 2ut " fv = #x + b$m

3%2
u

b! 2vt + fu = #y + b$m

3%2
v

ux + vy = 2wi

   (2.1.a, b, c) 

Subscripts t, x, y denote differentiation with respect to those variables. The motion is 

purely baroclinic and the velocities appearing in (2.1 a, b, c) are the difference of the 

velocities between the two layers, i.e.
 

!
u =
!
u
1
!
!
u
2

( this accounts for the factor of 2 in 
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(2.1.c) The motion is purely baroclinic and the velocities appearing in (2.1 a, b, c) are the 

difference of the velocities between the two layers, i.e.
 

!
u =
!
u
1
!
!
u
2

. The horizontal, 

baroclinic velocities in the x, and y directions (u,v) are scaled with U (which will be 

related to the amplitude of the buoyancy forcing). The horizontal space variables are 

scaled with L which is characteristic of the basin’s zonal extent. Time is scaled with the 

characteristic period of a long Rossby wave whose zonal wavelength is L and this scale is  

T = L / !L
d

2 where Ld is the deformation radius, (g 'H )1/2 / fo where g’ is the reduced 

gravity and fo is the characteristic value of the Coriolis parameter on the beta plane. The 

parameters appearing in (1.2 a, b, c) are, 

 

 b =
!L
fo
, " =

Ld

L
, #m =

A

!
$
%&

'
()

1/3

/ L   (2.2 a, b, c) 

Both ε and δm, the non dimensional Munk boundary layer scale, ( A is the turbulent 

coefficient of  horizontal momentum mixing) are very small parameters. The beta plane 

parameter b is also assumed small although larger than the other two.  The Coriolis 

parameter in (2.1 a, b) is f = (1+ by) . The scaling for the interface height η is  

  !
dimensional

=
foUL

g '
!   (2.3) 

  

 The vertical velocity at the interface, wi, is scaled with UH/L . The key feature of the 

model is the parameterization of this velocity in terms of the interface deviation η. We 

represent wi as,  
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 w
i
= b !

t
+
! "#
$
T

" $
K
%2!

&

'
(

)

*
+   (2.4) 

The first term in (2.4) represents the vertical velocity due to the motion of the interface. 

The second term is a representation of the cross isopycnal velocity due to vertical mixing 

and is proportional to the difference between the interface height and a specified field 

θ(x,y,t) that is the external forcing. Its scaling relation to its dimensional counterpart is 

the same as the interface height, i.e. as in (2.3) and so that serves to set the scale of the 

velocity in terms of the amplitude of the buoyancy forcing. This is taken as a crude 

representation of a vertical mixing process that tends to restore the interface, or 

temperature, to an equilibrium, θ, determined by atmospheric forcing,  The parameter δT 

is the distance, scaled with L, that a baroclinic Rossby wave travels during the decay time  

γ  associated with the vertical mixing, i.e.  

 !
T
=
"L

d

2

# L
  (2.5) 

The final term in (2.4) is the lateral diffusion of layer thickness by unresolved eddy 

processes with a characteristic diffusion coefficient κ  , defining the nondimensional 

scale, 

 !
K
=

"

#L
d

2
L

  (2.6) 

The boundary conditions that are applied to this system are no-slip conditions  on the 

tangential velocity at the basin boundary, thermally insulating conditions there as well, 

(i.e. that 
 
n̂i!" = 0 on the boundary whose outward normal is n̂ ) and a small O(b)  

baroclinic outflow (or inflow) is allowed whose total, integrated around the basin’s 
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perimeter, is ΔV(t)= b δV(t). The net inflow for the order one (in the parameter b) 

horizontal flow must be zero since this for this flow the pressure acts as a streamfunction 

and so the net integrated inflow around the perimeter of the flow vanishes. The first 

contribution to the net inflow must be therefore, an O(b) smaller. Or equivalently, a net 

inflow drives an order b-1 horizontally non divergent flow as a geostrophic response. 

Since the problem considered here is linear only the relative order of the two orders of 

flow are important. It is the physical constraint of rotation that makes the horizontal 

circulation non divergent at lowest order and hence so sensitive to the O(b) net inflow. 

 In non dimensional units the zonal extent of the rectangular basin is (0, xe) and its 

latitudinal extent is (0,Ly). This integral constraint, when combined with (2.1c) and (2.4) 

yields, 

 

 

 

dy
0

Ly

! 2widx
0

xe

! =
!
uin̂dl

C

"! = b"V

= b( dy
0

Ly

! dx
0

xe

! (#t +
# $%[ ]
"T

) + "K n̂i&#dl
C

"! )

= b( dy
0

Ly

! dx
0

xe

! (#t +
# $%[ ]
"T

)

  (2.7) 

 

or, 

 

 dV (t) = dxdy !t +
! "#
$T

%

&
'

(

)
*

0

xe

+
0

Ly

+    (2.8) 
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3. The interior response to a buoyancy switch-on. 

For small values of (!, "
m
,"

K
) , the interior equations, outside all boundary layers 

are: 

 

! fv = "x

fu = "y

ux + vy = 2wi

  (3.1.a ,b, c) 

while the vertical velocity at the interface is approximated  simply as, 

 w
i
= b !

t
+
! "#
$
T

%

&
'

(

)
*   (3.1.d) 

Eliminating the gradients of the interface height in (3.1.a, b) leads to the planetary 

vorticity equation , 

 

 2 fwi = !bv = b"x / f   (3.2) 

so that the interior is in Sverdrup balance, and using this in (3.1.d) leads to the governing 

equation for η  in the interior of the basin, viz., 

 

 1

f
2
!x " 2!t " 2! /#T = "2$ /#T   (3.3) 

The beta plane  parameter b is small so f in (3.3) can be replaced by unity. The buoyancy 

forcing θ  is taken to be a linear function of latitude, increasing northward and so 

representing a cooling which increases with latitude. The buoyancy forcing is also taken 

as an exponentially  decreasing function of position from the eastern boundary. We will 

see that the precise variation of θ is less important than the fact that it varies in x and it 
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seems more realistic to imagine that it varies than that it is absolutely independent of x. 

Concentration of the forcing near the eastern boundary also allows a clearer picture of the 

processes required to excite motion in the western boundary layer.  

Thus (3.3) becomes,  

 

 
!
x
" 2!

t
" 2! /#

T
= "2$

o
(y)e

"µ(xe " x ) /#
T
,

$
o
(y) = $

oo
(y " y

o
) / L

y

  (3.4 a,b) 

 

The hyperbolic, first order, equation  (3.4.a) must satisfy the following boundary 

conditions. First, on the eastern boundary of the basin where transport boundary layers 

are not possible the interior solution must have zero zonal velocity or, equivalently, 

constant! , 

 

 !=Ne(t)                 on x=xe   (3.5) 

where Ne is the unknown interface height on the eastern boundary. It is independent of y 

but is an unknown  function of time. 

At the same time, the integral condition (2.8) must be satisfied by the interior 

solution since the correction to the interface deviations in the boundary layers are no 

larger than in the interior but they occupy an asymptotically small portion of the basin 

and so contribute terms of, at most, order !
m

 and !
K

 and so are negligible. Although the 

solution of (3.4) can be carried out using the method of characteristics the application of 

(2.8) is more directly carried out if the problem is solved using a Laplace transform.  
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If we denote the Laplace transform of any  variable by a caret symbol, the Laplace 

transform of ! satisfies, 

 

 !̂
x
" 2!̂(s + #

T

"1
) =

"2$
o
(y)

s#
T

e
"µX    (3.6) 

where s is the Laplace transform variable and X=(xe-x). The solution of (3.6) satisfying 

(3.5) is, 

 

 !̂(x, y, s) =
"
o

#
T
s(s $ µ / 2 +1 /#

T
)
e
$µX $ e$2(s+1/#T )X%& '( + N̂e

(s)e
$2(s+1/#T )X (3.7) 

 

The Laplace transform of the interface height on the eastern boundary is obtained from 

(2.8). A simple calculation yields, 

 

 
 

!N
e
=

!
o
/ L

y

"
T
s s # µ / 2 +1 /"

T( )

e
#µxe # e#2(s+1/"T )xe$% &'

1# e#2(s+1/"T )xe$% &'
+

" !V (s) / L
y

1# e#2(s+1/"T )xe$% &'
 (3.8) 

where the bracket denotes an integration in y  over the interval (0, Ly). Note that if µ 

is zero the two brackets in the first term on the right hand side of (3.8) cancel. With the 

interface height  on the eastern boundary determined, the interior solution is known. Of 

course, we use the Laplace transform inversion to obtain the solution in physical space 

and time. First note that from (3.2) the vertical velocity in the interior is obtained by 

taking the x derivative of the interface height. That result of that calculation is given in 

Appendix A. 
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The inversion of the Laplace transform is easily accomplished. The inversion 

integral runs parallel to the imaginary s axis shifted to the right of any singularity in the 

transformed variables so that s  has a positive real part. From (3.7) and (3.8) we note that 

there is a  simple pole at s =0 ( corresponding to the eventually steady solution) and a 

pole at s = µ / 2 !1 /"
T

which corresponds to a decay of a Rossby wave at a rate 1 /!
T

 

while the part proportional to µ describes the westward advancing shape formed by the 

forcing. The most interesting aspect of the inversion calculation is the presence of the 

term 1! e!2(s+1/"T )xe  in the denominator of (3.8) in both the term involving the y average 

of the buoyancy forcing and the cross-perimeter net flow. There are several ways to treat 

this factor but the most physically revealing is to note that on the inversion contour with a 

positive real part to s the exponential term is less than one so that the factor can be 

developed into a convergent Taylor series, i.e. 

 

 1

1! e
!2(s+1/"

T
)x
e

= e
!2n(s+1/"

T
)x
e

n=0

#    (3.9) 

When combined with a factor like est in the Laplace inversion integral, this yields a series 

of Heavyside functions each representing a nondispersive baroclinic Rossby wave 

traveling across the basin westward from the eastern boundary initiated at the 

time t
n
= 2nx

e
. The total solution for the interface height in the interior is then, 
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! =
"
o
(y)

1#
µ$

T

2

%
&'

(
)*

e
#µX # e# t /$T e#µ(X# t /2){ } # e

#2X /$T # e# t /$T e#µ(X# t /2){ }H (t # 2X)+, -.

+
"
o
/ L

y

1#
µ$

T

2

%
&'

(
)*

e
#µxe e

#2X /$T # e# t /$T e#µ(X# t /2){ }H (t # 2X)

+
"
o
/ L

y

1#
µ$

T

2

%
&'

(
)*

e
#µxe #1( ) {e

#2X /$T e
#2nxe # e# t /$T e#µ(X# t /2)e#µnxe }H (t # 2X # 2nx

e
)

n=1

/

+
$V

o

L
y

e
#2X /$T #2nxe /$T 1# e#a(t#2X#2nxe )+, -.H (t # 2x # 2nxe )

n=0

/

 (3.10)  

 

The analogous result for the interior vertical velocity is given in Appendix A. 

 

In (3.10) the notation H(p) stands for the Heavyside function which is zero for p < 0 

and one for p > 0. I have also chosen a time dependence for the switch-on for the cross 

perimeter flow, 

 !V (t) = !V
o
(1" e

"at
)    (3.11) 

to make the switch-on smooth and gradual. It is useful to examine (3.10) in detail.  

The first square  bracket  on the right hand is the direct response to the buoyancy 

forcing under the assumption that the interface height on the eastern boundary is frozen at 

its zero initial position while the remaining terms are the consequence of the generation 

of Rossby wave activity excited by the interface motion on the eastern boundary as 

represented by (3.8). The first term is initially zero and reaches a steady state after a 



 15 

single baroclinic Rossby wave crosses the basin in a time T=2xe. That response is 

supplemented by the response of the interior to Rossby wave activity generated on the 

eastern boundary and is given by the remaining terms proportional to both the y integral 

of the buoyancy forcing as well as the net cross perimeter flow. These extra terms consist 

of three parts. The first is a term due to the buoyancy forcing which comes into steady 

equilibrium after the passage of a single baroclinic Rossby wave.  However, if µ is not 

zero, that is if the forcing is non-uniform zonally, ( and it does not matter whether µ is 

positive or negative) an infinite sequence of low frequency basin modes are excited. 

These are the modes discussed by LaCasce (2000), Cessi and Primeau (2001) and they 

are present in the wind -forced problem discussed by Cessi and Louazel (2001). It is 

important to note that the sums in (3.10) are finite since if t ! 2X < 2nx
e
 the Heavyside 

functions vanish. It is also possible to demonstrate that the appearance of each new 

Rossby wave at the eastern boundary at t = 2nxe,  occurs with a smaller amplitude as each 

signal decays at the rate!
T

"1 . Nevertheless, the time required for the basin to reach an 

equilibrium is not the crossing time a single Rossby wave but rather the damping time of 

the low frequency,  baroclinic Rossby modes and as the previous studies already 

referenced have shown, these modes are very weakly damped. That being the case, the 

long time required to reach equilibrium implies that the basin will rarely exist in the 

equilibrium state unless the Rossby mode damping time is small. Each new disturbance 

will excite the weakly damped modal response. 

For the simple quasi-geostrophic model here the unforced, normal mode solutions 

of (3.4) are: 
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! = Nee
i(kX"# t )

e
" t /$T ,

kj = 2 j% / xe, j = 1,2,...

# j = kj / 2

  (3.12 a, b, c) 

and satisfy the condition that the interface height be the same constant on the eastern and 

western boundaries. The poles of the factor in (3.9) will yield exactly the time behavior 

of the modes in (3.12) which is why the cancellation of this term when µ =0 expunges the 

Rossby wave behavior. Note that for all  the non zero frequency modes a constant in x 

has no projection on those modes. Hence, a buoyancy forcing independent of x has no 

spatial projection on the Rossby low frequency basin modes, at least in the beta plane 

limit, and hence as we have noted from (3.10), those modes are not excited when µ =0. It 

is possible to show, considering the next term in an expansion in powers of b, that at next 

order in b the shift in the structure of the modes will produce a projection of zonally 

uniform forcing on the Rossby modes which will therefore be excited even by uniform 

forcing. It is also important to note that even in the quasi-geostrophic, beta-plane limit, 

the introduction of a time dependent cross perimeter flow will always excite the whole set 

of Rossby modes. 

It is straightforward to show that the advancing fronts of the Rossby waves keeps 

the interface height continuous in x, although there are kinks across the front, while the 

interior vertical velocity wi is discontinuous at the front of each Rossby wave. Figure 2 

shows the response of the interior of the basin to a forcing of the form (3.4 b) with yo =0, 

and with !
T

 =2. For this value of !
T

 the characteristic damping time for the Rossby wave 

due to vertical mixing is just equal to the transit time across the basin for xe=1. In panel 
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2a the interface height at a position at the zonal mid-point of the basin is shown as a 

function of time. The heavy line is the full solution, the thin line shows that part of the 

solution corresponding to the solution with fixed, zero interface height at the eastern 

boundary. This latter, partial solution reaches a steady state after a single wave passage 

while the full solution requires the passage of several Rossby waves before it asymptotes 

to its final state. Note that the kinks in the curve correspond to the passage of a new wave 

front.  In panel 2b the interface height is shown as a function of x for t =3. Since the time 

for the Rossby wave to traverse the basin is just 2 time units the kink in the curve at 

x=0.5 is the consequence of a second passage of a Rossby mode. Figure 3 shows the 

interior vertical velocity. Panel 3a shows wi as a function of time at the same point as in 

Figure 2. Once again the full solution is shown by the heavy line and the solution that 

ignores the forcing by the eastern boundary is shown by the thin line. The full solution 

again takes much longer to equilibrate and shows a continuing arrival of jumps in the 

vertical velocity field as each Rossby wave front passes the observation point. The panel 

3b shows the vertical velocity at t =3  as a function of longitude and the jump in vertical 

velocity of the full solution is very clear. 

 If the basin is not isolated but is subject to an inflow (or outflow) the basin modes 

will be excited even if the forcing is zonally uniform. Figure 4 shows the response of the 

interface in panel a) and the vertical velocity in panel b)  at x=0.5 for δV= -0.5 (i.e. 

inflow). The dot-dashed curve in each figure shows the effect of the inflow on the 

solution and it is dominant. It is important to note that the inflow is the net inflow, 

integrated around the basin. Its effect is independent of the position of the inflow and the 

inflow is small, of O(b) the beta-plane parameter!L / fo . 
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If !
T

is decreased the modes damp more rapidly and the discontinuities in the 

interior w field are much less evident. Indeed for very small values of !
T

only the first 

Rossby wave is can be clearly seen.  

On the other hand, the integral of the interior vertical velocity across the zonal 

extent of the basin is, from (3.1. a) and (3.2) 

1

b
widx

0

xe

! =
"o # "o / Ly$% &'
2 1# µ(T / 2( )

e
#2xe /(T # e#µxe

+ e
# t /(T e

µ(t /2# xe ) # e#2xe /(T{ } 1# H (t # 2xe ){ }

$

%

)
)
)
)

&

'

*
*
*
*

+
(Vo
Ly
(1# e#at )

(3.13) 

and so the net vertical velocity on each latitude circle reaches a steady state after the first 

passage of a baroclinic Rossby wave across the basin. This follows from the form of the 

basin mode (3.12a). Since the average in x of the basin mode’s vertical velocity is zero 

the series of modes required to place the interior in its final state adds nothing to the net 

upwelling on each latitude circle. This will somewhat alter in the planetary geostrophic 

approximation or in the presence of an irregular basin shape but that is beyond the scope 

of the present paper.  

4) The boundary layer structure. 

The boundary layers needed to complete the solution can be shown to be the same 

as those described in detail in PS so the discussion in this paper will be brief. In PS the 

boundary layers had a double structure. On the western boundary there is an outer layer 

whose width is !
K

 (2.6) that closes the horizontal circulation and in which the flow 

continues to satisfy the Sverdrup balance, (3.2) . The neglect of the time derivatives in 
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(2.1 a, b) and (2.4) for that layer depends on the smallness of the parameter b! 2 /"
K

 

which, in dimensional units is, 

 

 !L

fo

Ld
2

L
2
= (cot")

Ld
2

#K*R
  (4.1) 

where R is the earth’s radius, !
K*

is the dimensional width of the boundary layer, and θΟ 

is the central latitude of the beta plane. As long as the western boundary layer is not much 

smaller than the  deformation radius, the factor L
d
/ R  guarantees that this term is 

negligible. Similarly, in (2.4) the smallness of !
K
/!

T
guarantees that the equation for the 

vertical velocity in the western boundary layer is simply, 

 w
i
= !b"

K
#
xx

   (4.2) 

The neglect of those time derivatives renders the !
K

 layer quasi- steady and its time 

dependence just responds parametrically to the time dependence imposed upon it by 

matching to the interior. As shown in PS the role of the !
K

layer is to satisfy the no-

normal flow condition on x =0, or equivalently, to ensure that the interface height on the 

western boundary is the same as on the eastern boundary.  If we write the total solution in 

the layer as the sum of the interior, here denoted with a subscript I , and a boundary layer 

correction denoted with a caret, the boundary condition is, for the correction function, 

 

 !
I
(0, y,t) + !̂(0, y,t) = N

e
(t)    (4.3) 

or, 
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 !̂(0, y,t) = Ne "!I (0, y,t) =
#!I

#x0

xe

$ dx =
2

b
wi

0

xe

$ dx   (4.4) 

and as we have seen in (3.13), this implies that the amplitude of the boundary layer 

interface height will come into a steady equilibrium after a single passage of a baroclinic 

Rossby wave since all variables in the boundary layer are proportional to!̂(0, y,t) .  This 

means in turn that the western boundary layer will come into equilibrium before the 

interior, a rather counterintuitive result. Since the Sverdrup balance (3.2) holds for the !
K

 

layer the net vertical transport in the layer at each latitude is equal and opposite to the 

integrated vertical velocity in the interior just as in PS even though the interior is time 

dependent. Its magnitude is given by (3.13) with opposite sign. Interior to the !
K

layer is 

the thinner hydrostatic layer described in PS. Its width is !
h
= !

K

!
m

!
K

"

#$
%

&'

3/2

and so is much 

thinner that the !
K

layer. In that layer the balances also do not involve the time 

derivatives in (2.1) and (2.4) and the vertical velocity is still given by (4.2) . Because of 

the insulating condition on the boundary the x-integral of the vertical velocity in this sub-

layer must be equal and opposite to the vertical velocity in the !
K

 layer and since the 

sub-layer is thinner the vertical velocity must be largest here. Again, in the sub-layer the 

motion will reach a steady state after as single passage of a baroclinic Rossby wave 

across the basin. Thus, as far as the vertical transports in the boundary layers are 

concerned, a single wave passage is all that is required for the results of PS to be valid 

even though the interior is till distant from equilibrium and this is due to the absence, in 

the quasi-geostrophic beta-plane model, of a net vertical motion along  latitude circles in 

the Rossby basin modes. Indeed, at each instant of time, and at each latitude,  the vertical 
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transport in the !
K

layer is equal and opposite to the interior’s and in turn is balanced by 

the vertical transport in the δh layer. 

5) Periodic solutions 

Instead of examining the response of the basin to an abrupt switch-on of the 

buoyancy forcing this section describes the response to a sustained periodic forcing with 

the same spatial structure of the previous sections, i.e. we now take 

  

 ! = !o(y)e
"µX

e
" i# t   (5.1) 

where ω is O(1) an order one frequency in units of time scaled with the Rossby basin 

mode period T = L / !L
d

2  and the real part of the above expression is intended. A 

solution valid in the interior and in the boundary layers in which the horizontal flow is 

closed is easily found using the method described in PS. In this solution (3.2) remains 

valid and the full representation (2.4) is used leading to the governing equation, 
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The solution that satisfies ! = N
e
e
" i# t  on all the lateral boundaries and determines Ne  is 

given in Appendix B.  

Figure 6 shows the real and imaginary parts of the interface height at t=0, and all 

subsequent times are, of course, a periodic evolution between these forms. In this 

calculation the frequency is chosen as the first normal mode frequency, i.e. ω = π, and 
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otherwise the parameters are as in Figure 2. The shapes reflect the increased forcing in 

the northern part of the basin and the stronger, but narrow boundary layer required to 

satisfy the no-normal flow condition on the boundary. Qualitatively, however, the form 

of the response is that of the low frequency basin modes found by LaCasce (2000) and 

Cessi and Primeau (2001).  The response remains sensitive to the cross perimeter flow 

into the basin and Figure 7 shows the response for the same parameter settings as in 

Figure 6 but now δVo= -0.5. 

Figure 8 shows the real and imaginary parts of the vertical velocity on the line y = 

2( the mid-line of the basin) in the combined region of the interior plus the !
K

layer on 

the western boundary. The enhanced vertical velocity on the western boundary is evident. 

Its integral in x, i.e. the vertical transport in the !
K

 layer balances the total vertical 

transport in the interior at all t as shown by (4.4). Not shown is the even larger vertical 

velocity in the very narrow !
h

layer whose transport is equal and opposite to the transport 

of the !
K

 layer as in PS.  

Figure 9 shows the amplitude of the interface deviation at the eastern boundary of 

the basin for the parameters of Figure 2 as a function of forcing frequency showing 

resonant peaks at the frequencies of the Rossby basin modes.  

6. Discussion and conclusions. 

A linear,  quasi-geostrophic two-layer model is used to describe the time dependent 

response of a beta-plane basin to time dependent buoyancy forcing. In the model the 

vertical velocity at the interface is parameterized in terms of the departure of the interface 

from a prescribed spatial distribution. This represents the effect of vertical mixing and the 
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relaxation to the prescribed distribution acts as the buoyancy forcing. Lateral diffusion of 

layer thickness represents the effects of unresolved eddy fluxes of thickness.  

When a steady forcing is switched on and when, and only when,  the forcing  has a 

non trivial dependence on longitude a spectrum of low frequency, weakly damped 

Rossby basin modes is excited and the interior of the basin does not come into steady 

state until the Rossby modes damp by vertical mixing. During the adjustment process 

Rossby wave fronts sweep across the basin and the interior vertical velocity is 

discontinuous across the fronts. The longitudinally averaged vertical velocity reaches a 

steady state after the passage of a single Rossby mode while the departure from the 

average requires a much longer time to reach steady state.  

The net sinking is strongest in the western boundary layers and these layers come 

into equilibrium after the passage of the first Rossby wave mode. Thus, the sinking 

motion in the boundary layers comes into equilibrium before the local vertical velocity in 

the interior. This implies a non-local relation between the sinking, strongest in the 

western boundary layer and the buoyancy forcing. The response is particularly sensitive 

to the presence of a weak cross-perimeter baroclinic mass flux. 

When the forcing is periodic the basin can resonate with the Rossby basin modes 

when the frequency of the forcing matches one of the Rossby modes. However, if there is 

no cross-perimeter flux and if the forcing is independent of longitude the resonance 

disappears. 

The sensitivity of the response, in particular the time required to come to a steady 

state, to the spatial structure of the forcing and its relation to the Rossby basin modes 

emphasizes the important role these modes play in the buoyancy driven circulation. In all 
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cases the strongest sinking velocities occur in the western boundary layer, in particular in 

the narrow hydrostatic layer discussed in detail in PS. This sinking more rapidly comes 

into equilibrium with the forcing than the interior vertical velocity. 

 It will be of interest to extend these results to more realistic parameter settings in 

which nonlinearity, especially due to the action of meso-scale eddies, are important. 
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APPENDIX A 

THE SOLUTION FOR THE INTERIOR VERTICAL  VELOCITY. 

From (3.2), (3.7)  and (3.8) we obtain for the Laplace transform of the interior vertical 

velocity
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The representation in the time domain can be obtained by the same inversion method 

used for η or directly from  (3.2) and (3.10) and is, the quasi-geostrophic beta-plane 

model for the Rossby basin modes to contain a net vertical velocity along a latitude 

circle. 

 

 

(A.2) 
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APPENDIX B 

THE SOLUTION OF (5.2) FOR PERIODIC FORCING 

 

The solution of (5.2 a) for periodic, harmonic forcing when the buoyancy forcing is 

given by (5.1) and (5.2b) can be written, 
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where, 
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while the function Φ is used to satisfy the boundary condition ! = N
e

" i# t  on  y = 0 and Ly, 

and is given by, 
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and B
n
= A

n
with !o

(L
y
)"!

o
(0) . To determine the interface height on the boundary it is 

only necessary to use the form of the above solution valid in the interior since the 
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boundary layers contribute negligibly to the satisfaction of (2.8). The solution in the 

interior is, asymptotically, 
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and the application of (2.8) yields, 
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which completes the solution. 
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Figure Captions 

 

Figure 1. The two-layer model. a) A view of the layers in elevation. The vertical velocity 

at the interface, wi is composed of a cross-isopycnal velocity and the motion of the 

interface. The cross isopycnal velocity is positive when heavy water is transformed 

to lighter water. b) The basin in plan view. A small non quasi-geostrophic velocity 

is allowed to leave (or enter) the basin.  

 

Figure 2. The response of the interface for !
T

=2, µ =2,  δV=0, a=4, Ly=4, xe=1,y0 =0. a) η 

as a function of time for x=0.5. b) The interface height at t=3 as a function of x. See 

text for discussion. 

 

Figure 3. The interior vertical velocity for the same parameter settings as Figure 2. a) wi 

as a function of t at the same position as in Figure 2. b) As a function of x at t =3. 

 

Figure 4. a) η(t) mid-way across the basin for the parameters of Figure 2 but for δV=-0.5. 

b) The same settings showing the vertical velocity as a function of time. In each 

panel the dot-dash line shows the contribution from the cross perimeter flux. 

 

Figure 5. As in Figure 4 except that !
T

is now 0.25. The interior equilibrates after the 

passage of a single Rossby wave. 
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Figure 6. The real and imaginary parts of the solution for periodic forcing at frequency ω 

=π. The parameter settings are otherwise as in Figure 2. The heavy lines are the zero 

contours of real and imaginary η. 

 

Figure 7. The response of the basin to periodic buoyancy forcing as in Figure 6 but with 

δVo=-0.5. 

 

Figure 8. The profiles on y=2 of the real and imaginary parts of 2wi/b for the parameters 

of Figure 6. Note the enhanced vertical velocity in the western boundary layer. 

 

Figure 9. The magnitude of η  on the eastern boundary as a function of frequency for the 

parameters of Figure 4. 
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Figure 1. The two-layer model. a) A view of the layers in elevation. The vertical velocity at the interface, wi 

is composed of a cross-isopycnal velocity and the motion of the interface. The cross isopycnal 

velocity is positive when heavy water is transformed to lighter water. b) The basin in plan view. A 

small non quasi-geostrophic velocity is allowed to leave (or enter) the basin.  
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a) 

 

b) 

Figure 2. The response of the interface for !
T

=2, µ =2,  dV=0, a=4, Ly=4, xe=1, yo=0. a) η as a function of 

time for x=0.5. b) The interface height at t=3 as a function of x.  
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a) 

 

 

b) 

Figure 3. The interior vertical velocity for the same parameter settings as Figure 2. a) wi as a function of t at 

the same position as in Figure 2. b) As a function of x at t =3. 
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a) 

 

b) 

Figure 4. a) η(t) mid-way across the basin for the parameters of Figure 2 but for δV=-0.5. b) The same 

settings showing the vertical velocity as a function of time. In each panel the dot-dash line shows the 

contribution from the cross perimeter flux. 
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a) 

 

b) 

Figure 5. As in Figure 4 except that !
T

is now 0.25. The interior equilibrates after the passage of a single 

Rossby wave. 
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Figure 6. The real and imaginary parts of the solution for periodic forcing at frequency ω =π. The 

parameter settings are otherwise as in Figure 2. The heavy lines are the zero contours of real and imaginary 

η. 
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Figure 7. The response of the basin to periodic buoyancy forcing as in Figure 6 but with δVo=-0.5 
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Figure 8. The profiles on y=2 of the real and imaginary parts of 2wi/b for the parameters of Figure 6. Note 

the enhanced vertical velocity in the western boundary layer. 
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Figure 9. The magnitude of η  on the eastern boundary as a function of frequency for the parameters of 

Figure 4. 


