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Abstract
We examine the stability of baroclinic Rossby waves in large ocean basins, generalizing the

quasi-geostrophic results of LaCasce and Pedlosky (2004). We derive stability equations appli-
cable for large scale waves using the two layer shallow water system. Under these equations,
unstable perturbations at a given latitude are nearly geostrophic. The equations resemble the
quasi-geostrophic stability equations except that they retain the full variation of the deformation
radius with latitude. We solve these equations numerically for different initial conditions, by cal-
culating eigenmodes and time-stepping. The fastest growing eigenmodes are intensified at high
latitudes and slower modes at lower latitudes; all the modes have meridional scales comparable
to the local deformation radius and growth rates inversely proportional to the deformation radius.
These points are all consistent with the quasi-geostrophic results.

We then simulated the evolution of large scale waves using the ROMS primitive equation
model. The results are consistent with the theoretical predictions, with deformation-scale pertur-
bations growing at rates inversely proportional to the deformation radius. The waves succumb to
the perturbations at the mid- and high latitudes, but are able to cross the basin at low latitudes
before doing so. And the barotropic waves produced by the instability propagate faster than the
baroclinic long wave speed, which may explain the discrepancy in speeds noted by Chelton and
Schlax (1996).
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1 Introduction

Quasi-geostrophic studies suggest that baroclinic Rossby waves are unstable (Jones, 1979;

Vanneste, 1995; LaCasce and Pedlosky, 2004, LP04 hereafter). The waves break into

deformation-scale eddies, on a time scale proportional to the ratio of the deformation ra-

dius to the shear velocity, i.e. Tg ∝ LD/U . Instability occurs because waves that are

generated at the eastern oceanic boundary tend to have their crests oriented meridion-

ally and thus cannot be stabilized by the β-effect (Pedlosky, 1987). Since the instability

occurs essentially for all oceanic Rossby waves regardless of amplitude or latitude, the

only question is how long before the wave succumbs to instability. In other words, if a

Rossby wave emanates from the eastern boundary of the basin, can it cross to the western

boundary before disintegrating?

The answer depends on the ratio of the crossing time to the unstable growth time,

defined as Z by LP04. Since the crossing time for a long baroclinic wave is LB(βL2
D)−1

(where LB is the basin width), we have:

Z ≡
TR

Tg

=
ULB

βL3
D

. (1)

Waves can cross intact if Z is less than order one.

The theory of LP04 makes three specific predictions vis a vis the oceanic Rossby wave

field. First, large scale baroclinic waves should be seen only at low latitudes, where Z is

small. Because Z varies so strongly with the deformation radius, the latitudinal transition

between crossing and disintegrating waves should be sharp. Using representative values

for the Pacific, LP04 suggested this critical latitude is about 20 degrees. This is roughly

consistent with satellite observations of sea surface height, where large scale propagation

is only visible at latitudes lower than about 20 degrees (Chelton and Schlax, 1996).

Second, the dominant eddy scale north of the critical latitude (in the northern hemi-

sphere) should be larger than the deformation radius. This is because the most unstable

mode has a meridional scale of roughly twice the deformation radius. Such a shift in
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scale is also consistent with satellite observations (Stammer, 1997). If, in addition, the

barotropic eddies produced by instability merge, they will produce still larger barotropic

waves. This can be seen in numerical experiments when Z > 1 (LP04).

Third, the westward phase propagation observed at the mid- and high latitudes should

occur at speeds faster than the baroclinic long wave speed. This is because the most un-

stable barotropic waves propagate faster than long baroclinic waves. This too is consistent

with satellite observations (Chelton and Schlax, 1996). If eddy merger occurs, yielding

larger barotropic waves, still higher speeds will occur.

Thus in these respects the theory is in agreement with observations. However, it is not

strictly correct to apply quasi-geostrophic (QG) theory to large basins. QG assumes the

deformation radius is constant and this is certainly not the case; in the Pacific, the defor-

mation radius varies from several hundred kilometers at low latitudes to a few kilometers

at high latitudes. LP04 suggested the QG results should apply locally, over a latitude

band, and could thus be used to infer in a piecewise fashion the behavior of the large scale

wave. But this remained to be demonstrated.

Hereafter we consider the stability of baroclinic Rossby waves in large basins, like

the Pacific. We first develop a theory in which the basic baroclinic wave evolves under

the shallow water equations, but the unstable perturbations are locally quasi-geostrophic.

We examine solutions of this system numerically. Then we use the ROMS primitive

equation model to study the evolution of similar large baroclinic waves. The results of the

computations are consistent with the theory, and moreover support the predictions from

QG theory.

2 The LQG Model
2.1 Equations

We assume a two layer ocean under the shallow water approximation (e.g. Pedlosky,

1987):
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∂

∂t
~u1 + ~u1 · ∇~u1 + f k̂ × ~u1 = −g∇χ (2)

∂

∂t
~u2 + ~u2 · ∇~u2 + f k̂ × ~u2 = −g∇χ − g′∇η , (3)

where ~u1 and ~u2 are the layer velocities, χ the sea surface height and η the interface

height. We have taken the layers to have equal depth, H/2 (an unrealistic assumption but

one which simplifies the derivation and does not alter the results qualitatively). From

these layer equations, we derive equations for the barotropic and baroclinic velocities:

∂

∂t
~uB + ~uB · ∇~uB +

1

4
~uT · ∇~uT + f k̂ × ~uB = −g∇χ −

1

2
g′∇η ≡ −∇φB (4)

∂

∂t
~uT + ~uT · ∇~uB + ~uB · ∇~uT + f k̂ × ~uT = −g′∇η ≡ −∇φT (5)

where

~uB ≡
1

2
(~u1 + ~u2), ~uT ≡ (~u2 − ~u1) (6)

are the barotropic and baroclinic velocities. We have defined equivalent barotropic and

baroclinic displacements:

φB = gχ +
1

2
g′η, φT = g′η . (7)

to decouple the barotropic and baroclinic equations.

The layer continuity equations are:

∂

∂t
(H/2 + χ − η) + ∇ · (~u1(H/2 + χ − η)) = 0 (8)

∂

∂t
(H/2 + η) + ∇ · (~u2(H/2 + η)) = 0 . (9)
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We can rewrite these in terms of the barotropic/baroclinic velocities and displacements as

follows:

∂

∂t
φT +

g′H

2
∇ · (~uB +

1

2
~uT ) + ∇ · ((~uB +

1

2
~uT )φT ) = 0 (10)

g′

g

∂

∂t
φB + (

g′

4g
+ 1) g′H ∇ · ~uB +

g′

8g
g′H∇ · ~uT + (

g′

4g
+ 1)∇ · (~uTφT )+

g′

g
∇ · ((~uB −

1

2
~uT )φB) = 0 . (11)

We will non-dimensionalize the equations, to facilitate the subsequent perturbation

expansions. We assume a velocity scale, U , a length scale, L and an advective time scale,

T = L/U , The resulting equations are then:

ε
∂

∂t
~uB + ε~uB · ∇~uB +

ε

4
~uT · ∇~uT + f̂ k̂ × ~uB = −∇φB (12)

ε
∂

∂t
~uT + ε~uT · ∇~uB + ε~uB · ∇~uT + f̂ k̂ × ~uT = −∇φT (13)

εFT

∂

∂t
φT +

1

2
∇ · (~uB +

1

2
~uT ) + εFT∇ · [(~uB +

1

2
~uT ) φT ] = 0 (14)

εFB

∂

∂t
φB +∇· ~uB +

g′

8g
∇· ~uT + εFT∇· (~uT φT )+ εFB∇· [(~uB −

1

2
~uT ) φB] = 0 . (15)

where the variables now are understood to be non-dimensional. We have assumed that

|gχ| ≈ |g′η| and that |φB| ≈ |φT | ≈ f0 UL. We also exploited the fact that 1 + g ′/g ≈

1. We will confine our attention to the β-plane, so that the non-dimensional Coriolis

parameter is f̂ = 1 + βLy/f0, with f0 the parameter value at the mid-basin. But we do

not assume that the β term is small (as is usually done in deriving the QG expansion); the

basin may be large.
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The solutions will depend on three non-dimensional parameters. One is the Rossby

number, ε = U(f0L)−1. In addition there are:

FB ≡
f 2

0 L2

gH
, FT ≡

f 2
0 L2

g′H

which are Burger numbers related to the external and internal deformation radii.

2.2 Basic wave

We consider first the large scale baroclinic wave, which we designate with capital vari-

ables (U, V, ΦT , ΦB). Since the relevant length scale is that of the basin, the Rossby

number is small (for typical velocities). In addition, the barotropic Burger number, FB ,

is order one and the baroclinic Burger number is large; we’ll assume, for simplicity, that

FT ≈ ε−1.

Because the wave is predominantly baroclinic, an appropriate expansion is:

~uT = ε~UT + ε2~U
(2)
T + ..., φT = εΦT + ε2Φ

(2)
T + ... (16)

~uB = ε2~U
(2)
B + ..., φB = ε2Φ

(2)
B + ... (17)

The leading order wave term is order Rossby number because if it were order one, the

wave would satisfy a Burger’s equation and would thus steepen in time (e.g. Charney and

Flierl, 1981). Note that we cannot assume the barotropic part of the field is zero because

self-advection by the baroclinic wave excites barotropic motion at order ε2. Substituting

these expansions into the six non-dimensional equations yields, at order (O|ε|):

f̂ k̂ × ~UT = −∇ΦT (18)

∂

∂t
ΦT +

1

4
∇ · ~UT = 0 . (19)

7



which are familiar as the linearized planetary geostrophic equations. The wave velocities

are geostrophic, but they are also divergent due to the variation in f . Combining equations

(18) and (19) yields the long wave equation, which in dimensional form is:

∂

∂t
ΦT −

g′Hβ

4f 2

∂

∂x
ΦT = 0 , (20)

The solution is a steadily-propagating wave with a phase speed which varies with lati-

tude. The presence of boundaries requires the introduction of dissipation to satisfy the

no-normal flow condition, but this is straightforward to do (e.g. LaCasce and Pedlosky,

2002).

2.3 Perturbations

Following LP04, we anticipate unstable growth near the deformation radius. If so, the

perturbations will have a length scale which varies with latitude. The effective Rossby

number will thus vary, although we assume nevertheless that it is small at all latitudes. In

addition, the barotropic Burger number will be small (because the external deformation

radius greatly exceeds the internal radius), but the baroclinic Burger number is order

one and will vary in y. We assume in addition that βLD/f is small at all latitudes (and

comparable to the Rossby number) and we neglect the term in (15) proportional to g ′/g

(i.e. we assume that ratio is smaller than the Rossby number).

Under these assumptions, the first-order momentum balances are:

k̂ × ~uT = −∇φT , k̂ × ~uB = −∇φB (21)

so that the velocities are geostrophic and non-divergent. In other words, the perturbations

are locally quasi-geostrophic, which we term “LQG”. The continuity equations at first

order imply simply that the velocities are non-divergent, meaning the system is under-

determined. So one requires the order ε equations to solve the system, a familiar feature

of the QG expansion (Pedlosky, 1987). Those equations can be combined into statements

for the conservation of barotropic and baroclinic potential vorticity:
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∂

∂t
qB + ~uB · ∇qB +

1

4
~uT · ∇qT + β

∂

∂x
φB = 0 (22)

∂

∂t
qT + ~uB · ∇qT + ~uT · ∇qB + β

∂

∂x
φT = 0 (23)

where:

qT ≡ ∇2φT − 4FT (y) φT , qB ≡ ∇2φB .

Now we must link up the perturbations and the baroclinic basic wave. To do this, we

introduce into the expansion in section (2.2) perturbations with a second small parameter,

α. So for example, one would write:

φT = εΦT + ε2Φ
(2)
T + εαφT + ...

The resulting expansion yields the LQG PV equations linearized about the baroclinic

basic wave:

∂

∂t
qB +

1

4
~UT · ∇qT +

1

4
~uT · ∇QT + β

∂

∂x
φB = 0 (24)

∂

∂t
qT + ~UT · ∇qB + ~uB · ∇QT + β

∂

∂x
φT = 0 (25)

where:

QT ≡ ∇× ~U − 4FT (y) ΦT

is the basic wave potential vorticity.

Equations (24) and (24) are very similar to the QG stability equations examined by

LP04. The major difference is that the baroclinic Burger number, FT , varies with y, so

that the system has non-constant coefficients. This hinders simple analytical solutions,

but numerical solutions are feasible and we examine some hereafter.
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3 LQG Results
3.1 Eigenmodes

We discretized the dimensional versions of equations (24) and (25) on the C-grid and

solved them numerically. We did this in two ways. First we converted the equations to

matrix form and solved the resulting eigenvalue problem. This is applicable to the high-Z

limit of LP04, in which the wave is stationary to first order in 1/Z. Then we examined

the evolution of a propagating wave by stepping the equations forward in time. The

eigenvalue calculation yields information on the structure and growth rates of the unstable

disturbances, while the time-stepping reveals the combined action of the disturbances.

As a first example, we consider a wave which is sinusoidal in x and with a vertical

shear which is invariant in y (except near the northern and southern boundaries where the

wave is tapered). The invariance of the shear helps to highlight the latitudinal variation of

the instability. In line with the high-Z limit, we neglect the β terms for both the basic wave

and the instabilities. We calculated modes for a basin 1000 km wide (x direction) by 4000

km long (y direction), centered at 45 degrees north. The basin was 4000 m deep, with

two equal layers; we took g′ = 0.02 m sec−2. The wave shear was set at 10 cm/sec. We

extracted the first 50 eigenmodes (in complex conjugate pairs) using the sparse eigenvalue

routine in Matlab.

Three eigenmodes (modes 1, 20 and 45) are shown in figure (1). In the left panels are

the basic wave with the barotropic eigenmodes superimposed; in the right are estimates

of the meridional scale of the eigenmodes as a function of latitude, generated by the

continuous wavelet transform.1 The gravest mode is intensified in the north while the

higher modes are shifted to the south. The wavelet spectra support this southward shift,

and also indicate an increase to the south in the dominant meridional scales. The latter

moreover vary in proportion with the local deformation radius.

Extracting the dominant y-scale for all fifty eigenvectors and plotting them against y

1The wavelet software, written by C. Torrence and G. Compo, is available at
http://paos.colorado.edu/research/wavelets/.
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Figure 1: The barotropic perturbations for eigenmodes 1, 20 and 45 originating from a sin(kx)
basic wave. The streamfunctions, with the eigenmodes superimposed, are shown at left. At right
are wavelet transform power spectra, which indicate the dominant meridional scales as a function
of latitude. The dashed line indicates a scale proportional to the local deformation radius. The
upper and lower lines denote the “cones of influence” (COI) of the wavelet transform; the region
of significance lies between the lines. The results outside the lines are adversely affected by the
northern and southern boundaries.
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Figure 2: Estimates of the dominant meridional scale vs. y position derived from the wavelet
spectra. The dashed line indicates one half the most unstable wavelength predicted from QG
theory (from eq. 3.9a of LP04), which is proportional to the local deformation radius.

yields figure (2). As suggested, the scales vary in proportion to the local deformation

radius. In fact, they are roughly equal to one half the most unstable wavelength predicted

from QG theory (LP04) (which is also proportional to the deformation radius).

In figure (3) we plot the eigenmode growth rates vs. the y position of their maxima.

The growth rates exhibit a linear dependence on the deformation radius, consistent with

our earlier expectation (and also because the basic wave has a constant shear). The con-

stant of proportionality, from a least squares fit, is within a factor of two of that predicted

from QG theory.

Note that the higher modes also exhibit growth at higher latitudes at scales both larger

and smaller than the deformation radius (Fig. 1). However this growth is slower than that

in the deformation-scale growth in the lower modes. So the latter should dominate.

3.2 Time stepping

Next we time-step equations (24) and (25). This will permit examining what happens

when the wave is actually propagating, as well as the cumulative effect of the unstable

eigenmodes. We advance the equations using a fourth order Runge-Kutta scheme with an

adaptive time step.
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Figure 3: The modal growth rates at the latitudes corresponding to the wavelet spectra maxima.
The dashed line comes from a least squares fit and indicates a linear dependence on the deforma-
tion radius.

Rather than using the sinusoidal wave of the previous section, we employ a wave

which is localized initially near the eastern boundary. This is meant to approximate a wave

excited by a Kelvin propagating along the eastern boundary (e.g. Milliff and McWilliams,

1994). The wave (shown in Fig. 4) is one wavelength of a sine wave, shifted by a constant

so that the height is positive definite. The wave height is constant with latitude, except

near the northern and southern boundaries where the wave is tapered. Moreover we take

the wavelength to be 20 times the local deformation radius. This means that the vertical

shear, with a value of 10 cm/sec, is constant with latitude.

The wave propagates as a long Rossby wave, under equation (20). The evolving wave

is used for input to the stability equations (24-25) which are in turn advanced in time. We

employ a domain which is 4000km-by-4000km (spanning roughly 40 degrees of latitude),

centered at 30 degrees north. The basin depth and stratification were as in the eigenmode

calculations. With a shear of 10 cm/sec, the Z values range from approximately 0.1 at the

southern boundary to about 10 at the northern.

The evolution is depicted in figure (5), which shows the basic wave plus the unstable

barotropic disturbances, and the wavelet specturm of the meridional scales of the latter.

The basic wave propagates faster at low latitudes, causing the familiar latitudinal bending
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Figure 4: The eastern basin wave amplitude (left panel) and its vertical shear (right). The wave-
length is 20 times the local deformation radius at all latitudes.

of the wave crests. The unstable disturbances appear first at high latitudes and intensify

as the wave moves west; at low latitudes the growth is slower. The wavelet spectrum indi-

cates the disturbances scale with the local deformation radius, and at a scale comparable

to that predicted by QG theory. The spectrum also suggests larger scale features in the

south, but these are for the most part insignificant.

The temporal growth of the barotropic perturbations is indicated in figure (6), which

shows the rms barotropic pressure averaged in three latitude bands (centered at 860km,

1980 km and 3100 km). The results indicate clear exponential growth in the upper two

latitude bands. The growth continues indefinitely in these simulations because the un-

changing basic wave is effectively an infinite source of potential energy. Growth has

commenced in the lowest band, but there is little increase before the basic wave strikes

the western wall. Rescaling time by the expected growth time, LD/U , we see that the

growth rates in the northern two bands are similar. They are, moreover, comparable to the

rate predicted by QG theory in the high-Z limit.2

2The QG low-Z growth rate for equal layer depths is 0.1U/LD (LP04). This corresponds to a e-folding time of 10

times LD/U . The high-Z growth rate is some 60 % faster.
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Figure 5: The LQG solution at day 75 for an isolated wave propagating from the eastern boundary.
The wave is shown at left with the barotropic perturbations superimposed. At the right is the
wavelet spectrum of the barotropic field, showing the dominant y-scale as a function of y (and
normalized by the power at each y). The dashed line indicates one-half the wavelength of the
most unstable wave predicted by QG theory and is proportional to the local deformation radius.
The solid lines indicate the COI, defined in figure (1).

The LQG simulations thus support the idea of applying QG theory at successive

latitudes. The large scale waves are unstable to deformation-scale perturbations whose

growth times scale with the deformation radius. However the basic wave cannot change

in these simulations, which means we can’t see how the perturbations alter the basic wave.

To see that, we must turn to a full ocean model.

4 Primitive equation simulations

The LQG expansion is based on the assumption of growth at the deformation radius and

the LQG stability equations closely resemble those in QG. So it may seem unremarkable

that the preceding results agree so well with QG theory. What we require is an indepen-

dent means of examining the wave instability. For this we employ the Regional Oceanic

Modelling System (ROMS; e.g. Shchepetkin and McWilliams, 2005). This model is

based on the primitive equations and because of this, it is free of assumptions about the

balances pertaining to the perturbations. Simulating large scale waves with the model will
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Figure 6: The rms barotropic pressure as a function of time for the isolated Rossby wave initiated
near the eastern boundary. The curves correspond to latitude bands centered at 860 km (dotted),
1980 km (dashed) and 3100 km (dash-dotted). The two solid lines give theoretical growth curves
in the low and high Z limits from the QG theory of LP04.

allow us to assess the LQG results and to test definitively whether the waves are unstable.

For the subsequent simulations, we used a spherical grid with a wedge-shaped sector

spanning 160◦–260◦ East, 5◦–55◦ North. The model domain had 400 and 200 grid points

in the zonal and meridional directions (1/4◦ × 1/4◦), yielding a maximum horizontal

grid spacing of 27 km (the deformation radius at the northern boundary, 25 km, is thus

nearly resolved; it is resolved elsewhere). The bottom was flat, with a depth H=4000 m,

and we used 10 vertical layers of equal thickness. All explicit mixing and dissipation was

switched off, although there is small scale implicit dissipation associated with the model’s

third-order advection scheme (e.g. Ferziger and Pezic, 1999).

We initialized the model with a weak amplitude baroclinic wave (to approximate the

order Rossby number baroclinic wave of section 2.2). We did not include the higher-order

corrections, but rather let the model generate those itself (the correction fields are occa-

sionally visible in the subsequent plots, in particular near the boundaries). We also added

weaker, random barotropic and baroclinic perturbations, at 1/10 the amplitude of the basic

wave, to catalyze the instability. In all cases, we retained a linear basic stratification (the

baroclinic wave, being small in amplitude, represents a perturbation to this stratification).

The buoyancy frequency was 0.0035 rad sec−1; this is somewhat larger than typically ob-
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served in the Pacific (Chelton et al., 1998), but yields larger deformation radii which are

easier to resolve in these idealized runs.

Figure 7: An initially isolated Rossby wave propagating from the eastern boundary. The wave
structure is like that in figure (4), i.e. a single sine wave with a variable wavelength of 20 defor-
mation radii. The sea surface elevation at days 200 and 500 are shown at left, and the barotropic
height (defined in the text) at right. The color scale is from -10 cm to +10 cm.

We begin with the second case considered earlier, the isolated wave propagating from

the eastern boundary. The initial condition was like that shown in figure (4), i.e. a single

sine wave with a wavelength of 20 deformation radii. Shown in Figure 7 are the sea

surface height and the barotropic displacement, at two different times. The displacement

is calculated by integrating the geostrophic relation from the eastern boundary thus:

ηB =
f

g

∫ xe−x

xe
vB dx (26)

where vB is the depth-averaged meridional velocity.

17



As in the LQG simulation, the instabilities develop in the north first. By day 200, the

perturbations north of 30 degrees are as strong as the wave and are severely distorting it.

By day 500, the wave has broken up in the north and barotropic eddies are radiating to the

west. Little unstable growth is seen south of 30 degrees, and the wave strikes the western

boundary before breaking up.

Figure (8) shows the wavelet spectra of the meridional scales derived from the baro-

tropic height field at three latitudes (17, 30 and 42 degrees). We use the barotropic height

because it is more indicative of the perturbations than the actual surface height (which

also reflects the basic wave). The spectra suggest growth in the upper two bands at a scale

proportional to the deformation radius. The dominant wavelength is roughly 8LD, some-

what greater than 2πLD and slightly greater than the scale seen in the LQG simulations.3
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Figure 8: Wavelet spectra of meridional scale as a function of time, generated from the barotropic
height at 17, 30 and 42 degrees of latitude. The dashed line indicates 1.3 times the deformation
wavelength. The solid lines for the northern and southern latitudes are the COI of the transform
(and reflect the effect of the nearby boundaries).

In the northern band, the energy shifts to larger scales at around day 500. This reflects
3Note the denominator of the dimensional Rossby dispersion relation is k2

+ l2 + L−2

D
, so the wavelength corre-

sponding to L−1

D
is 2πLD ≈ 6.3LD . A factor of 8 is thus 1.3 times greater than this.
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an inverse cascade of energy, as the barotropic eddies merge to produce larger eddies.

The cascade however ceases, so that the scale remains fixed at the larger scale thereafter.

The reason for the cessation is evidently the inhomogeneity in the eddy field, as discussed

below. In the mid-latitude band there is also a shift to larger scales around day 500, but

the shift is much less pronounced than in the north.

In the southern band, there is little indication of unstable growth. Rather there is

energy at scales greater than 1500 km, which moreover is insignificant in the wavelet

transform. There is significant energy below the deformation radius at late times, but this

reflects the southward spreading of the unstable eddies from the north.

Figure (9) shows the growth rates at three latitudes, inferred from the rms barotropic

height. The results suggest an increase in the barotropic energy in all three bands. There

is transient, possibly exponential, growth followed by saturation. Plotting the rms height

against time rescaled by LD/U suggests the growth rates are roughly proportional to

U/LD and moreover are not greatly different from that predicted by QG theory.
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Figure 9: The rms barotropic height, averaged in three latitude bands centered at 17, 30 and 42
degrees, as functions of time. The rms heights are normalized by their initial values. The values
are plotted against time on the left and against time rescaled by LD/U on the right.

After about 20 − 30 LD/U , the barotropic energy begins to level off. So growth sat-

uration occurs after several e-folding times, as predicted by QG theory for the high-Z

limit (see note in section 3.2). The ultimate energy level is greatest in the northern band,
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Figure 10: The sea surface and barotropic height fields for the initial sine wave, discussed in
section (3.1) The color scale range is -20 to 20 cm.

implying a more energetic barotropic eddy field than elsewhere. This likely stems from

having a constant wave shear, because there is more potential energy at high latitudes to

be tapped by the instability.

The barotropic energy in the northern band saturates fully just after 400 days, which

is roughly the same time as the barotropic energy shifts to larger scales (Fig. 8). So

saturation there is coincident with the beginning of the energy cascade.

We also examined the sinusoidal wave considered in section (3.1). This wave differs

from the eastern wave in that it spans the whole basin. Nevertheless the evolution of the

height fields, shown in figure (10), is qualitatively the same. The wave breaks up in the

north, on a time scale of several hundred days. The northern latitudes are then filled with

barotropic eddies.

The change in scale of the barotropic eddies as function of time is seen in the wavelet
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Figure 11: The wavelet spectra from the sine wave case. As before, the spectra were obtained
from the rms barotropic height, averaged in three latitude bands. The dashed line indicates the
same scale as in figure (8), or 8 times the deformation radius. The solid lines in the top and bottom
panels are the COI.

spectra of meridional scales (Fig. 11). Looking at the northern and mid-latitude bands,

we see energy appearing initially at the same scale as with the eastern wave (or 8 times

deformation radius). Different from before though is that the energy begins to shift to

larger scales earlier, around day 300, and that shift proceeds to still larger scales thereafter.

Evidently the inverse cascade is more energetic in this case, a consequence of having

a more homogeneous barotropic eddy field. Unstable perturbations are growing in the

east and west, and these eddies merge with one another. The isolated wave had a more

localized eddy field, so the cascade could proceed essentially only to the scale of the

initial wave. In other words, inhomogeneity in the eddy field in the eastern case causes the

inverse cascade to cease, an effect noted by Rhines (1977). But with eddies everywhere,

the cascade proceeds further upscale.
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Figure 12: The rms barotropic height in the three latitude bands for the sine wave case, plotted
against time and time rescaled by LD/U .

The spectra from the southern band suggests energy at large scales. But due to the

influence of the boundary, much of this is uncertain in the wavelet transform. As sug-

gested in figure (10), the eddy field in the south is strongly affected by eddies spreading

southward from the north.

The growth curves from the three latitude bands are shown in figure (12). As with

the eastern wave, the curves indicate exponential growth, with rates comparable to that

predicted by QG theory, followed by saturation. The latter occurs at a time of roughly 15-

20 times LD/U and roughly coincident with the shift in barotropic energy toward larger

scales. The saturation energies are higher to the north, although the differences between

latitudes are less than with the eastern wave.

So the ROMS simulations largely support the predictions of the LQG theory. The

baroclinic Rossby wave is unstable to perturbations which grow at a scale proportional to

the local deformation radius, LD, with a growth rate proportional to U/LD. The primary

difference with the LQG simulations is that the perturbations grow to finite amplitude and

merge, allowing for an inverse cascade of energy. This cascade is more energetic at high

latitudes, owing to our choice of waves with constant shear. But the conclusion is the

same, that at mid- to high latitudes the baroclinic wave gives way to barotropic waves.
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Figure 13: Hovmuller diagrams from the ROMS simulation of the isolated eastern wave. The
diagrams were constructed from the sea surface height at the center latitudes from the three latitude
bands examined earlier. The dashed lines indicate the long wave speed and 2.4 times that speed.

5 Phase speeds

The seminal observations of Chelton and Schlax (1996) suggested that the westward prop-

agating sea surface height anomalies seen from satellite are moving faster than the baro-

clinic long wave speed outside the tropics. Subsequent theories attributed the increase in

phase speed to a number of factors, including the interaction with the baroclinic mean

circulation (Killworth et al., 1997) or topography (Tailleux and McWilliams, 2001).

LP04 suggested, rather, that wave instability at these latitudes might be responsible, if

the height anomalies reflect barotropic rather than baroclinic Rossby waves. In particular,

the most unstable barotropic wave from the QG theory has a phase speed roughly twice

the long wave speed.

Here we examine the phase speeds in the ROMS simulations. We quantify these using
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Hovmuller diagrams of the sea surface height. Figure (13) shows the diagrams from the

isolated eastern wave case, using the height at the three latitudes considered earlier. The

two dashed lines in the figure indicate the baroclinic long wave speed (the upper line)

and the accelerated value (at 2.4 times the long wave speed; the lower line) predicted by

LP04. Figure (14) shows the comparable Hovmuller diagrams from the sinusoidal wave

case.
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Figure 14: Hovmuller diagrams from the ROMS simulation of the sinusoidal wave. The dashed
lines indicate the long wave speed and 2.4 times that speed.

In both figures, the crests in the southern band propagate at or near the long wave

speed for the duration of the experiment.4 At the mid- and high latitudes, the speeds

increase mid-way through the experiment. At the northern-most latitude, the phase speed

increase is evident after about 400 days in the eastern wave case and roughly 200 days

in the sine wave case. The faster speeds in the eastern wave case are comparable to 2.4

4The additional crests seen in the eastern wave case are from shorter waves, propagating slower than the long wave
speed, originating at the eastern boundary.
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times the long wave speed. However they are even faster in the sine wave case.

Interestingly, the transitions to faster phase speeds occur roughly simultaneously with

the shift to larger meridional scales (see figs. 8 and 11) and the saturation in unstable

growth (figs. 9, 12). Evidently the phase speed increase is only visible after the baroclinic

wave has broken up, so that the height field is dominated by the barotropic waves. During

the growth phase, the baroclinic wave coexists with the perturbations, and the long wave

speed is still evident. It is also possible that the barotropic perturbations are not propa-

gating as fast as predicted by the QG theory. The latter prediction comes from the low-Z

limit (pertaining to plane waves), in which the barotropic perturbations had zonal scales

much longer than that of the basic wave. Here the barotropic perturbations grow in the

high shear regions and propagate, at least initially, with the basic wave. So their phase

speeds during the early growth period may indeed be similar to the long wave speed.

But regardless of the behavior during the adjustment, the apparent phase speeds are

clearly faster than the long wave speed following the disintegration of the basic wave.

The observed speeds in the eastern wave case are comparable to the 2.4 times the long

wave speed, consistent with QG theory. The reason they are greater in the sine wave case

is that the inverse cascade proceeds to larger scales, making larger—and thus faster—-

barotropic waves.

We summarize the phase speed dependence on latitude in figure (15), which compares

the speeds deduced from the height field with the long wave speed. We constructed this

by extracting phase speeds from the Hovmuller diagrams at successive latitudes, for the

two cases discussed. With the eastern wave, the speeds are comparable to the long wave

speed south of 30 degrees, and 2-3 times higher north of that line. This is qualitatively

consistent with the picture shown in Chelton and Schlax (1996; their figure 5). The sine

wave case also exhibits faster waves, north of roughly 20 degrees, but the phase speeds

are even faster, due to the active inverse cascade. As these speeds appear to be greatly

in excess of those of Chelton and Schlax, we suspect such a cascade is probably not
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Figure 15: The westward phase speeds deduced from Hovmuller diagrams of the sea surface height
in the ROMS experiments with the isolated eastern wave (upper panels) and the basin-spanning
wave (lower panels). We extracted the speeds at the higher latitudes during the period just after the
phase speed acceleration; at low latitudes, we extracted the speed from the leading wave crest. The
right panels show the ratios of observed speed to the long wave speed. A more vigorous inverse
cascade is responsible for the larger phase speeds in the lower panels.

occurring. This would imply that the eastern wave case is more realistic for the ocean

than the basin-spanning sinusoidal wave.

6 Conclusions

We have generalized the quasi-geostrophic stability theory of LP04 to a realistically large

ocean basin. To do this, we expanded the two layer shallow water equations by assum-

ing a small-amplitude basin-scale wave and derived a pair of coupled stability equations.

We refer to these as the “LQG” equations because they imply that the disturbances, an-

ticipated to be of deformation-scale, are locally quasi-geostrophic. The LQG equations

are similar to the barotropic/baroclinic QG vorticity equations, except that they retain a

realistic variation of the deformation radius.

We examined instabilities arising from these equations by calculating eigenmodes of
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the equations (assuming the wave was stationary) and then by time-stepping them. The

eigenmode calculation suggested the most rapid growth at any latitude occurs near the

deformation radius and that the growth rate is inversely proportional to the deformation

radius. So instability proceeds most rapidly at high latitudes. The time-stepping yielded

similar results and implied that only at southern latitudes could the wave cross the basin

before succumbing to instability.

The results are thus in line with what would be expected by applying QG theory at

successive latitudes. However, the LQG equations are very similar to their QG coun-

terparts, so we then used a primitive equation model (the ROMS model) to obtain an

independent confirmation. The ROMS results were indeed in line with the LQG results,

showing unstable growth near the deformation radius with a time scale proportional to

LD/U .

Lastly we examined the westward phase speeds, apparent in the surface height field.

As suggested by LP04, there is an increase in the speed following instability, because the

barotropic waves (which have a surface expression) propagate faster than the baroclinic

long wave speed. The increases seen with a case of an isolated wave emanating from the

eastern wall were in excellent agreement with the satellite observations of Chelton and

Schlax (1996).

Though we did not discuss it here, we also examined the instability of baroclinic basin

modes. Indeed, the present work (and that of LP04) were motivated by the question of

whether basin modes are unstable. The modes, discussed by LaCasce (2000), Cessi and

Primeau (2001), Primeau (2002), LaCasce and Pedlosky (2002) and Ben Jelloul and Huck

(2003), have very large scales and low frequencies, and are thus of potential interest for

climate variability. We performed simulations of several different modes using both the

LQG and ROMS models and all indicated that the modes were unstable. The instabilities

grow fastest in the northwest, where the shear is greatest. But the conclusion is the same,

that the modes, like the Rossby waves, break up at the northern latitudes.
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Our focus has been on waves with fixed vertical shear, but oceanic waves emanat-

ing from eastern boundaries will have different amplitudes, depending on the forcing.

This will impact the degree of penetration into the basin, by altering the unstable growth

times. We have also neglected mean flow effects. However, if the primary dynamic is

that of waves radiating from the eastern boundary, such waves may not have a chance to

encounter significant mean flow, intensified in the west, before succumbing to instabil-

ity. This remains to be seen of course with more realistic models. Furthermore, we have

concentrated on weak amplitude waves, because finite amplitude Rossby waves would

steepen in time (sec. 2.2). However, such waves would have stronger vertical shear and

thus might be even more prone to instability. The analgous stability equations for an order

one baroclinic wave are similar to those considered here, but with additional terms due to

barotropic interactions; they could be studied in future.

There is also the fate of the barotropic eddies. Comparing our results with the satellite

observations of Chelton and Schlax, it appears there is little in the way of an inverse

cascade after instability. Stammer’s (1997) results also argue against a cascade, because

a cascade should be arrested by the β-effect (Rhines, 1977) and there is little evidence of

a such arrest from the eddies seen in the height field. The cascade may be halted by the

inhomogeneity of the eddy field or by another effect, like topography. But either way, the

product of the instability would appear to be deformation-scale barotropic Rossby waves.

Finally, Rossby wave instability could have profound implications for the adjustment

of wind-driven oceanic flows. Our general conception of the response to changing winds,

following Anderson and Gill (1975), is of one mediated by Rossby waves propagating

from the eastern boundary. The passage of the baroclinic waves alters the baroclinic

structure of the general circulation. Instability of the baroclinic waves will presumably

alter this process significantly. We are currently exploring this issue.
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