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Abstract 

The flow around a planetary scale island in a baroclinic ocean is examined when the 

island possesses a topographic skirt representing a steep continental slope and the ocean 

is modeled as a two-layer system in order to examine the role of stratification in the 

circulation. The study extends an earlier barotropic model of similar geometry and 

forcing to focus on the degree to which the topography, limited here to the lower of the 

two layers, affects the circulation and to what degree the circulation is shielded by 

stratification from the topographic effects noted in the simpler barotropic model.  

As in the barotropic model, the topography is steep enough to produce closed, 

ambient potential vorticity contours over the topography in the lower layer providing free 

“highways” for the deep flow in the presence of small forcing  by the wind-driven upper 

layer flow. The flow is very weak outside the region of closed contours but can become 

of the same order, if somewhat smaller, as the upper layer flow on those contours in the 

presence of even weak coupling to the upper layer. 

A series of models, analytical and numerical, are studied. Linear theory is applied to 

two configurations. The first consists of a long, meridionally oriented island with a 

topographic skirt in the lower layer. The lower layer flow is driven by a hypothesized 

frictional coupling between the two layers that depends on the circulation of the upper 

layer velocity on a circuit defined by the closed potential vorticity contours of the lower 

layer. The largest part of the driving flow is identical on both sides of the island and 

cancels in the contour integration. The major part of the residual forcing comes from 

relatively small but effective forcing on the semi-circular tips of the topographic skirt.  A 

circular island with a topographic skirt is also examined in which the coupling to the 
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upper layer is stronger all around the island. Even in this case there is a delicate balance 

of the forcing of the lower layer on each side of the island. In all cases the flow on closed 

potential vorticity contours in the lower layer is much weaker than in the barotropic 

model but much stronger than in the flat region of the lower layer.  

A sequence of numerical calculations that both check  and extend the analytic linear 

theory is presented demonstrating the subtlety of the force balances. Further nonlinear, 

eddy-containing experiments give a preview of the direction of future work.  
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1. Introduction 

In a recent paper, Pedlosky et al. (2009), hereafter PINH,  considered the flow 

around a planetary scale island when the island possesses a topographic skirt that girdles 

the island and crudely represents a continental slope. Of particular interest was the 

change in both the structure of the circulation near the island and the way in which 

Godfrey’s (1989) “Island Rule” must be reinterpreted. The presence of isolines of 

ambient potential vorticity, f/h, where f  is the Coriolis parameter and h is the depth of the 

single, constant density layer of the model, completely alters the form of the circulation. 

It eliminates the recirculation found in theories of flat bottom oceans ( Pedlosky et al. 

1997) and traps a relatively strong circulation around the potential vorticity (pv) contours 

that does not participate in the basin-wide circulation and suggests that the Island Rule 

should instead be applied to the domain demarked  by the outermost closed  pv contour 

instead of the boundary of the island’s surface expression. The strong circulation on the 

closed pv contours represents a steady resonance, that would exist in a frictionless fluid, 

of the free geostrophic mode on those contours. The resonance, forced by the wind stress 

in the model, is bounded ultimately by the weak dissipation in the system and so is able 

to reach large velocities. 

It is naturally of interest to reconsider the problem to take into account the 

baroclinic character of the ocean circulation and to examine to what extent the ideas of 

the barotropic model of PINH remain valid when the topography is shielded from the 

direct forcing by the wind by an overlying layer of lower density. We take up this 
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problem in a two-layer model to keep our model, both analytic and numerical, as simple 

as possible. In this paper the topography will be limited to the region of the lower, second 

layer although we shall discuss qualitatively some results for larger topography that 

penetrates into the upper layer. Although there have been studies examining the island 

effect in baroclinic ocean models (e.g. Pedlosky 2010, Spall 2000) the joint effect of 

topography and stratification renders the dynamics considerably more complex. 

Section 2 describes the basic model and the model equations which are essentially a 

two-layer version of the dynamics in PINH. Section 3 describes the basic model 

geometries and the results of linear theory for the two geometries considered, i.e. the 

meridional, thin island and skirt and the circular island with its skirt that girdles the 

island. In both cases the topography introduces closed isolines of potential vorticity in the 

lower of the two layers. The forcing of the lower layer flow is shown to be much less 

efficient for the meridionally oriented island over most of its length. Nevertheless, 

effective forcing over a relatively small domain near the two meridional extremes of the 

topography dominate the forcing and  are sufficient to drive a substantial flow along the 

pv contours in the lower layer.  The circular island  is studied as an example of a 

geometry where the forcing is more effective over a larger portion of the skirt. Section 4 

presents our numerical results and compares them with the results of our simple 

analytical theory and this serves to underline the delicate nature of those analytical results 

reflecting the subtle balances that obtain in the dynamics. Section 5 presents some 

preliminary results where layer coupling is due to spontaneously generated eddies. In 

section 6 we summarize and discuss our results.  

 



 6 

2. The model 

Figure 1 shows a definition sketch of the first model we are using. The first panel 

shows a zonal cross section of the island and its topography. In the upper layer it is a very 

thin island oriented in the north-south direction  for y
s
! y ! y

n
. The height of the peak of 

the topography from the otherwise flat bottom is hT, and it extends a distance xT  to each 

side of the island. The local thickness of the second layer is h2 while the layer thicknesses 

beyond the topography are, in the absence of motion, H
1
and H

2
, both constant. In  plan 

view its topography is shown in Figure 1b while the third panel shows the isolines of 

ambient potential vorticity, i.e. in the absence of motion,  for a skirt width of 250 km,  a 

height above the bottom of 500 m in a layer of thickness 1000 meters which is also the 

thickness of the upper layer. This relatively short island is 800 km in length. For these 

parameters there is significant departure of the pv isolines from the topography but we 

will generally consider cases in which the departure is locally rather small. Even in this 

case the pv gradient due to the beta effect is ten times smaller that the pv gradient due to 

the change in layer thickness induced by the topography. Note that the topography has 

been smoothed within semi-circular regions at the northern and southern tips of the island 

to avoid abrupt changes in depth.  

The second geometry we will examine, shown in Figure 2,  consists of a circular 

island in the upper layer with radius rI extending into the lower layer in which an 

azimuthally symmetric, circular skirt extends to radius rT . The skirted island in both 

cases  is placed at the center of a basin of radius ro. 

The circulation is driven by a wind stress,  
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where !
nm

 is the Kronecker delta . 

The equations are nearly the same as used in PINH. These are, in (2.2 a),  the 

horizontal momentum equations for each layer.  The stress appears as a body force in 

layer 1; that term is divided by the layer thickness since it is really a surface stress. The 

dissipation consists of the three terms given in (2.3 b). The first is an interfacial friction 

term whose coefficient is !
i
. It exerts and equal and opposite stress on each layer 
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proportional to the velocity difference. The second term is a bottom friction term 

proportional to λ again divided by the second layer thickness. The remaining term is our 

representation of lateral momentum mixing. We have used this model of interfacial 

friction to couple the two layers instead of a cross isopycnal velocity so that in the steady 

state we can represent the  horizontal transport by a streamfunction since our equation for 

mass conservation (2.2b) has no cross isopycnal velocity. Thus, for steady flows  (2.2 b) 

is identically satisfied by the representation in terms of the streamfunction !
n

, 
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where h
n
are the actual thicknesses of the layers including the variations due to 

topography and the variations of the interface due to the motion. Indeed, for steady 

motions the momentum equations can be usefully written 
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The vorticity equation for the lower layer combined with the mass conservation equation 

for the layer yields the potential vorticity equation for layer 2 which for a steady state is,  
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so that for weak enough dissipation, we would anticipate the potential vorticity for layer 

2 to be locally conserved. Furthermore, if there is a closed contour of potential vorticity, 

q2, in the lower layer an integral of (2.5) around that contour implies that 
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This constraint holds for all nonlinearity but it will be most usefully employed in the 

linear theory of the next section where the contours of constant potential vorticity are the 

ambient isolines of q2 = f/h2 and h2 is known. 

 

3. Linear theory 

To help establish a conceptual picture of the dynamics in the two-layer model it is 

useful to consider the situation when the wind stress is weak enough to produce a slow, 

laminar circulation in the upper layer. We will also examine the case where the 

dissipation is very weak. In particular, we will avoid regions in which the lateral mixing 

is important, i.e. we will remain outside lateral friction, i.e. Munk, layers whose thickness 

we can estimate as !
M
=

A

"
#
$%

&
'(

1/3

 (although over regions of closed potential vorticity 

contours the thickness generally would be of the order of  Ah
2

!
"
#$

%
&'
1/2

) and we consider the 

case where !
M
<< x

T
,!!!

M
<< r
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" r

I
. 

The interfacial friction coefficient !
i
 and the bottom friction coefficient !  are also 

taken as small i.e.  
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3a. The meridional island 

We first consider the linear flow for the island oriented in the north-south direction 

as in Figure1. Topography is limited to the lower layer. For small dissipation the flow in 

the upper layer, outside of any western boundary layers, will be in Sverdrup balance as 

long as the flow in the lower layer is order one, or less, with respect to the Sverdrup flow. 

The solution for the Sverdrup flow in the upper layer is found for the four regions shown 

in Figure 2. The island in the figure is the circular island but the regional domains are the 

same with obvious changes for the meridional island. 

In regions A, B, C the solution for the layer 1 stream function satisfies  
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for our wind stress given by (2.1).  The  Sverdrup solution for the upper layer is, in 

regions A, B, and C, 
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whereas the solution to (3. 2) in region D, in the “beta shadow” west of the island, is 
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where the final term in (3.3b) !
1I

 is the island constant for the upper layer island. The 

constant is determined by the usual Island Rule, e.g. PINH,  
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where the first term on the right hand side is the Sverdrup streamfunction (3.3a) 

evaluated on the island at x = 0 in the upper layer while the last term in (3.4) is the 

integral of the wind stress, tangent to the island, integrated around the island. If the island 

is very thin in the upper layer the second term is negligible for our constant curl wind. 

The island constant is calculated in Appendix A. 

When the contours, Cq2 , of f/h2 are closed, i.e. when the topographic contribution to 

the potential vorticity in layer two is large enough, the constraint (2.7) applies on those 

contours ( see  3.25 c  below). Further, if the coefficients of bottom and interfacial 

friction satisfy (3.1) the constraint (2.7) implies 
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on each such contour and the potential vorticity equation implies in the linear limit that 

those isolines are given by the isolines of f/h2 which are known  a priori. The potential 

vorticity equation in turn implies that  
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or from (3.5) 
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Note that this implies that for an order one streamfunction in the upper layer we can 

anticipate an order one flow in the lower layer on the closed contours. Instead, on the 

open q2 contours the lower layer streamfunction will be O(λi). 

Over the topography on the long sides of the skirt 
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where s  is the slope of the topography on the long, meridional, sides of the island. On the 

rounded tips of the island the slope is the same.  The second term in the square bracket of 

(3.8) is numerically very small and is order !xT / f . This has important consequence for 

the forcing. 
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and note that h
2
/ f = q

2
 and so is constant along a pv contour.  

On the right hand side of the island 
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the integral in the denominator of (3.7) on the right hands side of the island is: 
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where we have ignored the relatively small O(xT / yn )  contributions from the island tips. 

The integral on the left hand side yields the same result so, ignoring only the northern and 

southern tips of the island the denominator in (3.7) yields 
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Note that the last term in the curly bracket, 
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is negligible. 

There are three contributions to the integral in the numerator of (3.7). There is, first 

of all, the contribution from the Sverdrup solution along the  pv contours that are nearly 

meridionally oriented on each side of the skirt.  

This term in the  numerator in (3.7) can be easily calculated on the long sides of the 

topography since  
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The largest term of the forcing, 
 
!"

1
i
!
n , consists of the meridional flow proportional 

to !" 1

!x
multiplied by the x component of the normal vector. Since this yields a forcing 

that is the same on both sides of the island it will cancel when integrated around the 

contour.  

This will leave only the term 
!"

1

!y
 multiplied by the very tiny component of the 

normal in the meridional direction. Similarly, the jump in the Sverdrup solution across 

the boundary between region D and regions A and C represent narrow, zonally oriented 

boundary layers whose flow contributes only due to the inner product of the ψ2 gradient 
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in the y direction with the small component of the normal in that direction and it too is 

very small.  For the record and for the sake of comparison with the more effective forcing 

from the topographic tips of the island we present here the result of those calculations 

without showing the details. The sum of these first two contributions is, when combined 

with (3.11) 
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where the integral 
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where f = fo 1+ b!( ),!!!b =
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 and the integral as a function of  b is shown in Figure 3. 

It is negative and for small b  it is numerically small. The remaining term in the square 

bracket in (3.15) comes from the calculation of the zonal boundary layers, modeled as 

delta function jumps in the upper layer streamfunction. Note that for  y
n
/ r

o
< 1  the two 

terms cancel to order y
n

r
o

!

"#
$

%&

2

so (3.15) is even smaller than its coefficient implies. In fact 

the principal contributions to (3.7) come from the two, relatively small semi-circular tips 

of the topography at the extreme northern and southern ends of the skirt. With the same 

Sverdrup solution we can calculate these contributions to the numerator of (3.7).  
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We introduce a local radial coordinate system whose origin is at (0, y
n
) so that 

  

 r = x
2
+ [y ! y

n
]
2( )
1/2

,!!!0 " r " x
T   (3.17) 

For the relatively small range of y in this semicircular domain the potential vorticity 

contours are nearly coincident with the bathymetry and hence are lines of constant r. 
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The unit normal to the lines of constant r  is simply 
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Since in this region y = y
n
+ r sin!  and since r is less than or equal to xT we can 

approximate (3.20) by replacing y everywhere in (3. 20) by y
n
 so that the contribution to 

the numerator in (3.7) is simply 
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where the final bracket in (3.21) is the representation of r/xT.   

A similar analysis at the southern end of the island on its semi-circular tip yields a 

similar result and when the two of them are added together they provide the dominant 

contribution to (3.7), namely, 
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Comparing (3.22)with the contributions from the other two sources given by (3.15) 

shows that the ratio of this contribution to the former is of the order 

fosxT / h2!ro = O
hT

h
2

fo

!ro

"

#$
%

&'
. As long as the ratio hT

h
2

 is order one, it shows that the 

forcing from the tips is of the order of  fo / !ro . (In fact, as we show below, that ratio has 

to be order one in order to obtain closed contours at all.)  In our ocean basin this 

parameter is about an order of magnitude greater than one. It is therefore reasonable, at 



 18 

first order in this parameter, to neglect all forcing in this geometry except the forcing at 

the two extreme ends of the island’s skirt. This was a result that was surprising to us but it 

seems to also agree fairly well with the numerical evidence described below.  

We can now integrate (3.22) and use the condition that the lower layer 

streamfunction vanishes on the outer closed contour where q
2
= fn / H2

 leading to our 

final result, 
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where, recall,  s = h
T
/ x
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Figure 4 shows the form of the streamfunction ψ2 over the skirt at the mid latitude, 

y = 0 when the height of the skirt at the island is half the layer depth, i.e. when 

h
T
= 0.5H

2
 and when h

T
= 0.999H

2
. More precisely, the figure shows ψ2 divided by the 

coefficient A. 

The calculation is shown for an anticyclonic wind stress curl. The circulation in the 

lower layer is anticyclonic. Note that the abscissa is x/xT and falls a bit short of unity. 

This is because of the slope of the q2 contours in the x.y plane due to the β effect. This 

leaves a small sliver of the edge of the skirt outside the closed q2  contours.  The weak 
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solution over the flat region can be continued on the open pv contours over this sliver but 

for concision we will not discuss it in detail. When the maximum height of the skirt 

almost reaches the interface between the layers the form of the stream function profile is 

different and is flatter in the neighborhood of the island with strong variations of ψ2 

limited to the outermost closed potential vorticity contours nearer the edge of the skirt. 

This follows directly from (3.23). In this case the flow is reduced over the inner part of 

the skirt and expelled to the outermost q2 contours. 

The remarkable feature of the lower layer flow in this geometry is how a very 

localized region of strong forcing can produce a circulation on the closed potential 

vorticity contours that essentially shoots a substantial flow all around the entire island. 

While logical, it is certainly non intuitive. 

The dependence of the circulation in the lower layer on the steepness of the 

topography is a subtle one. As (3.24) shows, the flow along the potential vorticity 

contours is reduced when s the skirt slope is increased. On the other hand if the slope is 

too small the potential vorticity contours, rather than girdling the island, strike the island 

and are blocked so the domain of closed contours is reduced as s is reduced. Indeed, the 

outermost closed contour, starting a x = xT  and y = yn satisfies the relation 
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so that the condition that it reach the southern boundary without striking the island at x = 

0, is simply 

 

 hT
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>
!(yn " ys )

fn
  (3.25c) 

 

For an island of length 1400km and for β = 2 10-11 m/s and f = 10-4 sec-1, this yields a 

critical value of h
T
/ H

2
 of 0.28. Topography lower than this will have all the potential 

vorticity contours blocked and the O(1) motion, with respect to the friction parameters 

satisfying (3.1) will be expunged. Thus small slopes have no region of geostrophically 

resonant flow while large slopes have broader regions of  geostrophically resonant flow 

but those flows have an streamfunction that decreases with increasing slope (3.24). 

Nevertheless, the local volume flux, which is the gradient of !
2

, will involve the 

derivative of the depth, canceling the factor of s in the denominator of (3.24) leading to 

the prediction that the local mass flux will  be independent of the slope although it will 

still depend on the local, varying depth h2.   

If the topography is steep enough to intrude into the upper layer the situation 

becomes much more complex. However, in the region of the upper layer with steep 

topography and closed pv contours in the upper layer the flow on the closed contours is 

essentially barotropic and, as predicted in PINH, the flow is much stronger, O(λ-1). A full 

treatment of that problem is beyond the scope of the present paper. However, the 

important qualitative point is that the presence of stratification has shielded the lower 

layer from the direct effect of the wind forcing.  The circulation on the closed q2 contours 
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is smaller than in the barotropic case although still much larger than in the flat region of 

the lower layer. 

 

3b. The circular island 

 

In view of the weak projection of the forcing on the contour of integration we have 

turned to another island geometry, shown in Figure 2. The skirt provides a topographic 

potential vorticity gradient in the lower layer that is in the radial direction. Indeed, in the 

lower layer, 
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where r̂ is the unit radial vector and ĵ is a unit vector in the y direction. As before, s is 

the slope on the skirt , here r
I
! r ! r

T
 and s  is now given by 

 

 s = h
T
/ (r

T
! r

I
)   (3.26b) 

 

The magnitude of the second term in (3.26a) compared to the first is very small, of 

the order of 10-2 and we will neglect this in what follows to simplify the calculation, i.e. 

we are neglecting the β  effect in the lower layer over the topography. Had we done this 

for the meridional island we would be left with no forcing except from the tips. For the 

circular island an O(1) term remains and we are justified  in neglecting small terms in 
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β  over the topography.  In this sense the circular island is very similar to the meridional 

island except that it is all “tip”.  Again, (3.7) is the essential equation. To calculate the 

numerator in (3.7) we must be aware of the regions with different Sverdrup solutions.  In 

regions A, B, and C in Figure 2 the solution is again, 
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Now, however, in the beta shadow to the west of the island, region D, the solution is 
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where the curved boundary introduces a new feature to the solution in the region. We will 

also need the island constant Ψ1Ι   and that calculation is given in Appendix A. The result 

is 
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With the neglect of the beta effect in the calculation of  (3.7) the contour of integration is 

just any circle between the island and the outer radius, rT , of the skirt. Because of the 

north-south symmetry of the integrands when the relatively small beta effect is ignored 

we can carry out the integral in (3.7) on any circle of radius r between the angles of 0 and 

π. In starting from the x axis to the east of the island the integral proceeds counter 
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clockwise until the contour intersects the boundary between regions A and D. This occurs 

at an angle ! "#
s
 where, as seen in Figure 5, 
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where the solution for ψ1 in the integrand must be abruptly changed. Note that as r! r
I
 

θS  approaches π/2. We will do the integrand in pieces and take into account the delta 

function-like behavior of ψ1 in addition. Since r̂ = î cos! + ĵ sin! , where θ is the azimuth 

angle, we have in region A 
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while in region D 
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Note that the second term in (3. 30b) may become very large and it is certainly greater 

than the equivalent term in (3.30a). In distinction to the meridional island the circular 

island’s western coast is curved and introduces a new, relatively large term to the forcing. 

This is similar to the aforementioned case if the eastern boundary of the basin is convex 

facing westward rather than concave as for the circular basin. For the same curl the 

convex boundary of the western portion of the island acts the same way changing the sign 
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of the zonal Sverdrup flow. The  nature of the flow in the basin is a powerful function of 

the shape of the basin perimeter since in Sverdrup dynamics that information is 

propagated in a non dispersive manner westward. 

 In calculating the integrals needed in (3.7) we can use the fact that y = r sinθ and 

that r itself can be written as a function of  q2 using the relation between the thickness of 

the lower layer, namely,  
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After a small calculation we obtain  

 

 

 

!"
1
i
!
n

h
1
h
2

ds
Cq2

"#
2$ o

fo%roH1

=

q
2
r 2

sin
2&

m
2 ' sin2&() *+0

, '&S

# d& ' 2
sin

2&
n
2 ' sin2&() *+, '&S

,

# d&;
(

)
-
-

*

+
.
.
!

!

!n =
rI
r
;!!!m =

ro
r
,!!&S = sin

'1
(rI / r )

  (3.32) 

 

The factor of 2 in each integral results from using only half of the total range of 

integration and using the symmetry in y when the beta effect is ignored over the skirt. 

The two integrals in (3.32) yield terms of opposite signs. This is very much like the 
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situation referred to earlier where there is a change in sign of forcing if the eastern 

boundary of the basin is convex rather than concave facing west. Here the term of 

opposite sign is introduced by the island geometry itself. As a short hand we will call the 

two integrals  in the square bracket of (3.32) I
m

 and!I
n

with obvious definitions. The 

calculation is incomplete until we consider the effect of the abrupt jump in the solution 

across the boundary between regions A and D as we did for the meridional island. 

Consider now the jump in the Sverdrup streamfunction across the line y = rI. That 

jump in the y  direction is  
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That means that that in evaluating  
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1
i
!
n  in the upper layer we will again approximate 

the gradient as a delta function, namely in the neighborhood of y = rI  
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so that  
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Note that θS is positive. In (3.34b) r is the circle on which the integral in (3.7) is being 

carried out.  Now, our integral is an integral at fixed r and so ds is rdθ . To evaluate the 

integral using the delta function we need to use the relation, for constant r,  

rd! = dy / cos! . Keeping in mind that the integral in (3.7) is in the counterclockwise 

sense, it means that as an integral in y the segment in the immediate neighborhood of  y = 

rI is 
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which, when combined with (3.28) yields 
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as the contribution of both the northern and southern jumps in the streamfunction to the 

forcing of the lower layer flow. For small r
I
/ r

o
the first two terms in the final bracket in 

(3.36) nearly cancel, the residual being of order ! 2
3

r
I

2

r
o

which would be much smaller 

than the last term in the bracket so that the contribution is dominated by the portion of the 

island constant related to the circulation of the stress around the upper layer island.  In 

fact, for very large ro, the variation of the distance from the island to the eastern 
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boundary, over the latitude range of the island is negligible and the eastern boundary act 

as if it were straight contributing little to the integral (3.32) and (3.36). 

When the contribution (3.36) is included in (3.32) we finally obtain 
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Once d! 2

dq
2

 is calculated the azimuthal transport around the pv contours in the lower 

layer is obtained by multiplying (3.37) by dq2
dr

, where 
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Figure 6 shows the form of the azimuthal transport  !"
2
/ !r  for an island for which  

r
I
/ r

T
 = 0.5 and r

o
/ r

T
 = 5 and for which the wind stress has a constant negative curl. The 

figure shows that the flow is everywhere anticyclonic. If we had ignored the contribution 

from the zonal boundary layers we would have obtained cyclonic  circulation over part of 

the range in r as a consequence of the forcing on the western curved boundary of the 

island (the integral In)  It is important to recall that a major part of the forcing, due to the  

equal meridional flow on both sides of the island cancels in the contour integral leaving 
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the residuals related to the curvature of the boundaries to determine the balance of forcing 

on the contours of potential vorticity. We can imagine that viscous effects and the no-slip 

condition will significantly alter the flow for radii very near the island, where in Figure 6 

there is strong anticyclonic flow but the region beyond that should be external to such 

effects. Figure 6 also shows a calculation for which the ratio of the basin radius to the 

skirt radius is smaller i.e. r
o
/ r

T
 =2. This enhances the effect of the integral Im and the 

flow is more strongly anticyclonic everywhere. 

The other important attribute of the circular geometry can be seen from (3.32), i.e. 

that the derivative d!
2
/ dq

2
 goes inversely with the slope s. Since the azimuthal 

transport on the closed q2 contours is this function times the potential vorticity gradient, 

which goes like the slope of the skirt, the transport is again, as in the meridional island, 

independent of the size of the slope. 

 Note that using (3.37) and (3.38) the ratio of the transport in the lower layer to the 

Sverdrup transport in the upper layer is 
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where [bracket] refers to the square bracket in (3.37) which is plotted in Figures 7 for 

r
o
/ r

T
 = 2 and is order one or less except near the inner boundary where the tangent term 

becomes large and the result, based on our delta function representation of the boundary 

layer contribution, becomes unreliable. Thus we anticipate the flow to be somewhat 

smaller in the lower layer than in the upper layer although of the same order. For a 
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barotropic model, as in PINH, the flow on closed q2 contours would go as !"1 , so as in 

the case of the meridional island, the principal effect of the stratification is to shield the 

lower layer from the direct forcing of the wind and reduce the response of the 

topographic resonance. 

Given the delicacy of the relative balances of the residuals of the upper layer 

forcing on the lower layer it is important to compare these idealized linear results with 

numerical calculations which include the effects of lateral friction and nonlinearity. 

 

 

4. Numerical model and results for the linear regime 

 

The previous theoretical results indicate that deep circulations can be driven along 

topography that encircles an island through a fairly simple parameterization of 

coupling with the upper layer wind-driven flow. The circulation along a closed 

contour of potential vorticity results from a delicate balance between forcing from 

the upper layer and dissipation, in the form of bottom drag, interfacial stress, or 

horizontal viscosity. Owing to the symmetries in the problem, the net forcing on the 

deep layer is much weaker than the wind forcing in the upper layer, yet the mean 

circulation can be of similar strength. Numerous assumptions are required in order to 

make the problem analytically tractable and, while each are defensible, an 

independent confirmation of the result is desirable. In this section, the basic 

circulation patterns and parameter dependencies predicted by the theory are tested 

using a numerical model. The model contains more complete physics, and so 
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provides an inherent validation of the analytic result, while the theory provides a 

clear interpretation of the balances that determine the mean circulation. 

The numerical model used in this study is based on the Miami Isopycnal 

Coordinate Ocean Model (MICOM, Bleck et al. 1992). The model solves the 

primitive equations of motion using an isopycnal vertical coordinate. The MICOM 

solves prognostic equations for the isopycnal-layer averaged horizontal momentum, 

layer thickness (and sea surface height), temperature, and salinity. We have made 

several simplifications for the present problem. Temperature and salinity are uniform 

within each layer, and so the model effectively uses only the potential density field. 

There is no mixing of density (or tracers) between isopycnal layers and there is no 

surface buoyancy flux, so the model is adiabatic. All calculations reported here use 

two isopycnal layers. 

The initial layer thicknesses are 1000 m for both the upper and lower layers, 

giving a maximum total depth of 2000 m. The horizontal grid spacing is 10 km for 

the meridional island cases and since we found more sensitivity to horizontal resolution 

for the circular island calculations we used 5 km for the circular island cases. The 

Coriolis parameter varies linearly with latitude as 
0

f f y!= + , where 4 1

0
0.75 10f s! !

= "  

and 13 1 1
2 10 cm sx! " " "

= , and y = 0 at the mid-latitude of the basin. The change in 

density between the two layers is 2.81Kg m−3, resulting in a baroclinic deformation 

radius of 50 km. 

The upper layer is forced by a body-force representation of wind stress, as in (2.2a)  

with a uniform wind stress curl. The deep layer is forced through an interfacial stress 

term that is proportional to the difference between the upper layer velocity and the lower 
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layer velocity, as in the linear theory (2.3b). Viscous dissipation is represented as a lateral 

Laplacian friction. 

The relative strengths of the model forcing and dissipation are characterized by 

several boundary layer thicknesses. The strength of the wind stress is specified indirectly 

through the inertial boundary layer thickness, !
I
=

"
o

2r
o
H
1
# 2

$

%&
'

()

1/2

. The strength of 

dissipation is specified through the previously defined frictional Munk boundary layer 

thickness. 

For comparison with the linear theory, we choose relatively weak forcing so that the 

relative vorticity of the mean flow remains small and the large-scale mean circulation is 

stable to baroclinic and barotropic instabilities. The inertial boundary layer thickness for 

the meridional island cases is 5 km
I

! = , while the Munk layer thickness 20km
M

! = (A 

= 160 m2 s−1), giving a ratio 0.25
I M

! ! = . For the circular island calculations, 2 km
I

! = , 

while the Munk layer thickness 10 km
M

! = (A = 20 m2 s−1), giving a ratio 0.2
I M

! ! = . 

The model calculations are started from rest and run for a period of 20 years, at which 

point the fields are essentially steady. 

 

a) meridional island 

 

Here we present numerical results for thin meridional islands in a circular basin, and 

compare them with the predictions of the linear theory previously developed. To further 

clarify the expected dependencies of the lower layer transport over the skirt on the 

geometrical parameters, we show in Figure 8 a map obtained from (3.23), evaluated at 
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the mid latitude. The map gives the transport as a function of the basin radius ro and of 

the island half-length y
n
, for a fixed value of the topography “aspect ratio”, x

T
/ y

n
= 0.5 . 

Qualitatively similar maps are obtained for higher (lower) values of the aspect ratio, with 

higher (lower) values of the transports, respectively. For fixed ro , the transport increases 

monotonically with y
n

mostly because of the increasing dependence on x
T

in (3.23), 

while for given island length it decreases when going to larger basins, so that maximum 

transport is obtained near the right lower corner of the map.  These qualitative 

dependencies are confirmed by the numerical simulations, even though the corresponding 

transport values are generally lower than those obtained from (3.23). In the following, we 

will restrict to a basin of 1000 km of radius, unless otherwise indicated.  

A typical steady state obtained in the simulations is that of Figure 9, showing the 

streamfunctions of the two layers for a configuration with an island of 800 km, 

surrounded by a 250 km wide skirt that reaches 600 m of height. The forcing is from a 

constant curl wind stress, whose size is determined by the non-dimensional parameters 

previously specified, that are appropriate for a linear context. The solution in the upper 

layer is very close to what may be expected on the basis of the barotropic linear theory 

developed in Pedlosky et al. 1997, with almost coinciding numerical and theoretical 

values of the island constant !
I
 (0.483 Sv and 0.486 Sv, respectively). This indicates 

that the interfacial drag coupling with the lower layer is small enough not to affect the 

upper layer dynamics (see the next subsection for a more detailed analysis of the effects 

of the interfacial drag on the circulation).  On the other hand, the same coupling drives 

significant circulations in the lower layer, one of which is confined in the region of the 

western boundary layer, while the other, over the skirt, is characterized by streamlines 
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that closely follow the PV contours encircling the island. Much weaker flow is observed 

over the rest of the flat bottom region. This picture is in qualitative agreement with the 

theory, although the transport around the island of 1.64 x 10-3 Sv is more than four times 

smaller than the one predicted by (3.23). In this case, the theoretical transport value could 

be brought somewhat closer to the numerical one by including the contributions of the tip 

regions to the integral in the denominator of (3.7), which are of order of  x
T
/ y

n
= 0.625. 

However, the discrepancy in the transport values is systematic, suggesting that effects not 

included in the analytic model, such as that of lateral friction, play a role in slowing down 

the flow over the skirt.  

An interesting point emerging from the analytic calculation of Section 3a is the 

observation that the main contributions to the transport appears to come from the regions 

of the skirt tips, which prompted us to retain only these contributions in the derivation of 

(3.23). The simulations confirm this behavior.  Two runs with the same geometry and 

parameters of Figure 9, but different island lengths ( y
n
= 200 km, and y

n
 = 600 km), 

yield transports over the skirt of 1.46 x 10-3 Sv, and 2.01 x 10-3 Sv, respectively, 

indicating a weak dependence of the transport on the island length, and supporting the 

idea that the forcing along the lateral portions of the PV contours is less effective than the 

one acting in the tip regions. This is further clarified in Figure 10, where we plot the 

integrand in the numerator of (3.7), 
 
!"

1
i
!
n /h2 , over the skirt region, as computed from 

the upper layer numerical solution of Figure 9, with some PV contours superimposed 

(dashed lines). The forcing is weak and cyclonic to the west of the island, and of the same 

order of the anticyclonic forcing present in the outer part of the eastern skirt. On the other 

hand, strong, localized anticyclonic regions are present to the northeast and southeast of 
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the island tips, that provide a major driving source for the circulation around the island, 

as suggested by the analytic estimates. However, the picture emerging from the 

simulation is more complex, since near the eastern side of the island there is also an 

intense forcing pattern due to the presence of a boundary layer, whose effects could not 

be included in the analytic approach.   

Another point to be explored is the dependence of the transport on the skirt height. 

Figure 11 shows that this dependence, for the geometry of Fig. 9, is quite weak; the 

transport is somewhat lower for smaller and larger skirt heights, peaking around a height 

of 500 m. The analytic dependence (not shown) is even weaker, with the transport 

approximately constant above 500 m of height. This means that the s!1  dependence in the 

coefficient A in  (3.23) gets partly overridden by the more complex one of the term in 

brackets.   The same weak dependence of transport on skirt height was found for other 

configurations,  and we anticipate a similar behavior for the circular island case.  

b) circular island 

The mean circulation for a circular island in a circular basin is shown in Figure 12. 

The island radius 250 km
I
r = , the topographic skirt radius is 500 km

T
r = , and the basin 

radius 
0
1000 kmr = , giving 0.5

i T
r r = and

0
2

T
r r = . The skirt height is 500 m, giving a 

topographic slope s = 0.002. The streamfunction in each layer is nondimensionalized by 

the theoretical island constant (3.28). 

The circulation in the upper layer reflects the Sverdrup transport away from the 

island, with the flow direction in regions A, B, and C tracing the shape of the eastern 

boundary. To the west of the island the zonal flow changes sign because the island west 
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coast is convex, as expected from the linear theory. There is also a strong boundary layer 

along the eastern side of the island, which is required because the island constant is 

greater than the Sverdrup transport between the island and the eastern boundary, see 

(3.28). This eastern boundary layer was not included in the theory, but the westward 

boundary layers extending from the northern and southern tips of the island, also evident 

in the figure, were included. The influence of this eastern boundary layer is to drive an 

anticyclonic circulation within approximately 
M

!  of the island. This region close to the 

island is also where the theory predicts a very strong anticyclonic circulation driven by 

the northern and southern tip boundary layers. Because of the neglect of dissipation and 

this western boundary layer in the theory, we do not expect quantitative agreement 

between the model and theory close to the island. 

The model produces a mean anticyclonic circulation around the island of strength 

0.023 !
I1

. This transport is carried over a width of O(200 km), while the upper layer 

transport of !
1
 is carried over O(1000 km) width, so the ratio of their transports per unit 

width is approximately 0.1. This is in general agreement with the theoretical prediction 

(3.39). The transport around the island is more than 2 orders of magnitude greater than 

the deep transport over the flat bottom, as expected from the theory, and confirms that 

even relatively weak coupling between the upper and deep layer can force an O(1) flow 

over the closed topographic contours. There is a significant north-south asymmetry in 

the streamfunction because the potential vorticity contours do not coincide with 

topographic contours because of the influence of! . This contribution was neglected 

over the topographic skirt in the theory, and the numerical result demonstrates that its 
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primary influence is to distort the circulation slightly but it does not change the 

qualitative response in the deep layer. 

The primary purpose of the model is to verify the basic balances predicted by the 

theory.  Rather than carry out a detailed comparison between model and theory, it is 

perhaps more useful to test that the parameter dependencies predicted by the theory 

are reproduced by the model.  Expression (3.37) indicates that, for 0! = , the deep 

circulation over the skirt should be independent of 
i

! . The circulation over the flat 

bottom is much weaker than the circulation over the skirt, but is expected to increase 

linearly with 
i

!  . A series of model calculations have been carried out in which the 

coupling coefficient has been varied, while all other parameters are the same as for 

the above standard case.  The circulation strength over the skirt is shown as a 

function of the coupling coefficient in Fig 13a.  The recirculation varies with the 

coupling strength approximately as ( )( )
1
2

2
/

i T I
h r r! " # . Recall that the theory 

assumes that this ratio is much less than 1. The model requires lateral viscosity for 

computational stability and, as a result, we are not able to find a regime in which the 

solution is independent of the coupling strength. We can anticipate this general 

behavior from the theory (3.39), as dissipation (represented by ! in the theory) will 

cause a decreasing recirculation strength with decreasing
i

! . The boundary layer 

width ( )
1
2

2
/

i
Ah !  is 20 km for ( )( ) 2

2
/ 10

i T I
h r r! " ## = , but increases to O(300 km) 

for the weakest coupling strength in Fig. 13a. This viscous dissipation was not 

included in the theory, and for dissipation values required for computational stability 
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in the numerical model (A = 20 m2 s−1) as we move into the regime of small 
i

! , the 

boundary layer becomes important. 

The transport over the flat interior, between the topography and the eastern 

boundary, is always less than that over the topographic skirt, but it shows a stronger 

dependence (nearly linear) on the coupling coefficient. This result is consistent with 

the theory, and confirms that the dynamics over the region of closed potential 

vorticity contours are very different from that found in the region of blocked 

potential vorticity contours. Even for weak coupling in the presence of lateral 

dissipation the circulation over the closed topographic contours is much stronger than 

over the flat interior. The specific parameter dependence in Fig. 13a is difficult to 

predict analytically, but the overall result, that the resonant circulation over the 

topography is intermediate to that for the barotropic flow and the flat interior, is 

robust to the details of the model physics. 

A second prediction from the theory is that the transport over the skirt should be 

independent of the bottom slope s, because d!
2
/ dq

2  depends on s−1, while 

2
/dq dr depends linearly on s. The slope was varied in a series of calculations by 

changing the height of the topographic skirt while keeping the width constant at 250 

km (Fig. 2b). The circulation over the topography is only weakly dependent on 

bottom slope for s > .8 × 10−3, which corresponds to heights greater than 200 m. For 

bottom slopes weaker than this the planetary vorticity gradient is sufficiently strong 

compared to topographic beta that the region of closed potential vorticity contours is 

eliminated. There is a more gradual decrease in the circulation strength for steep 

bottom slopes. This is consistent with the expectation from the theory, as discussed in 
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Section 3 where for stronger slopes the circulation becomes influenced by the change 

in the total depth and its role in decreasing the circulation consistent with (3.23) 

which qualitatively applies also to the circular island case.  

 

5. Nonlinear numerical results 

 

The linear calculations in the preceding sections parameterized forcing of the deep 

ocean through a simple interfacial stress between the upper layer and the deep layer.  This 

approach  is intended to represent the tendency, in baroclinic fluids, for momentum to be 

transmitted from the upper ocean to the deep ocean as a result of baroclinic instability or 

vertical mixing.  The advantage of such an idealized approach is that it allows for closed 

form analytic solutions and a straightforward interpretation of the driving mechanisms for 

the deep ocean. 

It is, however, a drastic simplification of what is likely in the real ocean to be a much 

more complex process.  Given the apparent sensitivity of the linear model to details of the 

forcing, it is important to confirm that the basic result remains relevant in more nonlinear 

regimes representative of the real ocean.  

We have carried out a number of numerical model calculations in configurations 

similar to those already discussed, but with sufficiently strong forcing of the upper layer 

that the  circulation becomes unstable and strongly time-dependent.  The interfacial stress 

used for the linear calculations has been removed, and the only forcing on the deep layer 

comes from the resolved time-dependent motions.  We report results from one of these 

calculations (although all have been found to produce qualitatively similar results) to 

demonstrate the basic response predicted by the simple linear models is also produced in 
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a nonlinear model. 

A calculation with a narrow meridional island, as in Section 4a, has been carried out 

with 5 km horizontal resolution and  forcing and dissipation characterized by an inertial 

boundary layer thickness of 15 km (wind stress 70 times stronger than for the linear 

calculations) and a Munk boundary layer thickness of 10 km.  The stratification has been 

reduced so that the baroclinic deformation radius is 30 km and the large-scale flow  

is more susceptible to baroclinic instability. The model was started at rest and integrated 

for a period of 20 years. 

The mean streamfunction over the final 5 years of integration in the upper and 

lower layers is shown in Fig. 14. The upper layer circulation to the east of the island 

largely reflects the expected Sverdrup flow, but there are considerable differences in the 

vicinity of and to the west of the island. The model produces strong, barotropic 

recirculation gyres on the offshore side of the western boundary current.  

The flow in the western shadow of the island is similar to what one would expect 

from Sverdrup theory, however near the southern portion over the  bottom topography, 

the flow turns to the north.  There is a small closed anticyclonic recirculation near the 

northern tip of the island in the upper layer which we found in most nonlinear 

calculations .  

The deep layer is dominated by closed recirculations near the western boundary and 

around the skirt topography.  The circulation around the island is approximately the same 

as the island constant in the upper layer, stronger than predicted by the linear theory but 

of the same order of magnitude as the upper layer wind-driven circulation.  The flow 

around the island is strongly baroclinic, particularly along the western flank where the 
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deep flow is in the opposite direction to the local wind-driven flow. 

The nonlinear model result is very complex and includes processes not considered in 

the linear theory (such as loss of momentum from the upper layer to the deep layer and 

eddy-driven recirculation gyres).  A detailed analysis of this regime is beyond the scope 

of the present study.   It is encouraging, however, that the primary prediction from the 

linear theory, that the combined effect of closed f/h2 contours in the deep layer and 

stratification produce deep recirculations of the same order as the upper layer wind-

driven flow, is reproduced in this model that explicitly resolves the time-dependent 

forcing of the deep layer through instabilities of the upper layer flow.   

 

6. Discussion and conclusions 

The addition of both topography and baroclinicity to the dynamics of flow around 

planetary scale islands produces new and important qualitative changes in the circulation. 

The presence of baroclinicity, represented in our model by our two layer system, 

introduces for the first time the issue of the vertical structure of the flow.  

The presence of topography in the barotropic model in PINH introduced closed 

geostrophic contours around the island and the resulting flow, directly wind driven, could 

be very large since the geostrophic resonance on those contours led to velocities bounded 

only by the dissipation experienced by the flow on each closed contour. Most of that flow 

remained trapped to the topography and the Island Rule, which focused primarily on the 

interchange of flow between ocean basins on each side of the island, could be simply 

reinterpreted by applying it to the region defined by the outermost closed geostrophic 

contour instead of the island’s surface boundary.  
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In the two layer model, the flow in the lower layer is not directly forced by the wind 

but is instead forced by the action of the upper layer on the lower layer. In our linear 

models of section 3, for example, the drag on the lower layer by the upper layer flow 

depends on the coupling constant !
i
 between the layers. When the coupling is weak, as 

seems realistic, the flow in the lower layer on the closed contours never exceeds the flow 

in the upper layer and, in linear theory, is reasonably independent of the value of the 

coupling as long as it is small. This is in contrast to the flat region outside the topographic 

skirt where the resulting lower layer flow is very weak and order !
i
itself. Our numerical 

modeling of this linear regime shows a weak dependence on !
i
 over the topography, 

possibly as the result of lateral friction neglected in the theory and does show the linear 

dependence of the flat interior on !
i
. Thus the baroclinic model predicts a deep flow with 

a strength intermediate between the flow on the skirt in the barotropic model and the flow 

in the deep interior where there are no closed potential vorticity contours. In that sense 

the presence of closed potential vorticity contours provided by the topography allows a 

locally efficient mechanism to transfer momentum to the lower layer. 

Furthermore, since the flow in the deeper layer is driven by the velocity of the 

upper layer Sverdrup flow rather than the wind stress itself, portions of that driving are 

ineffective in driving the flow. In particular, the meridional flow in our constant wind 

stress curl forcing  is equal on each side of the island and cancels in the contour integral 

around the island that determines the net forcing that drives the deep response. This leads 

to a surprisingly sensitive dependence of the deep flow on the geometry of the island as 

well as the geometry of the basin. For example, in the case of the long, meridionally 

oriented island, the major driving comes from the upper layer flow acting on the 
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relatively small northern and southern rounded tips of the island’s topography. That 

localized forcing is responsible for the major impetus for motion over the entire length of 

the potential vorticity isolines in the lower layer. The forcing on the rest of the island’s 

perimeter, although locally as strong, is almost completely self-canceling so that the total 

forcing is dominated by the effects of the tips.  For the circular island the forcing is 

everywhere stronger but the convex shape of the western boundary of the island produces 

a local forcing that would actually drive a flow in the opposite direction to that imposed 

by the sense of the wind stress curl were it not for the contributions to the forcing of the 

zonally oriented boundary layers produced, in turn, by the discontinuities of the Sverdrup 

solution in the region west of the island. At the same time the forcing on the eastern side 

of the island depends on the curvature of the basin boundary and when that curvature is 

weak (on the meridional scale of the island), or non existent ( in the case of a straight 

eastern boundary) there is no forcing provided by the eastern edge of the island. Thus the 

nature of the response to the wind forcing is a rather complex function of the basin and 

island geometry.  

The strength of the circulation has a complex dependence on the magnitude of the 

slope. If the slope is too small the presence of the planetary vorticity gradient allows the 

potential vorticity contours to strike the island’s boundary instead of encircling it and the 

resulting deep circulation will be very weak. On the other hand, for moderately strong 

slopes the transport streamfunction is inversely proportional to the slope.  However, the 

local mass flux in the deep layer along the potential vorticity contours is independent of 

the slope.  We have noted that for very large slope there is a decline in the flux, a 

dependence predicted by the analytical theory and confirmed numerically. 
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The effects of lateral friction are neglected in the analytical theory of section 3. Yet, 

the numerical experiments in the linear limit show no sign of  baroclinic instability in the 

basin interior removed from the skirt and boundary currents. That implies that there is 

sufficient damping, due to lateral friction to expunge the growth rate of instabilities since 

the meridional flow should be unstable at all levels of shear if inviscid. That, in turn 

implies an intrinsic  Reynolds number of order one on the deformation radius scale. The 

presence of this irreducible level of friction may contribute to the quantitative differences 

between inviscid theory and numerical experiment. 

If the island were large enough and if the curl varied substantially in the zonal 

direction across the breadth of the island an additional forcing would arise which we have 

not considered in this study. 

Most of our numerical studies of the same models have been restricted to rather 

weak forcing in order to compare with the linear, analytic theory developed here. 

Preliminary results of a more non linear nature exhibit qualitatively similar enhanced 

circulation on the closed f/h2 contours of the lower layer topography indicating a 

preferential pathway for the vertical transmission of momentum downward in that region. 
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APPENDIX A 

The Island Constant 

 

It is shown in PINH that the island constant for single layer of fluid of constant 

depth, which will apply to the upper layer of our model in the linear limit is given by the 

following integrals 
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The first term on the right hand side is the integral in y  of the Sverdrup streamfunction 

evaluated on the eastern boundary of the island.  

Meridional  island of section 3a 

 

The Sverdrup streamfunction for the thin, meridional  island on its eastern side is, from 

(3.3 a) 
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so that doing the integral in (A.1) leads us to 
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for the case where y
s
= !y

n
 as in our model. 

 

The circular island of section 3b 

For the solution (3.27b) the eastern boundary of the island boundary  is x+ = r
I

2
! y

2( )
1/2

.  

Thus the first integral is  
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while the second term is easily calculated using Stokes theorem for the constant curl wind 

stress of our model and that term is just ! 2" o
#r

o

, which when combined with (A.4) yields 

(3.38). 
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FIGURE CAPTIONS 

 

Figure 1 a) The two layer model showing the topography and layer thicknesses for the 

meridionally oriented island. b)  The depth contours in units of 1,000 meters. c) 

The isolines of potential vorticity f/h2 in the lower layer. 

 

 Figure 2 The four  regions for the upper layer Sverdrup solution. For the meridional 

island the inner circle is replaced by a north-south line. 

 

Figure 3 The integral I
b
(b) for different yn/rO. 

 

Figure 4  The form of the lower layer stream function as a function of x at the mid  

latitude, y = 0, for h
T
= 0.5H

2
  and h

T
= 0.999H

2
. 

 

Figure 5 The outer circle is the contour of integration. The inner circle is the island in the 

upper layer. The angle θS  is the critical angle for the integration  in section 3b. 

 

Figure 6 The azimuthal transport !"
2
/ !r obtained from (3.28) and (3.29) for r

I
/ r

T
 = 

0.5 and r
o
/ r

T
 = 5 and 2. 

 

Figure 7 The square bracket in (3.37) for r
o
/ r

T
 = 2. 
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Figure 8  Maximum of the lower layer stream function over the skirt, as a function of the 

island half-length yn  and of the basin radius r0, for hT = 600 m and xT /yn = 0.5. 

The contour interval is 0.002 Sv.  

 

Figure 9 Steady state stream functions for the two layers (upper layer above), from a 

simulation with an island of 800 km, surrounded by a skirt of 250km , 600 m tall, 

whose boundary is indicated by the dashed contour. The contour intervals are 

0.05 Sv and 2.5 x 10-4 Sv, respectively. The lower layer pattern displays a closed 

circulation around the island, over the skirt, with streamlines closely following 

the contours of constant potential vorticity. 

 

Figure 10 The integrand in the numerator of (3.7), measuring the strength of the forcing 

exerted by the upper layer, wind-driven dynamics, on the lower layer circulation. 

Equally spaced contours, with the solid (dotted) lines corresponding to anticyclonic 

(cyclonic) forcing, with the dashed lines indicating contours of constant potential 

vorticity. 

 

Figure 11 The dependence of the transport on the topographic height hT  for the 

meridional island 

 

Figure 12  Mean streamfunction for a) upper layer and b) lower layer for δM = 10 km, δI = 

2 km, λI  = 10-5 m s-1, rI = 250 km, rT = 500 km, and rO = 1000 km. The 

streamfunction in both layers has been nondimensionalized by the upper layer 

island constant ΨI = .095 Sv, and the contour interval in a) is 0.1 and in b)  is 

.004. The topography is indicated on a) by the gray circular contours, contour 

interval 200 m. 
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Figure 13 a) The total nondimensional transport over the topographic skirt (asterisks) and 

flat interior east of the topography (circles) as a function of the scaled coupling 

coefficient !
i
/ "h

2
(r
T
# r

I
) . The straight lines have slopes proportional to !

i

1/2  for 

the island result and !
i
 for the interior result. b) The nondimensional transport 

over the skirt as a function of the bottom slope; the vertical dashed line is the 

approximate value for which the closed potential vorticity contours vanish. 

 

Figure 14 Mean a) upper and b) lower layer streamfunction from the final 5 years of a 20 

year integration for the nonlinear numerical model.  The streamfunction in both 

layers has been nondimensionalized by the upper layer island constant.  The  

contour interval is 0.25.  The bottom topography is indicated in a) by the gray 

contours, contour interval 200 m. 
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c) 

 

 

 

 

 

Figure 1 a) The two layer model showing the topography and layer thicknesses for the 

meridionally oriented island. b)  The depth contours in units of 1,000 meters. c) 

The isolines of potential vorticity f/h2 in the lower layer. 
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Figure 2 The four  regions for the upper layer Sverdrup solution showing the island with 

inner radius rI in the upper layer and the skirt in the lower layer extending to rT. 

For the meridional island the inner circle is replaced by a north-south line. 
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Figure 3 The integral I
b
(b) for different yn/rO. 
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Figure 4  The form of the lower layer stream function as a function of x at the mid  

latitude, y = 0, for h
T
= 0.5H

2
  and h

T
= 0.999H

2
. 
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Figure 5 The outer circle is the contour of integration. The inner circle is the island in the 
upper layer. The angle θS  is the critical angle for the integration  in section 3b. 
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Figure 6 The azimuthal transport !"
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/ !r obtained from (3.28) and (3.29) for r
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 = 5 and 2. 
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Figure 7 The square bracket in (3.37) for r
o
/ r

T
 = 2. 
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Figure 8  Maximum of the lower layer stream function over the skirt, as a function of the 

island half-length yn  and of the basin radius r0, for hT = 600 m and xT /yn = 0.5. 

The contour interval is 0.002 Sv.  
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Figure 9 Steady state stream functions for the two layers (upper layer above), from a simulation with an 

island of 800 km, surrounded by a skirt of 250km , 600 m tall, whose boundary is indicated by 

the dashed contour. The contour intervals are 0.05 Sv and 2.5 x 10-4 Sv, respectively. The lower 

layer pattern displays a closed circulation around the island, over the skirt, with streamlines 

closely following the contours of constant potential vorticity. 
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Figure 10 The integrand in the numerator of (3.7), measuring the strength of the forcing 

exerted by the upper layer, wind-driven dynamics, on the lower layer circulation. Equally 

spaced contours, with the solid (dotted) lines corresponding to anticyclonic (cyclonic) 

forcing, with the dashed lines indicating contours of constant potential vorticity. 
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Figure 11 The dependence of the transport on the topographic height hT  for the 

meridional island. 
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Figure 12 Mean streamfunction for a) upper layer and b) lower layer for δM = 10 km, δI = 

2 km, λI  = 10-5 m s-1, rI = 250 km, rT = 500 km, and rO = 1000 km. The 
streamfunction in both layers has been nondimensionalized by the upper layer 
island constant ΨI = .095 Sv, and the contour interval in a) is 0.1 and in b)  is 
.004. The topography is indicated on a) by the gray circular contours, contour 
interval 200 m. 
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Figure 13 a) The total nondimensional transport over the topographic skirt (asterisks) and 

flat interior east of the topography (circles) as a function of the scaled coupling 

coefficient !
i
/ "h

2
(r
T
# r

I
) . The straight lines have slopes proportional to !

i

1/2  for 

the island result and !
i
 for the interior result. b) The nondimensional transport 

over the skirt as a function of the bottom slope; the vertical dashed line is the 

approximate value for which the closed potential vorticity contours vanish. 
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Figure 14 Mean a) upper and b) lower layer streamfunction from the final 5 years of a 20 

year integration for the nonlinear numerical model.  The streamfunction in both 

layers has been nondimensionalized by the upper layer island constant.  The  

contour interval is 0.25.  The bottom topography is indicated in a) by the gray 

contours, contour interval 200 m. 

 


